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Abstract

Several works have suggested that a Multi-Input Multi-Output (MIMO) radar system offers improvement
in terms of performance in comparison with classical phased-array radar. However, under the widely spread
assumption of a uniform a priori distribution for one parameter of interest, there is no result concerning
lower bounds on the mean-square error in the case of a Gaussian observation model with parameterized
mean. This Fast Communication fills this lack by using the Weiss-Weinstein bound (WWB) which can
be calculated under this difficult scenario. A closed-form expression of the WWB for MIMO radar with
colocated linear arrays is derived and analyzed for a design purpose in terms of array geometry. Simulations
confirm the good ability of the proposed bound to predict the mean square error (MSE) of the maximum a
posteriori (MAP) in all range of SNR. Particularly, the tightness of the bound to predict the SNR threshold
effect is shown.

Keywords: MIMO radar, Weiss-Weinstein bound (WWB), parameter estimation.

1. Introduction

Since it was first introduced [1], the MIMO radar has gained interest in investigation to improve mul-
tisensor systems performance. A MIMO radar utilizes multiple sensors in both the transmitter and the
receiver to send out and collect a set of probing waveforms which can be fully uncorrelated or partially
correlated. If all the transmitted waveforms are correlated, it refers to the conventional phased-array radar.
Thanks to these additional degrees of freedom, a MIMO radar has many advantages in comparison with
a phased-array radar. Depending on the distance between elements of antennas and the positions of the
transmitting and receiving arrays (colocated or widely separated), each configuration of MIMO radar has
its own interests such as improving parameter identifiability [2] [3]; offering higher flexibility in transmit
beam pattern designs: improving the angular resolution, lowering sidelobes, or decreasing the spatial power

density of transmitted signals [2]; increasing detection performance, and allowing direct applicability of
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adaptive techniques for parameter estimation [4].

If we focus on target localization, the superiority of MIMO radar’s performance w.r.t. the phased-
array radar has been shown in terms of lower bound on the mean square error (MSE). To the best of our
knowledge, all the existing works available in the literature concern only the case of deterministic parameter
for the location of the target. In [1], preliminary calculations of the Cramér-Rao bound (CRB) have been
introduced. The considered model was the colocated uniform linear array (ULA) for both transmitting and
receiving arrays. In [5] and [6], a MIMO radar with widely-separated antennas was studied and the CRB
has been calculated for target position and velocity. Besides, Jian Li et al. have investigated the waveform
optimization of MIMO radar based on the CRB using colocated ULA transmitting and receiving antennas
[7] [8]. While all the above works have exploited the asymptotic region of the MSE over signal-to-noise ratio
(SNR) performance, the Barankin bound has been shown to give a SNR threshold approximation in the
scenario of colocated circular array configuration [9] [2](chapter 4).

All these aforementioned investigations handle only the cases where the unknown parameters are assumed
to be deterministic. Since the support of the parameters was not taken into account, these bounds cannot
describe the overall MSE performance. As an alternative to the deterministic case, we propose to handle the
problem in the Bayesian framework which will provide a tight lower bound over all the range of SNR and a
good prediction of the SNR threshold. The Bayesian bounds deal with the random parameter and presume
an a priori probability density function (pdf). Hence, they will allow us to characterize and to predict more
completely MIMO radar performance. Note that not all the Bayesian bounds proposed in the literature are
able to take into account the case when the parameters of interest are supposed to be uniformly distributed.
Therefore, among various types of Bayesian bounds, such as the Ziv-Zakai bound [10], the Bell-Steinberg-
Ephraim-Van Trees bound [11], the Bobrovsky-Zakai bound [12], and the Bayesian Abel bound [13], we
concentrate, in this work, on the Weiss-Weinstein bound (WWB) (see [14] and the recent work of Rapoport
and Oshman [15] [16]),which can deal with the uniformly distributed prior assumption and is one of the
tightest bound of the Weiss and Weinstein family [17] [18]. The scenario under investigation is a MIMO
radar estimating the direction-of-arrival (DOA) of a target and the complex radar-cross-section (RCS) in
the Swerling 0 case. Our results are derived in the case of linear (possibly non-uniform) colocated arrays at
emission and reception.

The rest of this paper is organized as follows: Section 2 presents the general problem setup with colocated
linear arrays. In Section 3, we calculate the corresponding WWB matrix for the DOA and the complex RCS
and we prove its diagonal structure. In Section 4, simulations are presented to confirm the good ability of
WWB to predict the mean square error (MSE) of the maximum a posteriori (MAP) in all range of SNR
(asymptotic and threshold regions). Numerical procedure is introduced to analyze the MIMO radar system
in terms of antenna geometry. Finally, Section 5 draws the conclusions.

