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ABSTRACT 

 

The estimation of radionuclide migration within a fractured medium is a fundamental 

task in any performance assessment aimed at verifying the protection offered by 

radioactive waste repositories. In this paper, we present a novel application of a dual-

permeability, Monte Carlo simulation approach based on Kolmogorov-Dmitriev (KD) 

theory of branching stochastic processes. The Monte Carlo simulation scheme allows to 

easily handle the high degree of complexity of the problem, accounting for non-

homogeneities both in space and time. Particular attention is here devoted to the 

inclusion of time-dependencies. An illustration is given with reference to a realistic case 

study of Pu239  migration.  

 

1. INTRODUCTION 

 

Fractures are the main responsible of contaminant transport in low-permeability formations. The 

water flow and the associated advective transport in the host rock are negligible with respect to 

what is occurring in the preferential pathways offered by the fractures, in particular if 

interconnected [1][2]. At the same time, the attenuation mechanism of molecular diffusion into the 

solid matrix can constitute a significant retardation mechanism [3]. For these reasons, the 

quantitative analysis of the processes of contaminant migration through fractured media plays a 

fundamental role in safety analyses, e.g. for the assessment of land disposal sites and deep disposal 
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wells for chemical or low-level radioactive wastes, or the Performance Assessment (PA) of 

geological repositories for high-level nuclear wastes [4][5]. An example of the latter is provided by 

the PA for the Waste Isolation Pilot Plant (WIPP), where the analysis for radionuclide transport in 

the Culebra Dolomite involved movement within and exchange between fractures and a 

surrounding matrix [4]. Another example is provided by the 2008 PA for the proposed repository 

for radioactive waste at Yucca Mountain (YM), Nevada; in this analysis, fracture flow and 

associated radionuclide transport were modeled in both the unsaturated zone (UZ) surrounding the 

waste disposal drifts [6][7][8] and in the saturated zone (SZ) located below the UZ [9][10][11]. 

Many approaches have been proposed in the literature to tackle this problem. Within the 

simplifying setting of a single, longitudinal fracture, both analytical [12][13] and numerical [14] 

solutions have been successfully compared to the experimental results of [15]. The interested reader 

may also refer to [16] for a review of the most important existing approaches. However, when 

dealing with more complex domains, characterized by large-scale fracture networks, detailed 

analytical approaches become impractical and the extension of the local-scale numerical schemes to 

the whole migration domain is prohibitive. In these cases, dual- or, more generally, multiple-

continua approaches offer a viable alternative based on sets of coupled classical advection-

dispersion equations: here, the detailed physical and geometrical information on the fractured 

migration domain is condensed in lumped, effective parameters thus allowing in principle for 

analytical or numerical solutions. 

In this paper, we exploit a Monte Carlo simulation scheme based on the Kolmogorov-Dmitriev 

(KD) theory of branching stochastic processes [16][17][18] for the solution of a dual-permeability 

migration problem within a realistic performance assessment case study. This numerical approach 

has been chosen because it allows a straightforward inclusion of i) many physical and chemical 

processes by simply introducing new particle types (see [16] for some examples); ii) complex 

geometries of the migration domain and iii) inhomogeneities both in time and space. In particular, 

in a realistic setting, the geometric and hydrologic properties of the transport media may be subject 

to changes which can be both continuous and discrete in time. For example, such modifications may 

include the closure of fractures in salt deposits due to the plasticity of the medium [19][20], the 

decrease in fracture aperture due to slow deposition [21], seasonal water content changes in seasons 

due to rainfalls [22], thermo-hydraulic-mechanical-chemical (THMC) couplings which can affect 

the permeability of the media and the average hydraulic gradient [23][24][25][26] or the abrupt 

changes in the fracture aperture due to shock events (e.g. earthquakes, volcanic eruptions, etc.) [27]. 

A significant, practical example of the importance of accounting for such evolving system 

properties is provided by the PA of the WIPP mentioned above, where the evolution of the 



repository system due to brine inflow, gas generation, system pressurization, and pressure-induced 

fracturing was analyzed [4][5][28]. 

The flexibility of the proposed modeling approach easily allows dealing with the time-dependencies 

introduced by these phenomena. In fact, in the following, this is demonstrated through the 

application to a realistic case study of performance assessment of a waste repository located in a 

highly fractured zone [29] subject to seismic activity.  

