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A multi-objective power unit commitment problem is framed to consider simultaneously the objectives of minimizing the operation cost and minimizing the emissions from the generation units. To find the solution of the optimal schedule of the generation units, a memetic evolutionary algorithm is proposed, which combines the non-dominated sorting genetic algorithm-II (NSGA-II) and a local search algorithm. The power dispatch sub-problem is solved by the weighed-sum lambdaiteration approach. The proposed method has been tested on systems composed by 10 and 100 generation units for a 24 hour demand horizon. The Pareto-optimal front obtained contains solutions of different trade off with respect to the two objectives of cost and emission, which are superior to those contained in the Pareto-front obtained by the pure NSGA-II. The solutions of minimum cost are shown to compare well with recent published results obtained by single-objective cost optimization algorithms.

I. INTRODUCTION

he unit commitment problem (UCP) involves determining the optimal start-up and shut-down schedules of the generation units, and the economic dispatch of the online generators to meet the forecasted demand over a specific short-term time period (e.g. 24 hours) [START_REF] Simopoulos | Reliability Constrained Unit Commitment Using Simulated Annealing[END_REF]. The classical single-objective UCP aims at minimizing the total operational costs of all generation units, given a number of equality constraints (e.g. system power balances) and inequality constraints (e.g. system spinning reserve requirement, generation limits, minimum up and down times, and ramp rate limits).

The UCP is a large-scale, non-linear, and mixed combinatorial and continuous optimization problem of difficult solution [START_REF] Damousis | A solution to the unit-commitment problem using integer-coded genetic algorithm[END_REF]. In the literature, a large number of techniques have been proposed, e.g. priority list [START_REF] Senjyu | A fast technique for unit commitment problem by extended priority list[END_REF], dynamic programming [START_REF] Lowery | Generating Unit Commitment by Dynamic Programming[END_REF], branch and bound [START_REF] Chen | Branch-and-Bound Scheduling for Thermal Generating Units[END_REF][START_REF] Huang | A new thermal unit commitment approach using constraint logic programming[END_REF], mixed integer programming [START_REF] Carrion | A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[END_REF][START_REF] Frangioni | Tighter Approximated MILP Formulations for Unit Commitment Problems[END_REF], Lagrangian relaxation [START_REF] Merlin | A New Method for Unit Commitment at Electricite De France[END_REF][START_REF] Ongsakul | Unit commitment by enhanced adaptive Lagrangian relaxation[END_REF], simulated annealing [START_REF] Simopoulos | Unit commitment by an enhanced simulated annealing algorithm[END_REF], and evolutionary algorithms (EAs) [START_REF] Lau | Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment[END_REF][START_REF] Valenzuela | A Seeded Memetic Algorithm for Large Unit Commitment Problems[END_REF][START_REF] Ebrahimi | Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm[END_REF][START_REF] Jeong | A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems[END_REF][START_REF] Pappala | A Variable-Dimension Optimization Approach to Unit Commitment Problem[END_REF]. Detailed surveys can be found in [START_REF] Padhy | Unit Commitment -A Bibliographical Survey[END_REF][START_REF] Raglend | Comparison of Practical Unit Commitment Solutions[END_REF].
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2 N. Pedroni and E. Zio are of the Politecnico di Milano, Milan, Italy (email: nicola.pedroni@mail.polimi.it, enrico.zio@polimi.it) cost [START_REF] Simopoulos | Reliability Constrained Unit Commitment Using Simulated Annealing[END_REF][START_REF] Lau | Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment[END_REF][START_REF] Ebrahimi | Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm[END_REF][START_REF] Jeong | A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems[END_REF][START_REF] Pappala | A Variable-Dimension Optimization Approach to Unit Commitment Problem[END_REF][START_REF] Billinton | A basic framework for generating system operating health analysis[END_REF]. On the other hand, the increasing awareness of environmental protection is pushing the utilities to improve their design and operational strategies, for reducing the emissions from the power plants [START_REF] Abid | Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms[END_REF]. As a result, the consideration of the environmental impacts of power generation in the UCP is receiving intensive research efforts [START_REF] Abid | Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms[END_REF][START_REF] Wang | Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm[END_REF][START_REF] Cai | A multi-objective chaotic ant swarm optimization for environmental/economic dispatch[END_REF][START_REF] Yokoyama | Multiobjective generation dispatch based on probability security criteria[END_REF], particularly by inclusion within the economic dispatch problem (which is a sub-problem included in UCP). To do so, emissions are converted into monetary units through forms of carbon tax or/and emission trading, and then directly included in the total operation cost objective function. However, due to the variations/uncertainties of the electrical market and system behavior, it is often difficult to capture the complicated emission-cost relationships in a single objective function. Alternatively, recent studies on the environmental/ economic dispatch problem (EEDP) are proposing to account for emissions as a separate objective, also to be minimized.