2



2. Problem Setup

We consider a single-target localization scenario with a MIMO radar system formed with colocated
linear (possibly non-uniform) transmitting and receiving arrays with M and N antennas, respectively. Each
transmitting antenna sends out a different waveform, which is known. The N x 1 complex received signal is

then given by [7]:

y(t) = Bb(0)aT (0)x(t) + n(t) = BC(H)x(t) + n(t) , t =1...T, (1)

where 7" is the number of snapshots. Since both transmitting and receiving arrays are linear, the steering

vectors have the following forms
T
2 2
a(d) = [exp(—j%al sinf),..., exp(—jTﬂ-aM sin 9)} ; (2)

2 2 T
b(0) = [exp(—j%bl sinf), ... 7exp(—jTﬂ-bN sin 9)] , (3)

where A denotes the wavelength, where a;, 2 =1...M, and b;, j = 1... N, are the positions of the elements
(w.r.t. a reference point) of the transmitting and receiving arrays, respectively. Note that for the colocated
scenario, the DOA is the same as the direction-of-departure (DOD), hence 6 is the only one location pa-
rameter of the target. Moreover, 6 is assumed to have an a priori uniform distribution over the support
[0, 7]. For simplicity in the derivation, we define u = sin(f) as the parameter of interest instead of working
directly with 6. Note that, the pdf for u is p(u) = —2~—. We denote C(#) = b(f)a’ () € CN*M, The

TV1—u?
clements of C(6) are given by [C(6)],; = [exp(—j 2 (a; + by)sinf)]. x(t) is the vector of each transmitted

waveform. We suppose that these waveforms are independent and have the following empirical covariance
matrix: R, = + Zthl x(t)xH (t) = Diag(o?), where o2 = [0%,...,0%,]7. We also define {n(t)}tT:1 as the
noise vectors, which are assumed to be independent and identically distributed circularly complex Gaussian
with zero-mean and covariance matrix R = 021. 3 is the target complex amplitude related to the RCS of
the target in the Swerling 0 case, and has an a priori circular complex Gaussian distribution with zero mean
and variance 0[23, namely 8 ~ CN(0, 0[23). The elements of the unknown parameter vector ® = [u, Sg, BI]T
with B = Re{B},8r = Im{pB}, are considered to be statistically independent such that the joint pdf
p(©) = p(u)p(Br)p(Br)-

Under the assumption of independent observations, the likelihood of the full set of observations Y =

[y(1),y(2),...,y(T)] is given by
T
P(Y;0) = —orr exp (—Ui S (3(0) = BCOX(0) (v(1) - 60(9)X(t))> . @
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3. Weiss-Weinstein Bound for MIMO radar ’s parameter estimation

The Weiss-Weinstein bound [14], denoted by WWB, of the unknown target parameters ® = [u, g, I]T
is a 3 x 3 matrix such that the following relation holds
“ . T
E{(@—@) (@)—@) }ZWWB: sup HG™'HT (5)
B
~ N T ~
where F { (@ — @) (G) — @) } is the MSE of any Bayesian estimator ® and H = [hy, ha, h3] is the 3 x 3

matrix of test-points. The elements of the 3 x 3 matrix G are given by

G _ E{[L**(Y;© +h;,0) — L'"*(Y;© — hy;, ®)][L%(Y;© + h;,0) — L' *(Y;© — h;,0)]} ©)
M= E{L**(Y;© +hy,©)} E{L*(Y;© + h;, ©)} ’

where L(Y;© + h;,®) = %, and s; € [0,1],4 = 1,2,3. The expectations are taken over the joint

pdf p(Y, ©).

Rigorously, the quantity HG~'H” must be maximized w.r.t. h; and s; leading to a high computational
complexity. However, it has been shown [19] [20] that choosing s; = 3,Vi = 1,2, 3, and a diagonal matrix H
leads to a bound still tight. Therefore, we assume here that s; = 1/2, Vi, and that H = Diag([hy, ha, h]T).

