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Abstract—The conception of analog and mixed-signal functions 

requires great effort because the complex analog parts should be 

recursively optimized based not only on system-level 

requirements but also on technological limitations and 

imperfections. High-level behavioral models used for chip-level 

simulations can be employed using multi-domain hardware 

description languages (HDL), but they are usually manually 

written and lack technological characteristics. Moreover, 

automatic resizing and optimization at the transistor level are 

very limited, and the behavioral models cannot be re-adjusted to 

changes at the transistor level. In this paper, we present an 

efficient design methodology implying the automatic 

optimization of cells at the transistor level using a modified 

Bayesian Kriging approach and the extraction of robust analog 

macro-models, which can be directly regenerated during the 

optimization process. Coherent results were obtained when 

using the proposed methodology for the conception of a sixth-

order continuous-time (CT) Sigma-Delta (Ȉǻ) modulator. 

I. INTRODUCTION 

Novel systems-on-a-chip (SoCs) and systems-in-a-package 
(SiPs) contain mixed analog and digital circuitry along with 
RF parts and even micro-mechanical and optical parts 
(oscillators, sensors, actuators), which are integrated in 
technologies at the nanometer scale. The conception of these 
complex systems imposes the existence of a unified 
methodology for the design and verification of all multi-
domain components to achieve first-silicon success. Top-
down design paradigms are preferred, aiming to ensure 
performance optimization directly at the system level; 
however, efficient analog design methodologies should still be 
refined for the automatic conception and optimization process 
and to balance existing high-performance digital design 
techniques [1]. Because transistor-level Spice/Spectre 
simulations are prohibitive in the case of large CT functions 
like Sigma-Delta modulators [2], the analog blocks are 
described as behavioral or functional models in mixed-signal 
multi-domain HDLs, such as VHDL-AMS, SystemC-AMS 
and VerilogAMS, allowing for fast chip-level simulations and 
improvement in the system architecture in early design stages. 

We propose a refined top-down analog design 
methodology for linear CT functions and the corresponding 
tools with which the macro-models of circuits, including 

transimpedance amplifiers (TIA), transconductances 
amplifiers (Gm), current conveyors (CCII), and current 
mirrors, are automatically extracted from their transistor-level 
implementations. Prior to extraction, an online optimization 
process of the cell is conducted based on a Kriging 
metamodel, assuring fast convergence of the solution because 
analog functions are expensive to evaluate over large input 
space. The approach is innovative in many respects. Some 
features of our methodology and tools, which differentiate 
them from other procedures [3], include the following: 

1. The entire process is automated and integrated in a 
dedicated MATLAB-CADENCE toolbox [4], from transistor-
level simulations to optimization and macro-model extraction; 

2. The optimization objectives are used along with 2 types 
of constraints: strong constraints (nonlinearities, distortions) 
and normal constraints (offsets, impedances, gains, 
bandwidths), which are adequate for analog characterization, 
ensuring robust optimal solutions. 

Section II presents the analog design methodology. In 
section III, we present the optimization algorithms within the 
context of this methodology. Section IV provides the example 
of developing a fast TIA amplifier used in the architecture of a 
sixth-order CT Sigma-Delta modulator. System level results 
are also presented. Section V covers the conclusions. 

II. ANALOG DESIGN METHODOLOGY 

The conception of complex analog functions remains in 

many respects more challenging than the realization of digital 

functions because a multitude of figures of merit, 

performance and constraints are implied.  
The use of macro-models can accelerate the design 

process; still, several problems should be addressed to create 
good analog behavior that can be exploited at the system level:  

• The systems performance specifications are dependent on 
the technology employed and rapidly degrade for systems 
sensitive to dispersion, analog imperfections and mismatches; 
thus, high-level models should incorporate accurate transistor-
level characteristics while enabling faster simulation; 

• The models should be easily re-adjustable, function of 
changes at the system or transistor level [1]; 

• Efficient tools to automate the optimization of analog cells 
and the macro-model extraction process should be considered. 



To address these issues, the design flows are replaced by 

design chains or loops, where the top-down approaches are 

combined with bottom-up ones and the system structure and 

components can be adjusted according to low-level 

simulations. In this context, we propose a refined design 

methodology, which is presented in Figure 1. 

 
Figure 1: Refined top-down design methodology 

Once the system architecture is defined, the circuit design 
and the transistor level on a specific technology are 
implemented. Then, an automatic optimization process is 
performed on each cell using the MATLAB-CADENCE 
application framework [5]. The optimization process can be 
fully automatic, where the designer will select the input 
variables from the circuit and their existing range, the 
objectives and constraints, the number of starting points and 
the number of optimization points. In addition, a semi-
automatic optimization method based on gradient algorithms 
is available for early exploration and sensitivity analyses. 
Using the optimal performance solution (in terms of desired 
gains, supply, impedances, nonlineary, etc.) a robust macro-
model of the Simulink or VHDL-AMS/VerilogA type is 
extracted for each cell and re-injected at the system level [6]. 