Different approaches have been proposed to tackle the multi-objective EEDP, such as weighted sum [START_REF] Dhillon | Stochastic economic emission load dispatch[END_REF],constraint [START_REF] Yokoyama | Multiobjective generation dispatch based on probability security criteria[END_REF], and simultaneous optimization [START_REF] Abid | Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms[END_REF][START_REF] Wang | Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm[END_REF][START_REF] Cai | A multi-objective chaotic ant swarm optimization for environmental/economic dispatch[END_REF]. The weighted sum approach obtains a set of Pareto-optimal solutions by varying the weights of different objectives. However, this requires a number of runs equal to the number of desired Pareto-optimal solutions. In addition, this method is not able to obtain Pareto-optimal solutions where the problems have non-convex fronts. The -constraint method can avoid this difficulty by optimizing the most important objective and treating other objectives as constraints bounded by some allowable levels of . These levels are then changed to generate the entire Pareto-optimal solution set. However, this approach is time-consuming and tends to find weakly non-dominated solutions [START_REF] Abid | Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms[END_REF].

Recent trends of research have shifted to simultaneous optimization of the separate objectives by dominance, in search of the Pareto-optimal front [START_REF] Zitzler | Two Decades of Evolutionary Multi-objective Optimisation: A Glance Back and a look Ahead[END_REF]. Furthermore, some recent works have incorporated the emission objective into the generation scheduling sub-problem [START_REF] Zio | Optimal power system generation scheduling by multi-objective genetic algorithms with preferences[END_REF][START_REF] Xie | Emission-constrained optimal generation scheduling incorporating equity principles[END_REF].

In this study, we merge the multi-objective formulation of the two UCP sub-problems of dispatching and scheduling by including the emission objective into an overall environmental UCP (EUCP), and propose a novel approach to its solution based on memetic algorithms (MAs), an extension of evolutionary algorithm (EAs) which combines heuristics for global search and local search. The approach is tested on two case studies, with 10 and 100 units and a 24 hour horizon.

EAs, especially genetic algorithm (GA) [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF], have been shown as powerful techniques for solving multi-objective optimization problems [START_REF] Coello | A comprehensive survey of evolutionary-based multiobjective optimization techniques[END_REF]. As extensions, MAs [START_REF] Moscato | On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms[END_REF] [START_REF] Krasnogor | A tutorial for competent memetic algorithms: Model, taxonomy, and design issues[END_REF][START_REF] Ishibuchi | Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling[END_REF]. The success of the multi-objective version of MAs (MOMAs) is dependent on the handling of multiple objectives in the local search and the balance between global search and local search [START_REF] Ishibuchi | Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling[END_REF]. In this study, we explore two local search strategies (LSSs) equipped with one local search operator (LSO) specifically designed for the UC P.

The rest of this paper is organized as follows: Section II presents the multi-objective formulation of the EUCP; Section III presents the general concept of multi-objective optimization; Section IV describes the proposed MOMA; Section V presents the experiment results and the comparisons to published results; Section VI presents the conclusions of this study and some discussions about future extensions.

II. MULTI-OBJECTIVE FORMULATION OF THE ENVIRONMENTAL POWER UNIT COMMITMENT PROBLEM

A. Objective Functions

The first objective is to minimize the operation cost of the N-units system, in arbitrary monetary units [m.u.]. The operation cost includes the fuel cost of the generation unit, the start-up cost and the shut-down cost, over the entire time horizon, usually observed in hours: (m.u.) [START_REF] Simopoulos | Reliability Constrained Unit Commitment Using Simulated Annealing[END_REF] where T max is the total number of hours in the scheduling horizon, t (=1,2,…,T max ) is the hourly time index, N is the total number of generation units, i (=1,2,…,N) is the generation unit index, is the binary commitment state of unit i at time t ( =1 if unit i is committed at time t; =0 otherwise), is the generation cost of unit i at time t, is the start-up cost of unit i at time t, and is the shut down cost of unit i. can be defined as:

(2) where , and are the fuel cost coefficients of unit i, and is the actual power output from unit i at time t. can be defined as: [START_REF] Senjyu | A fast technique for unit commitment problem by extended priority list[END_REF] where is the consecutive time duration when the unit i has been offline just before time t, is the minimum down time of unit i, is the number of cold-start hours of unit i, is the hot-start cost of unit i, and is the cold-start cost of unit i. is usually modeled as a constant value for each shutdown of each unit.

The second objective function is to minimize the release of air pollutants into the atmosphere [START_REF] Basu | Economic environmental dispatch using multi-objective differential evolution[END_REF], :

(lb) (4) where (lb) represents the quantity of pollutants produced by unit i at time t and it is defined as:

(5)

where , and are the emission coefficients of unit i.