In this case, the elements of the matrix G can be written as

n(hy, h;) +n(—hg, —h;) — n(hy, —h;) — n(—hg, hy)

Gy = , 7
g Wb 0} (b, 0) ™
where we define
wen = [ [ ¥, 0+a)lipy.0+)dvde, ®)
T /o
where € and Y are the observation and parameter spaces, respectively.
By denoting
7(©.0m) = [ p(Yi0+a)ip(Yi0+7)kay. ©)
Q
n(a,7y) can be rewritten as
wowm) = [ 1/(©.amp©+a)ipe +y)ide. (10)
T

Plugging (4) into (9), we obtain a closed-form expression for 7’ (the details are given in Appendix 6.1)

T
7'(0,a,7y) = exp <—#Z[f(® +a,t) - f(O —l—’)’,t)}H [f(®+ a,t) —f((")—l—’)’,t)]) , (11)

t=1



where £(0,t) = SC(0)x(t). Next, an integration over the support of the parameters is required in order to

1
TV1—u?

an analytical development of the required integration unobtainable. This leads to a numerical integration

derive 7. Note that, if we assume a uniform a priori pdf on 6, the pdf for u is p(u) = which causes
to calculate the considering bound which is very time-consuming. Moreover, a closed-form expression is
always interesting because it allows an easy interpretation of the bound, i.e., we can study the performance
of the MIMO radar system w.r.t. some design parameters. Consequently, with the intention of obtaining
closed-form expression of WWB, we propose a different approach where we assume a uniform a priori pdf
on u (see also [21] where the same thing appears in the context of classical bearing estimation). Moreover,
whatever the a priori pdf on wu, it is theoretically proved that we still obtain a strict bound on the MSE.
We also show by simulation (in Section 4.2) that the two approaches give very close bounds and the same
prediction of the SNR threshold.

Assuming a uniform a priori pdf on w, the structure of the matrix WWB is given as follows (see

Appendix 6.2 for more details):

. h? 1 1
WWB = Diag S}?pGu IR n
1 TASNR+ =) 2(TASNR+ =
B E

(12)

where the array signal to noise (ASNR) is defined as PN/o2 where P = Zg/il o is the total transmitted

power, and where Gq1 is given by

2 — h1)f(2,h1) = 2(1 — h)] f(1, h)?

I
G =1 @ )22 ) ’

where we define

1 LE 52 o2
flo,hy) = %5 E;—g{l—cos (Thl(ak—i-br))}—i—l. (14)

In the following, we analyse the proposed bound in terms of SNR threshold prediction and array geometry

design.

4. Analysis

4.1. Properties of the bound

There are three properties of the WWB matrix (12):

1. Due to the diagonal structure of the WWB matrix, the lower bounds on estimation errors are decoupled.



2. Thanks to this derivation, the initial multidimensional optimization problem w.r.t. hi, he, and hs has
been reduced to a monodimensional optimization problem w.r.t. hy only.
3. The WWB for i and §; are the same as their Bayesian CRB in the case where u is assumed to be

known (the proof is straightforward).

4.2. WWB performance in predicting the global MSE and the SNR threshold

The aim of this part is to examine the usefulness of using the WWB to predict the ultimate global MSE
and the SNR threshold. For that reason, we consider the empirical global MSE of the MAP estimator,
which is evaluated over 1000 Monte Carlo trials. The simulation is performed with parameters as follows:
the transmit array is sparse with M = 8 sensors and with inter-element spacing (in unit of wavelengths)
equals to 4 and the receive array is an ULA with N = 8 sensors and with inter-element spacing (in unit of
wavelengths) equals to 0.5. Such array configuration is well-known in MIMO radar ([2] p.76) to create a
Nyquist virtual array with good performance. The uncorrelated MIMO radar waveforms are generated using
Hadamard codes with T' = 64 snapshots. The transmitted power is assumed to be uniformly distributed on
all transmit antennas. h; is chosen on the support [—1,1]. Figure 1 shows the WWB and the MAP of the
parameter of interest u versus ASNR. It can be seen that the WWB provides a good prediction of the MSE
in all regions. It predicts the threshold SNR location to be 4 dB below the threshold SNR indicated by the
MAP.

Next, as aforementioned, there are two possible assumptions for the a priori pdf on u, one leads to a
numerical integration and another leads to a closed-form expression of the bound. In Figure 2, we show
that the two assumptions give very close bounds and the same prediction of the SNR threshold. Note that,
in our simulation, time needed to calculate the bound with numerical integration is over 100 times of time
in the other case. Consequently, to have a (still tight) bound with efficiently computational cost and easy
interpretation, the WWB derived with the assumption of uniform a priori pdf on w is preferred especially

for designing MIMO radar system.