The paper is organized as follows. In Section 2, the principal features of the dual-permeability, 

Monte Carlo simulation-based model are recalled. Section 3, describes the application of the model 

to a case study of literature [29]. Conclusions on the capabilities of the proposed procedure are 

drawn in Section 4. 

 

 

2. THE MODEL 

 

In this Section, we consider the one-dimensional, Monte Carlo simulation, dual-permeability 

scheme introduced in [17] and based on the Kolmogorov-Dmitriev (KD) theory of branching 

stochastic processes [16][18]. 

The key feature of KD modeling is that different types of particles, characterized by different 

stochastic behaviors, are introduced to represent the solute in its possible different states (physical 

or chemical) and regions of space (positions). Partial differential equations, known as the Forward 

Kolmogorov Equations (FKEs), are then derived for the expected values of the different particles’ 

populations, which are proportional to the solute concentrations. Within a Markovian description of 

the stochastic space-time evolution of a system of different particles, the KD model is naturally 

suited to a Monte Carlo particle tracking-based solution of the associated FKEs: from the 

probability density functions of the model, a large number of realizations of the migration fates of 

contaminant particles are simulated. 

For simplicity, in what follows we shall refer to a one-dimensional domain [16][17], which is 

subdivided in zN  discrete zones, zNz ,...,2,1 . The objective is that of determining the amount of 

contaminant present at each time in each zone of the porous matrix and system of fractures. Two 

categories of particles are introduced: the solutons, which are the particles of contaminant migrating 

in the porous matrix, and the fracturons, which are the particles of contaminant migrating in the 

fractures. Thus, the system is made up of zNm 2  different kinds of particles, i.e. the solutons and 

the fracturons in the zones zNz ,...,2,1 . Each particle may disappear or give rise to one particle of 

the 1m  remaining kinds according to given transition probability laws. It is assumed that: i) the 



stochastic process is Markovian, i.e. a particle of the k
th
 kind, mk ,,1 , gives rise to a branching 

process independently of its past history; ii) the process is linear, i.e. the particles do not interact 

among each other; iii) within a generic time interval  dttt , , with dt  sufficiently small, only one 

particle transition may occur. 

Within this framework, in the time interval dt  a soluton can undergo an exchange transition in zone 

z , thus transforming into a fracturon in zone z ; the probability of occurrence of this transition, 

conditioned on the fact that the particle was a soluton at time t  in zone z , is  dttl zfs , , where 

 tl zfs ,  is the corresponding transition rate. Alternatively, within the same time interval dt , the 

soluton can travel to one of the neighboring zones, 1z  or 1z , with transition rates  tfs  

(forward) and  tbs  (backward), respectively. Because of the continuity of the underlying physical 

phenomenon, only transitions among neighboring zones (i.e. previous and following one in the one-

dimensional domain) are taken into account. Similarly, one fracturon in zone z  can either enter the 

porous matrix and become a soluton in zone z  with transition rate zsfl ,  or travel to the nearby 

zones, 1z  or 1z , with transition rates  tf f  and  tb f . Finally, the contaminant might undergo 

a radioactive decay or a chemical reaction with rate  t , upon which, for simplicity, we assume the 

particle disappears (the extension to follow chains of radionuclides and chemical species is 

conceptually trivial but adds complexity in the presentation of the model which are not meaningful 

for the scope of the presented work). Note that in general all the transition rates can depend on t , 

which implies the possibility of time-dependent interactions. Figure 1 summarizes the possible 

particle transitions within the one-dimensional migration domain. 

To describe the space and time evolution of the system of particles, it is possible to write the 

following system of zN2  coupled differential equations (Forward Kolmogorov Equations) for the 

evolution of the expected values of the numbers of solutons ( S ) and fracturons ( F ) at time t  in 

zone [30]: 
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with zNz ,...,2,1'  and where we assume to have one soluton in zone z at time 0t  ( zs ,1 ). These 

equations appeal to our physical intuition as they represent the balance between the production and 

the destruction processes for both the solutons and the fracturons populations at 'z  in dt . 

The forward and backward rates in equations (1.a,b) can be determined by analogy with the 

equivalent dual-permeability advection-dispersion equations [16][17], whereas the exchange rates 

can be identified on the basis of detailed physical analyses [16][31][32] (see Appendix A for more 

details). 

