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Abstract

Heterogeneous situations are a serious problem for Space-
Time Adaptive Processing (STAP) in an airborne radar con-
text. Indeed, traditional STAP detectors need secondary
training data that have to be target free and homogeneous
with the tested data. Hence the performances of these de-
tectors are severely impacted when facing a heavily het-
erogeneous environment. Single dataset algorithms such as
APES have proved their efficiency to overcome this pro-
blem by only using primary data. However, restricting the
estimation domain to the sole primary data often implies a
bad estimation of the covariance matrix which can cause a
performance degradation. We here investigate the use of
reduced-rank STAP on the single dataset APES method.

1 Introduction

STAP performs two-dimensional space and time adaptive
filtering where different space channels are combined at di-
fferent times [10]. In the context of radar signal process-
ing, the aim of STAP is to remove ground clutter returns,
in order to enhance slow moving target detection. Filter’s
weights are adaptively estimated from training data in the
neighborhood of the range cell of interest, called cell un-
der test (CUT). The estimation of these weights is always
deducted, more or less directly, from an estimation of the
covariance matrix of the received signal, which is the key
quantity in the process of adaptation [9]. Any implementa-
tion of STAP processing must remain absolutely consistent
with the strategy of radar processing which purpose is to
obtain a high probability of detection while maintaining a
very low probability of false alarm.
Classical space-time adaptive processing (STAP) detectors
are strongly limited when facing a severe non stationary en-
vironment (heterogeneous clutter or a high target density).
Indeed in this case representative target free training da-
ta are no longer available. To overcome this problem, the
Maximum Likelihood Estimation Detector (MLED) [2] on-
ly operates with the data in the cell under test so that its

performance is no longer impacted by nonstationarity. On
the other side, restricting the data sample to the primary
data lowers the number of data to estimate the covariance
matrix which can cause a performance degradation. In this
paper, we will show that implementing a subspace-based
approach in conjunction with the Amplitude and Phase Es-
timation (APES) [11] improves the MLED detector when a
target is present in the data under test. Moreover, we will
then present a fast implementation of the subspace-based
approach which allows a reduced computational complex-
ity load. Section 2 is devoted to the data model, and
section 3 summarizes the principle of the MLED APES-
based detector. The proposed APES-based subspace meth-
ods are presented in section 4. First, the principle of the
eigencanceller-based (EC) APES is derived. Secondly, a
fast implementation of the subspace-based MLED detector
is proposed via a pulse-recursive algorithm. In section 5,
simulations are given to show that the proposed approach
outperforms the MLED algorithm while reducing the com-
putational load and the convergence time.

2 Data model
Consider a radar antenna made of N sensors that acquires
Mp pulse snapshots for each l range gate. We will only
use the primary data so we will forget the range gate
dimension, also called fast-time dimension. Then the
processing algorithm works independently in each range
cell. We adopt the following two hypothesis model where
H0 and H1 means that no target or a target is present,
respectively :

H0 : X = N (1)

H1 : X = αssst
T + N (2)

where the received data have been arranged into anM×Kt

matrix X with Kt being the number of training data snap-
shots, M the number of pulses of the spatio-temoporal
vector, α the complex amplitude. ss is the spatio-temporal
steering vector (length NM ), st the temporal steering
vector (lengthKt =Mp−M+1) and N is the interference
(clutter plus noise) matrix.