4.8. MIMO array geometry investigation

This part investigates the behavior of the derived WWB w.r.t. the array geometry of both the receiver
and transmitter. Note that the proposed bound has been derived in the context of linear arrays but possibly
non-uniform. Consequently, it remains a degree of freedom to enhance the performance. We first analyze the
impact of the receiver array geometry while the transmitter is made from a classical ULA. Both transmitter
and receiver are made with M = N = 8 sensors. The transmitter is a fixed ULA (half-wavelength inter-
element spacing) array. The receiver has different linear array geometries keeping the array aperture D = 23
(in unit of 4) fixed (i.e. the positions of the 2 extreme sensors of the linear array are fixed). In other words,

their is 22 positions available for the 6 other sensors (74613 possibilities). The number of observations is
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T = 64. We have generated all the array configurations and computed the associated WWB. In Figure 3,
among these 74613 bounds we have plotted the bound which leads to the lowest SNR threshold (denoted
bound A) and the bound which has the lowest MSE in the asymptotic area (denoted bound B). We have
noticed that both geometries leading to bound A and B are not with minimum redundancy or minimum
gap. Indeed, for this configuration, it can be seen that it exists four minimum-redundancy arrays. We
have computed the bounds associated to these four possibilities and plotted the best one in terms of MSE
for comparison purpose. The bound A (i.e. the bound with the lowest SNR threshold) shows that better
asymptotic performance can be obtained. It exists a geometry configuration leading to slightly better
asymptotic performance (bound B) but with a worst SNR threshold. Note that, we have obtained the same
results, i.e. same bounds associated to the same optimal geometries, in the opposite case where the receiver
is a fixed ULA and where the transmitter array geometry is optimized following the same aforementioned

way.

5. Conclusions

In this correspondence, we have derived a closed-form expression of the Weiss-Weinstein bound for MIMO
Radar with colocated linear arrays. It has been seen that the Weiss-Weinstein bound for the parameter of
interest provides a good prediction of the MSE in all regions. It also predicts the threshold SNR location
near the threshold SNR indicated by the MAP. We have also investigated the influence of array geometry

on the behavior of the Weiss-Weinstein bound.

6. Appendix

6.1. Derivation of (O, a,~)

Note that

1 1 1
p(Y;0 4+ a)zp(Y;0 +v)2 = WGXP <—;C(®,a,'y,t)> 5 (15)

where

(0,07, 1) =5 [y~ F(O + e, 0] [y ~ F(O + o, 1) + 5 [y — (O +, 0] [y ~ £(O +,1)]

202 2
1 H 1 H 1 H 1 H 1 H
=S¥ Y5y f(®+a,t)—§y f(®+%t)—§f(®+a7t) y—§f(®+%t) y

1 1
+§f(® + o, )7f(@ + a,t) + 5f(@ + 4, ) (O +~,1)
(16)
Define z =y — 2£(© + a,t) — 1£(© + ~,1), we have
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where {'(©, a,7,t) = % [f(© + a, t)

does not depend on Y, and

n'(©,a,)

1 1
= _ZHZ + _CI(Qa 0777t)7
o2 4

n

(O, a,,t) (17)

- f(® +, t)]H

T

POEUCRR)

t=1

[f(® + a,t) — £(© + ~,t)]. Consequently, ('(0, a,~,1)

1
TNTGNT

=exp <

>

1 1
_2ZHZ+ _</(®7a773t)) dY
—~ o 4

) |

(18)

6.2. Derivation of matric WWB

From (18), the set of functions involved in G; are given by

/

( 17h1)
1(97 h17
'(©,hy,—hy)
(

n
n
n
7'(©,h,0) =

hl) =

2 (19)

= exp r= 10'2

(ar + br))]} ;

{ (B% + 5% TE [1—(:05(
3 ak+b))]}

exp{— (ﬁR"‘Bl)?TZk 1Zr 102 [1_‘305(

A,
- (

Then, since all the functions 7’ do not depend on wu, by integrating w.r.t. @, we obtain

n(hy, hy) = 220
n(=hi,—hy) =
n(hy, —hy) =

n(hla O) =2

h1

2—h1
2 ?

1—h,

[1 Cos(‘l)\ hl(ak-l-br))]-l—l
1

—1 —g[l—cos(%’hﬂakﬂ—bﬂ)]-{-l

N %
7‘1(,-2

21 M
o531 2 K=

2 21Ty

The set of functions involved in Ggi, k = 2,3 are given by

Then,

97 _hku _hk) 9
(21)

=1%%
2
n
2
=1%
o) .
(777.

|wm

),
).