When the transition rates are constant in time, the stochastic process of radionuclide migration 

modeled by the system of partial differential equations (1.a,b) represents a continuous-time 

homogeneous Markov process [33], whose solution is the probability of finding the m
th

 contaminant 

particle in state 'z  at time t . Thus, in principle, analytic [33][34] or numerical [30] solutions of the 

system of coupled equations can be found. However, in realistic cases analytic solutions are 

difficult to obtain, if not impossible, whereas numerical schemes may, in some cases, be subject to 

restrictions in the choice of the time step in order to avoid numerical problems. Here we propose to 

resort to the Monte Carlo particle tracking scheme proposed in [16], which is directly derived from 

the underlying Markovian description of the stochastic evolution of the system of particles, whereby 

the stochastic migration of a large number M  of contaminant particles are simulated by repeatedly 

sampling their births from the release sources and their transitions across the medium 

compartments.  

The random walk of the individual radionuclide particle is simulated either until it exits the domain 

to the 1zN  compartment “environment”, that is absorbing because from there the particle cannot 

come back into the migration domain, or until its lifetime crosses the time horizon T  of the 

analysis. With no loss of generality, the radioactive decay of the particles is taken into account at 

the end of the simulation by way of a convolution of the estimated concentrations and the decay 

probability density function (see the next Section). The time horizon T  is discretized in tN  equally 

spaced time instants, with time step t . Two counters  knCounts ,  and  knCount f ,  are associated 

to each compartment 1....,,2,1  zNn  and each discrete time tNk ....,,2,1 . During the 

simulation, a one is accumulated in the counters  knCounts ,  and  knCount f ,  if a soluton or a 

fracturon, respectively, resides, during the random walk, in compartment n  at time k . At the end of 

the M  simulated random walks of the contaminant particles, the values accumulated in the 

counters allow computing the estimates of the time-dependent probabilities of cell occupation by a 

soluton or a fracturon at the discrete times k , )(ˆ
, kP sn  and )(ˆ

, kP fn , respectively:  
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The total probability that a contaminant particle occupies cell n  at time k  is: 
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Similarly, the point-wise approximation of the normalized release (mass flow) into the environment, 

)(kRenv , can be estimated as: 
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Figure 1: Possible particle transitions within the one-dimensional migration domain. 

 

 

3. RESULTS 

 

The dual-permeability, Monte Carlo simulation model is applied to a realistic case study of 

literature for the estimation of the expected dose due to the releases from a near surface repository. 

The near surface repository considered is a design concept studied by ENEA [29][35][36][37], and 

has similarities with the currently operative disposal facility of El Cabril, Spain [38]. As the 

radionuclides exit the repository floor, they migrate through the unsaturated zone, whose most 

important effect is that of retarding the infiltration towards the saturated zone [39]. Then, the 



radionuclide migration in the groundwater domain is described to occur within a highly fractured 

limestone layer exhibiting extensive karstic phenomena. The key hydrogeological features and 

hydraulic properties of the site, reported in Table 1, have been estimated by properly combining 

geophysical techniques and hydraulic testing through boreholes inspection at a repository candidate 

site [35]. 

 

Table 1: Hydrologic data for groundwater migration of 239Pu  [35] 

Fracture porosity 30.0f  

Matrix porosity 30.0m  

Fracture tortuosity 50.0f  

Matrix tortuosity 50.0m  

Characteristic half width of matrix blocks ma 3.0  

Relative volume of the matrix system 60.0mw  

Relative volume of the fracture system 40.0fw  

Fracture hydraulic conductivity  smK f /101 3  

Matrix hydraulic conductivity smKm /101 6  

Average hydraulic gradient 003.0/  zh  

Molecular diffusion coefficient smDmol /101 29  

Fracture transverse and longitudinal dispersivity mm fLfT 0.10,0.0 ,,    

Matrix transverse and longitudinal dispersivity mm mLmT 0.5,0.0 ,,    

Fracture-matrix dispersivity mmf 0.0  

Plutonium retardation coefficient 4167R  

Plutonium radioactive decay 141028761.0239

 y
Pu

  

Geometric fracture parameter 3   (rectangular slab) 

 

The dual-permeability, Monte Carlo model of Section 2 is employed to simulate the transport of the 

radionuclide 239Pu  within the groundwater body described above; this particular radionuclide has 

been chosen because it represents a long-term threat to the environment for its radioactivity 