The covariance matrix R is estimated from X as follows :

R =
1

Kt
XXH (3)

Classical STAP detectors use the Sample Matrix Inversion
(SMI) [10][9] algorithm to perform target detection from
the output SNIR power :

PSMI =
|sHs R−1x|2

sHs R−1ss

H0

≶
H1

η (4)

3 The Maximum likelihood Estimation
Detector

3.1 Description of the detector

The MLED detector [1] takes advantage of the APES [11]
algorithm in order to remove the signal of interest from the
covariance matrix. The problem is stated as follows :

min
w,α

(wHX−αst
T )(wHX−αst

T )H s.t wHss = 1 (5)

The obtained solution is :

w =
Q−1ss

sHs Q−1ss
and α =

wHXs∗t
Kt

(6)

where

Q = R− ggH,g =
Xs∗t
Kt

(7)

Detection is achieved using the SINR output power:

PMLED =
|sHs Q−1g|2

sHs Q−1ss

H0

≶
H1

η (8)

As mentioned before, the number of data samples used for
the covariance matrix estimation in (3) used in (7) is equal
toKt whereas the data vector size isNM . To achieve good
performance, Kt has to be larger or at least equal to 2MN
to meet Reed’s rule [6]. In an operational situation, how-
ever, this condition is difficult to satisfy. We will show in
subsections C and D how subspace based methods applied
together with the APES algorithm can overcome this prob-
lem. For this, we first analyse the APES algorithm through
(6)-(7).

3.2 Development of the MLED method

In order to explore the use of subspace-based methods, we
have to go deeper in the formulation of the APES algorith-
m. Indeed, these methods will only work if the clutter sub-
space of the covariance matrix R remains very close to the
clutter subspace of the target free covariance matrix Q. For
a given distance cell, if there is no target at this range, the
covariance matrix R only contains interference, i.e clutter
and possibly jamming signal, and noise, according to (3) :

R =
XXH

Kt
=

NNH

Kt
(9)

The eigenvalue decomposition of R allows us to dissociate
the interference subspace from the noise subspace. Howev-
er, if a target is present at this range gate, it is no longer pos-
sible to isolate the interference subspace because the target
is part of the dominant subspace 1. Indeed, in this case, the
covariance matrix R can be written using the data model
defined in (2) with st(t) being the temporal steering vector
of the target:

R =
XXH

Kt
=

(αsss
T
t(t) + N)(αsss

T
t(t) + N)H

Kt
(10)

R =| α |2 sss
H
s +

αsss
T
t(t)N

H

Kt
+
α∗Ns∗t(t)s

H
s

Kt
+

NNH

Kt
(11)

If α and N are not correlated and the number of estimates
Kt is high, (11) can be approximated to:

R ≈| α |2 sss
H
s +

NNH

Kt
6= NNH

Kt
(12)

The result of (12) indicates that the covariance matrix R
contains interference and target signal, so if we use it as
in the classical SMI method (4), we will remove both the
interference and the target. According to (7) :

ggH =
Xs∗t(D)s

T
t(D)X

H

K2
t

(13)

with st(D) being the temporal steering vector of the
Doppler cell under test. Using the data model (2), we can
write:

ggH =
(αsss

T
t(t) + N)s∗t(D)s

T
t(D)(αssst(t)

T + N)H

K2
t

(14)
Using the same approximation than in (12), 14 leads to:

ggH ≈
| α |2 sss

T
t(t)s

∗
t(D)s

T
t(D)s

∗
t(t)s

H
s + Ns∗ts

T
t(D)N

H

K2
t

(15)
Let us note

ρ = sTt(t)s
∗
t(D)s

T
t(D)s

∗
t(t) =| s

T
t(t)s

∗
t(D) |

2 (16)

The modified covariance matrix Q in (7) then becomes :

Q ≈ (1− ρ

K2
t

) | α |2 sss
H
s +

NNH

Kt
− Ns∗ts

T
t NH

K2
t

(17)

When testing the Doppler cell of the target, i.e st(D) =
st(t) = st, ρ = K2

t , (14) becomes :

ggH =
(αssst

T s∗t + Ns∗t)(α
∗sTt sHs + sTt NH)

K2
t

(18)

and then

ggH =| α |2 sss
H
s +

αsss
T
t NH

Kt
+
α∗Ns∗ts

H
s

Kt
+

Ns∗ts
T
t NH

K2
t

(19)
1The dominant subspace is spanned by the eigenvectors asso-

ciated with the eigenvalues higher than the noise variance



Hence from (11), (7) and (19), matrix Q is, without approx-
imation :