III. AUTOMATIC OPTIMIZATION 

The problem considered here is an optimization problem 

subject to constraints. A Bayesian approach based on a 

Kriging probabilistic metamodel is used to spare a significant 

amount of evaluation time. Indeed, some heuristic methods 

such as genetic algorithms [7], Tabu search, simulated 

annealing can be used but are known to generally require 

more evaluations [8]. Kriging provides also an uncertainty 

measure easily than most of other metamodels (polynomial, 

radial basis functions…). As a first step, we explained the 

principle in an unconstrained case, and then we generalized it 

to a constrained one. Eventually, we described the specific 

treatment we used to address the nonlinearity constraint. 

A. Bayesian optimization (unconstrained) 

We consider here the problem of finding the minimum of a 

function f: X ĺR, where Xؿ  ௗ, using the Expectedࡾ
Improvement (EI) criterion [9]. The main idea of an EI-based 
algorithm is a Bayesian one: f is viewed as a sample path of a 

random process ȟ defined on ࡾௗ. We combine evaluation 
results and prior information about f to select, according to the 
EI criterion, new evaluation points efficiently, as long as the 
budget for evaluations is not exhausted. 

After n evaluations, the available information corresponds 
to the previous evaluation points ( ଵܺ,	ܺଶ,…,	ܺ௡) and to the 
associated evaluation results (ȟ(ܺଵ), ȟ(ܺଶ),…, ȟ(ܺ௡)). Let ܨ௡ 
denote the set ( ଵܺ, ȟ( ଵܺ), ܺଶ, ȟ(ܺଶ),…,	ܺ௡, ȟ(ܺ௡)) and ݉௡ the 
current minimum, min(ȟ( ଵܺ), ȟ(ܺଶ),…, ȟ(ܺ௡)). Given a budget 
of ܰǡ the purpose of this algorithm is obviously to minimize 
the value	݉ே. The next evaluation point ܺ௡ାଵ is the 
maximizer of the EI criterion	ߩ௡, ߩ௡ሺݔሻ ൌ ௡((݉௡ܧ െȟ(ܺ௡ାଵሻሻା|ܺ௡ାଵ ൌ  ሺͳሻ															ሻǡݔ

where ܧ௡is the conditional expectation, given ܨ௡ and ݔ א  .ࢄ

In this article, ȟ is chosen Gaussian process. ߦሺݔሻ, 

conditionally with respect to ܨ௡, is Gaussian with mean ߦመ௡ሺݔሻ 

and variance ݏ௡ሺݔሻ, whose explicit expressions can be found 

in [10]. The main point of choosing ȟ as a Gaussian process is 

the existence of an analytical form for the EI criterion 

expression (1): ݏ௡ሺݔሻȰᇱ ቀ௠೙ିక෠೙ሺ௫ሻ௦೙ሺ௫ሻ ቁ ൅ ቀ݉௡ െ ሻቁݔመ௡ሺߦ Ȱ ቀ௠೙ି	క෠೙ሺ௫ሻ௦೙ሺ௫ሻ ቁǡ					ሺʹሻ  

where Ȱ is the normal cumulative distribution. This 

expression shows that, given a set of evaluation points and a 

Gaussian process, the EI sampling criterion can be computed 

with a moderate amount of resources. Practically, to use this 

analytical expression, one needs to define an explicit mean 

and covariance functions for ȟ. Experimentally, a Gaussian 

covariance function is used and the parameter values are 

estimated at each iteration by maximum likelihood (this 

approach corresponds exactly to the EGO algorithm [9]). It 

should be noted that both Kriging predictions and maximum 

likelihood estimations are performed with the DACE toolbox 

[11]. 

B. Bayesian optimization subject to constraints 

In this part, we add some constraints to the previous 

minimization problem. Let us consider ݌ functions ଵ݃ǡ ݃ଶǡ ǥ ǡ ݃௣, where the new optimization problem is the 

minimization, for ݔ א ሻ subject to ܽ௜ݔof ݂ሺ ,ࢄ ൑ ݃௜ሺݔሻ ൑ ܾ௜, 
with ሺܽ௜ ǡ ܾ௜ሻ א ଶǡ for ͳࡾ ൑ ݅ ൑  The general ideas are .݌

exactly the same as before. At step	݊, we choose the next 

evaluation point ܺ௡ାଵ as the maximizer of the expected 

improvement. However, if the constraints ݃௜ are expensive to 

evaluate as well, we can also consider them as Gaussian 

random processes	ܩ௜. Let ܩ௡௜  denote the set ( ଵܺ, ܩ௜(ܺଵ),	ܺଶ, ܩ௜(ܺଶ), …,	ܺ௡, ܩ௜(ܺ௡)). The only difference is that the 

expected improvement (EI) criterion is now subjected to the 

constraints. Let ߩҧ௡ denote this criterion, ߩҧ௡ሺݔሻ ൌܧ௡(ܫ௡ሺݔሻ	|ܺ௡ାଵ ൌ  ሻ equals toݔ௡ሺܫ where ,(ݔ