( 4

1 2 2.411 10 yT   ) and toxicity. To promote model simplicity for repeated use in PA probabilistic 

analyses, a one-dimensional model is considered. To simulate the transport, 510M  fracturon 

particles are injected, according to the release rate computed in [29], in the first upstream 



compartment of a dual permeability, one-dimensional array of 50zN  compartments of equal 

width mz 2 , representing both the fracture and the porous matrix, and simulated over a time 

horizon of yT 10000 , divided into 500tN  equal time steps of constant width yt 20 . The 

migration of 239Pu  in the groundwater is assumed to occur under linear isothermal conditions. The 

backward and forward transition rates for both the solutons and the fracturons, sb , sf  and fb , ff , 

respectively, and the exchange rates zfsl ,  and zsfl ,  are computed by resorting to equations 

(A5.a,b) and (A7.a,b), with the parameter values of Table 1 [35] and  molL DvD  . The 

geometric parameters a  and   are set to the values of Table 1 on the basis of engineering common 

sense, due to the lack of a more detailed characterization of the fracture system but with no loss of 

generality.  

At the end of the M  simulated random walks, the values accumulated in the counters (see Section 

2) allow estimating the time-dependent probabilities of compartment occupation )(ˆ kPn , which can 

in turn be employed to estimate the 239Pu  concentration and therefore the expected dose to the 

population. For illustration purposes, let us consider a groundwater compartment of depth 

my 1 , width mx 250  and length equal to the spatial discretization step mz 2  [39]. 

Thus, the volume of the groundwater domain compartment is 300.500 mzyxV  . By 

neglecting for simplicity the 239Pu radionuclides that are generated by the decay chains of other 

radioactive elements contained in the repository, the 239Pu  time dependent concentration  knC ,  

[Bq/m
3
] in a generic groundwater domain compartment n  at time k  can be estimated as: 
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where  kA
Pu239  [Bq] is the total activity of 239 Pu  and is computed as 
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where 
15108761.2239

 y
Pu

  is the decay rate for 239 Pu  and BqA 10

0 106.1   is the total 239 Pu  

inventory at a reference time 0t  [40]. 



On the basis of the estimated 239 Pu  concentrations in groundwater, the final dose intensity to 

humans ][Sv/y Dw  by ingestion of drinking water can be estimated as [35]: 

 

    ingwacquiferw DCINGknCknD ,,   (13)  

 

where ymINGw /103.7 31  is the average quantity of drinking water consumed per year and 

BqSvDCing /107.15 9  is the 239 Pu  dose conversion factor for ingestion [35]. 

Figure 2 shows the estimate of the expected dose at a groundwater compartment located 100 meters 

downstream of the source compartment (dotted line). For decision making purposes, the estimated 

239 Pu  dose intensities must be compared to the limit prescribed by the Italian law for the dose to 

the population, i.e., a total of ymSv /1  above the level of ymSv /4.2  due to the background 

natural radioactivity [35][41]. The maximum dose intensities from 239 Pu  estimated, about 

ymSv /15.0 , are below the above limit indirectly confirming the reasonableness of the assumptions 

made. The long “tail” of the dose starting from approximately 4000 years is due to the matrix-

fracture exchange phenomenon.  Figure 2 shows in fact the expected dose (dotted line) compared to 

the curves computed taking into account only the contaminant particles which have undergone no 

exchange transitions (solid line) and those which have undergone an exchange transition at least 

once (dashed line). As expected, the shape and the time of the dose peak is due to those fracturons 

which exit the domain, without any interaction with the matrix, whereas the long tail is made up of 

the particles delayed by the interaction with the matrix.  

The effects of the matrix-fracture exchange phenomenon is further investigated by running two 

additional MC simulations with different exchange rates. Figure 3 shows the expected doses with 

0,,   zfszsf ll  (solid line) and 12

, 108.3 

  yl zsf  and 12

, 105.2 

  yl zfs , i.e. two orders of 

magnitude larger than in the first case, (dashed line). The first case is equivalent to modeling the 

radionuclide migration in a single-permeability domain with hydrologic properties of the sole 

fractures. The expected dose shows a larger peak and a shorter tail, due to the fact that the 

fracturons are not delayed by the exchange process with the porous matrix; at the same time, the 

peak time remains the same, because in the previous case depended only on the fraction of 

fracturons which does not interact with the matrix before exiting the domain. In the second case, the 

exchange rates are increased to values which imply that all the fracturons become solutons at least 

once before exiting (as verified by the authors, but not shown here for brevity’s sake), thus causing 

a shift of the peak towards larger time and a broadening of the curve due to larger dispersion.  