Q =
NNH

Kt
− Ns∗ts

T
t NH

K2
t

(20)

The matrix NNH

Kt
is the interference plus noise estimated

covariance matrix whereas Ns∗t s
T
t NH

K2
t

is the scalar product
of interference plus noise vectors with their projection
on s∗t . It follows from (20) that the modified covariance
matrix Q used for MLED in (8) does no longer contain the
target contribution and that the target will not be removed
contrarily to the clutter by the MLED STAP filter (6).
Note that the residual clutter plus noise covariance matrix
is slightly different from the actual covariance matrix
NNH

Kt
. It will appear in the simulations that this has no

effects on the performance of the APES and the proposed
subspace-based APES methods.

If the Doppler cell tested is different from the Doppler cell
of the target, ρ −→ 0 and if we make the same approxima-
tion than in (12), we have :

Q ≈| α |2 sss
H
s +

NNH

Kt
− Ns∗ts

T
t NH

K2
t

(21)

When ρ 6= K2
t , the target signal is still in matrix Q, as in

R, but this has no effect on the filter because the spatio-
temporal steering vector of the Doppler cell ss(D)

2is dif-
ferent from the the spatio-temporal steering vector of the
target ss(t). We should thus observe a SINR Loss around
the Doppler of the target, except at the exact Doppler cell
of the target due to the sharpness of the MLED projector
[7].

4 Subspace-based APES methods

4.1 APES-EC

The Hung-Turner projection, also called eigencanceller
(EC) relies on an eigenvalues decomposition (EVD) of the
covariance matrix [12]. This technique is much more robust
to a bad estimation of the covariance matrix than the clas-
sical Sample Matrix Inversion method [8]. The EC-based
STAP filter weight vector is :

w = (Id−VcV
H
c )ss (22)

where Vc is the MN × p dimensional vector containing
the orthonormal eigenvectors associated with the p eigen-
values strictly larger than the noise variance. (the noise is
supposed Gaussian, i.i.d. and of variance σ2). The output
SINR power is then:

Pec =
|sHs (Id−VcV

H
c )g|2

sHs (Id−VcVH
c )ss

(23)

2this spatio-temporal steering vector ss appearing in (2) is in
fact ss = s1 ⊗ s2 where s1 and s2 are the purely spatial and pure-
ly temporal steering vectors, respectively, and where ⊗ is the Kro-
necker product

When neither targets nor jammers are present, p is the rank
of the clutter only covariance matrix. According to Bren-
nan’s law [6] :

p =M + β(N − 1) (24)

in the case of a uniform linear side-looking antenna 3. In the
case of the presence of J jammers and T targets, there are
p′ = p+ J + T eigenvectors larger than the noise variance
while p′ < MN and Vc spans the clutter + jammers +
targets subspace.
Without loss of generality, we assume in the following that
there are no jammers and only one target is present at the
given Doppler cell. The APES-EC filter is deduced from
the eigenvalue decomposition (EVD) of matrix Q:

Q = VQΛQVH
Q (25)

At the Doppler cell of the target, as the target has been re-
moved in Q, the space spanned by the eigenvectors VQ is
made of the clutter only subspace spanned by Vc and of the
noise subspace spanned by Vb. Let us note :

X = αss + C + N′ (26)

the signal at the Doppler cell of the target . It consists of the
target signal, the clutter component C and the noise only
N′. The projector (Id − VcV

H
c ) appearing in (22) and

applied to X yields :

(Id−VcV
H
c )X = αss + N′ (27)

The clutter has been removed while the first term of the
right hand side of (27) has not vanished since αss is not in
the dominant clutter only subspace.
At the contrary, since the target is present in R, let us note :

R = Vc+tΛc+tV
H
c+t + VbΛbVH

b (28)

where Vc+t contains the p + 1 dominant eigenvectors of
R spanning the clutter plus target subspace and where Vb

contains the MN − p − 1 eigenvectors spanning the noise
only subspace. We can easily deduce that :