=N g
W

h

2
4o 5



The set of functions involved in Gi5 are given by

2 2T 2
7' (©,hy, hy) —exp{QTZZ—é“I [ﬁ% (1—(:05( hi(ay + by ) + Brho (1—005(;h1(ak+br))

k=1r=1

ﬁ? (1—(:05( hi(ay + by

o2
2TZZU—§ [B <1—cos< hi(ak + b,)

) )
)) -Gt )

| ))-ofn (i)

32 (1 —cos< I (ax + by )>) +B1hgsm< b (ap + by )) + %h%] exp
7/(©, —hy, hy) — exp{QTszsz—; [/3 (1 —cos( ho(ar + by) )) + Brha (1 — cos (?hl(ak +br))) +
32 (1 — cos ( ha(ak +b ))) + Brhy sin (;hl(ak + br)) + %hé} exp }
{2T XN:Z_% [g <1 o (27”;“(% +br))) ~ Brhs <1 — cos <2§h1(ak +br))) +

Io5: (1 — cos < hi(ap +b )>) — Brhosin (?hl(ak + br)) + %hg] exp }

(23)

Consequently,

22—y

tito, (24)

where

% 3 XN:Z_E (1 - cos (%ﬁhl(ak +br)>) +
VTog (25)
{7[ DD AR (1—005(2%h1<ak+br>))+%}} ’
[h252k DI & sin (22 hy (ax + by ))}2
IED DD YA (1—cos(2“h1<ak+b)))+%
VTog
BB S % (1 cos (o +5,) + &)

Similarly, it is straightforward to see that n(hi, —hs) = n(—h;, —hy) which, together with (24), lead to
G2 = 0. We also have Go; = 0, G13 = 0, G31 = 0, Gas = 0, and Gg3y = 0. Therefore, the matrix G is

mqw| =

[N

to = exp

(26)

X



diagonal with elements given by

2—h1 _ > 1_hl
2 7B 1 M S N _cos( 4z
G =2 o 312k B i e ;hl(wm)lﬂga 27)
2—hy 1
2 o2
U—B%T ﬁil {Yzl a’i[lfcos(%’hl(akerr))]Jrl

2
M
1—exp (—h%NTL’“;1 Ug) exp (—j—é)
n B

Goy =2 ; (28)
exp (—%h%NTL%g az) exp (—%)
1 —exp (—h%NT%) exp (—Z—§>

G3gz =2 - - (29)

M I
exp (_%thTLkU:?j i ) exp (—2}%)
Thanks to the definition of f(p, h1) in (14), G11 can be rewritten as in (13). Using all the assumptions and
results above, the closed-form expression of the matrix WWB can be written as

h3 h3 h3
WWB = Diag | sup——, sup—=—, sup—— | , 30
g ( hlpGll h2pG22 h3pG33) (30)

with G11, G2, G3s given in (13), (28), and (29), respectively.

Note that in the original form of the Weiss-Weinstein bound (5), we have to optimize the matrix WWB

2
w.r.t. hi,ho,and hs. Since G;; depends only on h;, the optimization task is reduced to squh—;;C,Vk which
hi

. . . h3
is more tractable. Next, we give a closed-form expression for sup oo k=23,
hi

x exp(—ax)

WWB,, — >0, 31
ok ig€2[1 — exp(—2azx)] “ (31
where = h2 and @ = NTZ£4% 4 L 1f we denote () = oep(zaz) _yhep
k 202 205" g 2[1—exp(—2ax)]’

dg(x)  exp(—ax) [l — ax — exp(—2ax) — ax exp(—2ax)]
de 4[1 — exp(—2ax)]? ’ (32)

which is always negative Vo > 0. Consequently, g(x) is a monotonically decreasing function and has its

maximum at z = 0. Finally, we obtain:

h? 1
squ = S 2 k=23, (33)
b Gk 2(NT ey k_i_g%)
3 5

which concludes the proof.
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Figure 1: MAP estimator empirical global MSE and WWB
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Figure 2: WWB of v with a uniform prior pdf for v and a uniform prior pdf for 6 versus SNR
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Figure 3: Receiver geometry investigation: WWB for the

minimum-redundancy arrays.
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of u versus SNR

the lowest-threshold-point, the lowest-asymptotic-region, and the