 

 

Figure 2: Comparison between total dose (dotted line), contribution of the contaminant particles which exit the 

domain without interacting (solid line) and those which are delayed by the exchange with the matrix (dashed 

line). 

 

 

Figure 3: Comparison between the expected doses in the dual-permeability base case (dotted line), the single-

permeability case (solid line) an dual-permeability case with increased exchange rates (dashed line). 

 

 



As mentioned in Section 2, the flexibility of the adopted model allows taking into account more 

realistic features of the domain and phenomena typically involved in the migration process.  

This capability is first exploited on an extension of the case study previously described, which 

involves long term modifications of the groundwater gradient due to climate changes (e.g. rainfalls, 

glaciation, etc.) [42]. The process is modeled as a continuous increase in time of the groundwater 

fracture pore velocity fv : for simplicity, but with no loss of generality, it is assumed that the change 

can be described by the following power law 

 

1

0,

 tvv ff , (14)  

 

where   and   are model parameters and 0,fv  is the initial value of the pore velocity in fractures, 

assumed equal to the value adopted in the previous case study. Thus, the forward and backward 

transition rates of the fracturons, ff  and fb , become time-dependent functions (see equations 

(A5.a,b) ). As in the previous case study, 510M  fracturon particles are injected, according to the 

release rate computed in [29], in the first upstream compartment of the same dual permeability, one-

dimensional domain and simulated over a time horizon of yT 10000 , discretized into 500tN  

time steps with constant width yt 20 . The exchange rates are set equal to 

12
, 105.2 

  yl zfs  and 12
, 108.3 

  yl zsf  and the parameters   and   to 1.15 and 0.87, 

respectively, which amounts to gradually increase the pore velocity value to a maximum of 

approximately 0,4 ff vv   at yT 10000 . All the remaining physical and simulation parameters 

are equal to those used in the previous case study. Figure 4 shows the estimate of the expected dose 

at a compartment 100 meters downstream of the source (dotted line); the comparison with the curve 

previously obtained with constant forward and backward transition rates, 111008.2  yf f  and 

111070.1  ybf , and same exchange rates (dashed line), shows that the peak time shifts towards 

earlier times and the dispersion decreases. These effects were to be expected since, on average, the 

pore velocity is larger and, consequently, the probability of a fracturon being absorbed by the 

matrix sensibly decreases, thus leading to results similar to those obtained with a single-

permeability model (Figure 2, solid line). 

The same case study is then extended to consider that the aperture of the fractures may 

stochastically vary in time due to the mechanical stresses induced by earthquakes hitting the 

migration domain [27]. The apertures of fractures may change due to normal stress-induced 

closures or openings and to shear stress-induced dilations; thus, the permeability of fracture rock 



masses is stress-dependent [24][26]. This indirect hydro-mechanical coupling is particularly 

important in fractured rock masses, since stress-induced changes in permeability can be large 

(several orders of magnitude) and irreversible under, in general, perturbations resulting from 

various natural and human activities [24]. For simplicity, but with no loss of generality, we now 

assume that i) the times at which the earthquakes occurr is distributed according to an exponential 

distribution with parameter 3103.8   y
-1

 [43], which is the average return rate of magnitude 4/5 

earthquakes of the site proposed in [35] and ii) each earthquake occurrence induces a fracture 

permeability change which, on average, conservatively increases the pore velocity by a 10% factor, 

starting from the initial value 0,fv . As in the previous example, this entails a modification of the 

forward and backward transition rates of the fracturons according to equations (A5.a,b) and to 

 molL DvD  . Figure 4 (solid line) shows the results of a simulation with the forward and 

backward transition rates dependent on earthquake stress-induced effects and all remaining 

parameters identical to those of the previous example. During the simulation, a different earthquake 

sequence is generated over the time horizon by sampling the occurrence times from the exponential 

distribution in correspondence of every particle random walk. With respect to the base case 

illustrated before (dashed line), the peak time occurs earlier and the dispersion of the curve 

decreases, although to a minor extent than in the previous example: in fact, as verified by the 

authors, the pore velocity is on average smaller. 