(Id−Vc+tV
H
c+t)X = N′ (29)

since the target αss is a part of the clutter + target subspace
and then since it is orthogonal to the noise subspace. Con-
sequently, at the output of the EC STAP filter, the target has
vanished as the clutter and can not be detected contrary to
APES.
The subspace methods, like the eigencanceller, are known
to only require 2p data samples to converge to a −3dB si-
gnal loss compared to the 2MN samples needed with ma-
trix inversion methods. This detector has however a much
higher calculation load than the MLED detector because
an EVD of matrix Q has to be done for each Doppler ce-
ll and each range gate. These eigenvalues decompositions
have a computational load of about 23(NM)3 compared to

3β = 2Va
λ
Tr where Va is the platform velocity, λ is the wave-

length and Tr is the pulse repetition interval



the 16
3 (NM)3 required for a complex matrix inversion [3].

On the contrary, Q−1 can be obtained from R−1 using the
Woodbury matrix identity :

Q−1 = R−1 +
R−1ggHR−1

1− gHR−1g
(30)

This way, only one matrix inversion per range gate has to
be done. There is no such technique to find the EVD of
the matrix Q knowing the EVD of matrix R. Thus, the
following section will describe a faster method than APES-
EC that provides similar performance results with a reduced
computational complexity.

4.1.1 APES-FAPI algorithm

In this section, we focus on the Fast Approximated Power
Iteration (FAPI) [4] applied to APES. FAPI algorithm build-
s a base of vectors Wc that spans the subspace formed by
the p dominant eigenvectors given by the EVD of the co-
variance matrix of a data vector xk. A brief description of
the algorithm that builds Wc is given in Table 1 (see [4]).
In [5], a range recursive STAP method relying on FAPI has
been proposed. In this case, the data vectors xk are taken
from other range gates of secondary data like in the classical
Sample Matrix Inversion method. Here, to apply the APES
method with FAPI, we have to remove the signal from the
data vector by the following way :

Y = X(IdKt −
s∗ts

T
t

Kt
) (31)

The vector yk which is the kth colunm of Y is used in
Table 1 instead of xk to compute the vector basis Wc.

Initialisation : Wc(0)← IdMN∗r,Z(0)← Idp∗p
FOR k = 1 to Kt

y(k) = Wc(k − 1)Hxk
h(k) = Z(k − 1).y(k)
g(k) = h(k)

yH(k)h(k)
e(k) = xk −W(k − 1)y(k)
ε2(k) = ‖x2k‖ − ‖y2

k‖
τ(k) = ε2

1+ε2‖g(k)‖2+
√

1+ε2‖g(k)‖2

η(k) = 1− τ(k)‖g(k)‖2
y′(k) = η(k)y(k) + τ(k)g(k)
h′(k) = Z(k − 1)Hy′(k)
d(k) = τ(k)

η(k) (Z(k − 1)g(k)− (h′(k)g(k))g(k))
Z(k) = (Z(k − 1)− g(k)h′(k)H + d(k)g(k)H)
e′(k) = η(k)xk −W(k − 1)y′(k)
W(k) = Wc(k − 1) + e′(k).g(k)H
ENDFOR

Table 1 : FAPI-APES algorithm
Once Wc is calculated, the filter’s weights can be written
like in Equation (22):

w = (Id−WcW
H
c )ss (32)

and the output power is deduced from Equation (23) :

PFAPI−EC =
|sHs (Id−WcW

H
c)g|2

sHs (Id−WcWH
c)ss

(33)

The computational workload of this method is o(MNp)
which is much lower than for the APES-EC or the MLED
detector.