((݉௡ െȟ(ܺ௡ାଵሻሻା if ܽ௜ ൑ ሻݔ௜ሺܩ ൑ ܾ௜ is verified for all ݅ 
values and equals Ͳ otherwise. Without going further into 

details (see [10]), it can be shown that if ݂ǡ ଵ݃ǡ ݃ଶǡ ǥ ǡ ݃௣ are 

all statistically independent, this constrained EI criterion can 

be written as follows: 
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ሻݔҧ௡ሺߩ ൌ 	 ሻݔ௡ሺߩ ෑ ܲሺܽ௜ ൑ ሻݔ௜ሺܩ ൑ ܾ௜ȁ	ܩ௡௜ ሻ௣
௜ୀଵ ǡ												ሺ͵ሻ 

This criterion is simply the product of the unconstrained EI 

(2) with the probability that each constraint is verified. This 

probability is easy to compute because, for ݔ א  the random ,ࢄ

process ܩ௜ሺݔሻȁ	ܩ௡௜  is a Gaussian process, i.e., this constrained 

EI criterion can also be computed with a limited amount of 

resources. 

C. Modification of the criterion for the nonlinearity 

constraint 

In practice, with respect to the application considered 

below, we notice that a modification of the algorithm can 

improve, from far away, the convergence to the minimum. 

Indeed, the nonlinearity constraint is a strong constraint; thus, 

the regions of the domain satisfying it are the most promising. 

In other words, most of the budget of the evaluations should 

be consumed in these specific parts of the domain. However, 

an important property of the EI criterion is avoiding 

convergence to a local minimum because of an 

exploration/exploitation tradeoff. This means that because of 

the exploration phase of the algorithm, many evaluation 

points are chosen in areas where the probability of verifying 

the nonlinearity constraint is very low. This problem could be 

solved by tuning the parameters of the Gaussian process (the 

mean and the parameters of the covariance function) in a 

more careful way (maximum likelihood estimation for the 

parameters is known for not always being relevant, see [12]). 

In this article, we used a different approach: for the 

nonlinearity constraint	݃௝, we decided to solve this problem 

by forcing the value of ߩҧ௡ሺݔሻ to Ͳ when ܲ൫ ௝ܽ ൑ ሻݔ௝ሺܩ ൑௝ܾȁ	ܩ௡௝൯ is below a threshold	ߙ (usually	ߙ ൌ ͲǤͲͷሻ. 

IV. APPLICATION: TRANSIMPEDANCE AMPLIFIER 

The presented methodology is applied to the design of a 6th 
order CT Sigma-Delta modulator based on the architecture 
presented in [2]. A simple TIA application is considered, but 
all other amplifiers were treated using the proposed approach. 

A differential TIA is used in the Ȉǻ filter, composed of 
two single-ended amplifiers. The schematic of the single-
ended structure is shown in Figure 2. It is implemented using a 
STMicroelectronics 65 nm LPGP CMOS technology process. 

 
Figure 2: Single-ended transimpedance amplifier 

Transistors M1 and M2 and resistor R1 act as a current-

controlled voltage source. The source’s gain is equal to R1. 

The pairs M3-M4 and M5-M6 and the current generators I2 

and I3 are real current sources used to bias the main 

transistors M1 and M2. When this amplifier is connected to a 

high capacitance, it may become unstable, and capacitances 

C1 and C2 help stabilize the amplifier. 
The optimization objectives and constraints for this circuit 

are summarized in Table 1. 

Parameter Type Desired Value(s) Others 

Input impedance (Zin) Objective Minimum - 

Output impedance (Zout) Constraint [5 ; 10] [Ω] Normal 

Direct gain (gd)≈ R1(5000 Ω) Constraint [4900 ; 5100] [Ω] Normal

Input Nonlinearity (nlin) Constraint <1% Strong

Output Nonlinearity (nlout) Constraint  <1% Strong

Table 1: Transimpedance amplifier optimization goals 

The initial current sources values are determined by 
manual DC considerations, while the initial transistor sizes are 
sufficiently large to minimize the saturation voltages drain-
source. Then, the automatic optimization process is launched. 
Table 2 lists the variation range of the design variables. 