In conclusion, with the data used in both cases of time-dependent migration properties, the 

compliance of the expected doses with the regulatory limits introduced above is verified. 

 

 



 

Figure 4: Dose curve 100m from the source: comparison between the time-constant rates and the case with 

variable rates. 
 

 

4. CONCLUSIONS 

 

The performance assessment of radioactive waste repositories relies on predictive models for the 

quantitative analysis of the consequences of radionuclide releases, which are then transported back 

to the biosphere along natural pathways. A particular concern is the migration of radionuclides in 

the preferential pathways offered by fractures in ground formations traversed by a groundwater 

flow. 

In this paper, a dual-permeability, Monte Carlo simulation scheme based on the Kolmogorov-

Dmitriev theory of stochastic branching processes for modeling radionuclide migration in a 

fractured medium has been embedded within a dose assessment problem of a realistic radioactive 

waste repository. The method has allowed to capture the effects of the fracture-matrix interactions 

on the migration process, which may affect the overall safety considerations in terms of the peak 

dose and the persistence of the dose tails. 

The flexibility offered by the Monte Carlo simulation approach has been exploited to capture the 

effects of time-dependent changes in the hydraulic properties of the fractures on the predicted dose. 

The results have demonstrated that the method allows assessing how robust is the safety 

performance with respect to the occurrence of long-term gradual climate changes or discrete 

catastrophic events. 

 



APPENDIX A 

 

In dual permeability and dual porosity models, the transport phenomenon is assumed to occur in 

two domains: the porous matrix and the fracture system. In particular, dual porosity models divide 

the medium in a mobile and an immobile region, assuming that flow occurs only in the larger 

permeability zone, whereas dual-permeability models assume the flow occurs in both subsystems. 

The model describes the heterogeneous porous media as a system made up of two different coupled 

subsystems and therefore the properties of the bulk medium depend on those of the different porous 

subsystems. Thus, following the notation of [31][32], the transport of solute in this system can be 

described by two coupled advection-reaction-dispersion equations, where the subscript m  refers to 

the matrix subsystem and f  to the fractures: 
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where D  is the dispersion tensor,   is the decay or chemical reaction term, R  is the retardation 

coefficient, w  is the relative volume of the pore system ( fm ww 1 ),   is the water content, q  is 

the Darcy’s velocity, c  is the solute concentration and s  is the exchange term between the porous 

matrix and the fracture system. According to [31][32], assuming that only the diffusive contribution 

to the exchange process is taken into account and that the flow field is at steady-state, the exchange 

term s  can be expressed as: 

 

)( mfmmss ccw    (A2) 

 

The coefficient s in equation (3) is [31][32]: 

 

as D
a2


   

(A3) 

 

where aD  is the effective diffusion coefficient at the interface,   is a semi-empirical geometric 

factor and a  is the characteristic half-width of the porous matrix. The terms in equations (2.a,b) are 



all referred to the relative volume of the corresponding subsystem, with the exception of s , which 

is defined as the mass of solute per unit volume of bulk soil per unit time [31]. For the general form 

of equations (A1.a,b) and (A2) the interested reader should refer to [31][32].  

Then under the hypotheses of: i) one-dimensional domain, ii) no retardation ( 1R ) and iii) 

constant water contents ( m  and f ), constant pore velocities 
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are the porosities of the matrix and the fractures system, respectively), constant dispersion 

coefficients mD  and fD  and constant reaction rates   fm , it is possible to write equations 

(2.a,b) in terms of the concentrations referred to the total bulk volume ( ffff cwC   and 

mmmm cwC  ) and, subsequently, discretize them in space by a centered Euler method: 
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These equations are formally identical to (1.a,b); thus, by comparing the two systems of equations it 

is possible to write the following relationships for the forward and backward rates of the solutons 

and the fracturons: 
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Note that, since the backward transition rates sb  and fb cannot be negative, equations (A5.b) 

require an upper limit for the spatial discretization cell: 
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Analogously to the forward and backward rates, the exchange rates can be expressed as: 
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The difference in the exchange rates depends mainly upon the different relative volume of each 

system: the larger the volume of the subsystem is, the less probable the transition to the other 

subsystem is.  
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