5 Performance
Performance results are tested on a simulated side-looking
8 elements ULA antenna. The speed of the platform is Va =
100m.s−1, radar frequency is 10 GHz (λ = 3.10−2m) and
the pulse repetition frequency is set to 2Va

λ . The radar col-
lects a Coherent Pulse Interval (CPI) of length 64 pulses.
Clutter to noise ratio is set to 30 dB and a target of speed
vt = 28ms−1 is added into the range gate we focus on. To
compare the different methods we will use both the output
SNIR power defined in (8), (23), (33), and the SNIR Loss
ratio which is defined by :

SNIRLoss =
wH

q Rthwq

wHRw

|wHs|2

|wH
q s|2

(34)

wq is the quiescent weights vector, Rth is the true
noise matrix (identity matrix in our case). Note that, by
abuse of notation, SNIR Loss are dB-negative values,
although they should be postive. For these simulations,
we took a pulse window M = 6 so that the number of
estimates is Kt = Mp − M + 1 = 59 for a vector size
of NM = 8 × 6 = 48. The line appearing on the output
power figures is the threshold for a probability of false
alarm of 10−6.
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Figure 1: Output SINR power of sum channel (solid curve),
optimal filter (dot curve) and classical SMI method (dash
curve)

Figures 1 and 2 exhibit the SINR at the output of different
STAP filters and as a function of speed (or frequency). The
horizontal line indicates the threshold for a probability of
false alarm of 10−6. On Figure 1, one can see the SINR
at the output of the optimal STAP and for comparison the
SINR at the output of the sum channel (no clutter compen-
sation is done) and the SINR at the output of the classical S-
MI (the clutter is removed but the target is also eliminated).
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Figure 2: Output SINR power of MLED (solid curve), op-
timal filter (dot curve), APES-EC (dash curve) and FAPI-
APES (circles)
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Figure 3: Zoom on output SINR power of optimal filter (dot
curve), MLED detector (solid curve), FAPI-APES (circles)
and APES-EC (dash curve)

The SINR performance at the output of the MLED, APES-
EC, FAPI-APES and optimal STAP is plotted on Figure 2.
One can see that the APES type algorithms succeeded to
reject the clutter without eliminating the target. Figure 3 is
a zoom of Figure 2 around the target. This is to show that
the subspace-based APES-EC and FAPI-APES outperform
APES with a gain of at least 5 dB. Also note that APES-EC
and FAPI-APES give similar results whereas FAPI-APES
is much less computationally complex than APES-EC.
Figure 4 exhibits the SNIR Loss as a function of speed
for the optimal , SMI, MLED, APES-EC and APES-FAPI
STAP filters. One can see that since the number of snap-
shots used for the estimation of the covariance matrix in (3)
is less than 2MN , the SNIR Loss for SMI and MLED is
about 6 dB less than the optimal STAP even in the exoclut-
ter and exo-target speeds regions. The MLED, however,
allows not to reject the target while SMI does not. This
figure shows that APES-EC and FAPI-APES not only keep
the target out of the clutter but also allow a SNIR Loss very
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Figure 4: SINR Loss of optimal filter (dot curve), APES-EC
(dash curve), FAPI-APES (circles), MLED (solid curve)
and classical SMI method (dash-dot curve)
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Figure 5: Zoom on SINR Loss of optimal filter (dot curve),
APES-EC (dash curve), FAPI-APES (circles), MLED (sol-
id curve) and classical SMI method (dash-dot curve)

close to the optimal one in the exo-clutter and exo-target
areas. Figure 5 is a zoom of Figure 4 around the target
speed. One can see the gain of the proposed APES-EC and
FAPI-APES over the MLED on the SINR Loss at the target
speed.

6 Conclusion

In this paper, we propose a more robust version of the M-
LED algorithm based on subspace methods. This enables
the STAP processing to require less data for estimation,
which is often needed in heterogeneous situations, while
keeping good performances. Our new FAPI-APES algo-
rithm has the same performances as APES-EC, and it also
reduces significantly the workload of the APES-EC, even
surpassing the MLED detector in computational complexi-
ty.
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