Design Variable Variation range 
Max. number 

of points 

I2 [20; 80] µA 25 

I3 [20; 160] µA 60 

wi/wmin [1; 60] ; wiĺ[0.065; 3.9] µm  60 

li/lmin [1; 30] ; liĺ[0.065; 1.95] µm 30 

wj/wmin [1; 60] ; wjĺ[0.065; 3.9] µm 30 

lj/lmin [1; 30] ; ljĺ[0.065; 1.95] µm 15 

Table 2: Variables variation; wmin= lmin=65 nm; i=1,2; j=3-6 

The starting points used to compute the metamodel are 
sampled to create a Latin Hypercube sample (LHS) in order to 
benefit from its specific space-filling proprieties (see [9] and 
references therein). Then, the algorithm starts choosing 
optimization points according to the constrained EI criterion. 
In the case of the TIA amplifier, a total of 80 evaluation points 
are selected (40 starting points and 40 optimization points). 

An interesting measure of the algorithm’s performance is 
the temporal evolution of the optimization goals. Figure 3 
depicts the variation of three figures of merit with the 
advancement of the optimization: the optimization objective 
(Zin), a normal constraint (Zout) and a strong constraint (nlin). 
For the starting points domain, because the points are 
arbitrarily chosen, the goals also have arbitrary values. As 
soon as the metamodel is designed and optimization points are 
considered, the goals start to converge towards the desired 
values (e.g. the Objective minimum evolution reaches points 
where smaller values are obtained with the optimization 
advancement). The non-uniform variation of the goals results 
from the algorithm exploring different regions of the design 
variables domain, where the probability of finding “better” 
candidate points is higher. 

The optimum point is found at I2=27.5µA, I3=145µA, 
w1/wmin=28, l1/lmin=27, w2/wmin=19, l2/lmin=6, w3/wmin=w4/wmin 

=24, l3/lmin=l4/lmin=10, w5/wmin=w6/wmin=4, l5/lmin= l6/lmin=2. For 
this, we obtained the following optimization results: 
Zin=66.42Ω, Zout=6.5Ω, gd=4926Ω, nlin=0.15%, nlout=0.1%. 

In terms of computation time, the optimization of an 
amplifier can take up to 5-10 hours, depending on the machine 
speed, the design complexity and the restrictions on the goals, 
but all is automatic and independent of the designer effort. 



 
Figure 3: Temporal evolution of the optimization goals 

At the end of the optimization, the model of the amplifier 
can be extracted as a SIMULINK (Figure 4) or VHDL-
AMS/VerilogA module. This includes the direct and reverse 
transfer functions, the input and output impedances, computed 
as minimum-order stable s-functions and all offsets [6]. 

 
Figure 4: SIMULINK linear macro-model of the amplifier 

Using the extracted macro-models, high-level Ȉǻ 
implementations were conducted for different orders of 
models (2-6). MATLAB-SIMULINK and Dolphin Integration 
SMASH were used as simulators. System-level performance 
characteristics were evaluated to validate the methodology. As 
an example, in Figure 5 the direct transfer function of the Ȉǻ 
filter is compared between the transistor-level implementation 
(CADENCE Spectre AC simulation) and the high-level ones 
(SIMULINK and VHDL-AMS order 2 macro-models 
simulations). The maximum total relative errors normalized to 
the number of points between the transistor-level and macro-
models characteristics were used to predict the accuracy of the 
models. We obtained errors in [10-8; 10-6] for 2nd-6th order 
models [6]. An important aspect of the methodology resides in 
the speed improvement for transient analyses: factors of 10ൈ-
30ൈ were obtained for specific components and the whole Ȉǻ 
modulator. Table 3 shows the comparative computation times 
needed for 1000 output samples in the two cases. 

         Simulation 

Design  

Transistor-level 

(CADENCE Spectre) 

Macro-models 

(SIMULINK) 

Behavioral 

(SMASH) 

TIA 15.7s 1.5s 1.2s

Ȉǻ 6th order 3h37m1s 7m8s 6m41s

Table 3: Computation time for transient analyses (TIA, Ȉǻ) 

 
Figure 5: Sigma-Delta filter direct transfer function 

V. CONCLUSIONS 

We proposed a refined design methodology for weakly 
non-linear CT functions. This methodology is based on the 
optimization process of transistor-level cells using a Kriging 
metamodel and the synthesis of robust high-level analog 
behavioral models, which can be used for fast system-level 
simulations. Automatic optimizations were performed for the 
components of a sixth-order CT Sigma-Delta modulator, 
reducing the effort required for development and assuring 
coherent results at the system level. The proposed algorithms 
were integrated in a more general MATLAB-CADENCE 
framework, which can be used for the design and optimization 
of complex CT functions [4]. 
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