B. Constraints 1. System power balance: the total power generation at time t equals the total demand. Hence, (6) where is the load demand at time t.

2. System spinning reserve requirements: a reserve is required to deal with real-time potential sudden load increases due to unexpected demand increase or failure of any of the working units. Hence, (7) where is the system spinning reserve requirement at time t, and is the rated upper generation limit of unit i.

Unit minimum up/down times:

Minimum up time: (8) Minimum down time:

(9) where is the consecutive time duration when the unit i has been online just before time t, is the minimum up time of unit i.

4. Unit generation limits: for stable operation, the power output of each generation unit must fall into a region of operation defined by lower and upper limits:

(10) where is the rated lower generation limit of unit i. 5. Ramp-rate limits: due to the mechanical characteristics and thermal stress limitations of each unit, the power output of each unit is restricted by its ramp-rate limits: [START_REF] Simopoulos | Unit commitment by an enhanced simulated annealing algorithm[END_REF] where and are the ramp-up and ramp-down limits of unit i, respectively.

EUCP can be formulated as a non-linear mixed combinatorial and continuous multi-objective optimization problem, as follows:

(12) Subject to: (13) (14) 
where is a matrix with the powers as its elements and is a matrix with the commitment states as its elements.

III. MULTI-OBJECTIVE OPTIMIZATION

Many real world applications involve simultaneous optimization of several objective functions, which are often competing or/and conflicting with each other, and subject to a number of equality and inequality constraints. In general, these multi-objective problems can be formulated as follows:

Minimize ( 15 
)
Subject to: [START_REF] Pappala | A Variable-Dimension Optimization Approach to Unit Commitment Problem[END_REF] where is the oth objective function, U is a decision vector that represents a solution, O is the number of objectives, is the j-th of the J equality constraints and is the k-th of the K inequality constraints. The objective functions must be evaluated in correspondence of each decision variable vector in the search space. The final goal is to identify a set of optimal decision variable vectors , instead of a single optimal solution. In this set of optimal solutions, no one can be regarded to be better than any other with respect to all the objective functions. The comparison of solutions may be achieved in terms of the concepts of Pareto optimality and dominance [START_REF] Sawaragy | Theory of multiobjective optimization[END_REF]: taking a minimization problem as example, solution is regarded to dominate solution ( ) if both following conditions are satisfied:

(17) (18) If any of the above two conditions is violated, the solution does not dominate the solution , and is said to be nondominated by

. The solutions that are nondominated within the entire search space are denoted as Pareto-optimal and constitute the Pareto-optimal set, and the corresponding values of the objective functions form the so called Paretooptimal front in the objective functions space. The goal of a multi-objective optimization algorithm is to guide the search for finding solutions of the Pareto-optimal set.

IV. PROPOSED MULTI-OBJECTIVE MEMETIC ALGORITHM

MAs perform global exploration by EA and local exploitation by a local search algorithm, in a balanced way [START_REF] Ishibuchi | Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling[END_REF]. In this Section, we first present a two-stage global search algorithm composed of a multi-objective EA (MOEA) for the generation scheduling problem and a weighted-sum lambda-iteration algorithm [START_REF] Wood | Power Generation, Operation, and Control[END_REF] for the environmental/economic dispatch problem (EEDP). Then, we propose a local search algorithm which dynamically switches on/off the units according to their performance with respect to the two objectives of cost and emission.

A. EA for multi-objective global exploration

Genetic algorithms [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF] are the most popular MOEAs. We use NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], which has become a standard approach with three advantages over NSGA: (i) denoting by the number of candidate solutions (chromosomes) in the population, NSGA-II has computational complexity while NSGA has , (ii) NSGA-II includes elitism while NSGA does not, and (iii) NSGA-II ensures selfmaintained diversity while NSGA uses a predefined sharing parameter to control diversity. Detailed information regarding NSGA-II can be found in [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF].

i. Encoding and initial population generation

The solution to the UCP consists of two parts: the on-off schedule, , of each unit i at each hour t; the power, (continuous values), generated by each unit i at each hour t. In our approach, the on-off schedule is identified through the global search by NSGA-II, and then the optimal values of are found by a weighted-sum lambda-iteration method for solving the EEDP with fixed schedule. In the population, the decision variables are coded as a binary string where N is the total number of generation units and is the number of hours in the scheduling horizon (e.g. equal to 24). The initial population of chromosomes of the NSGA-II for solving the on-off schedule, is generated by the priority list (PL) method [START_REF] Billinton | A basic framework for generating system operating health analysis[END_REF], which is efficient against the fact that the UCP is heavily constrained so that the purely random generation of the initial population could result to final solutions of low quality [START_REF] Senjyu | A fast technique for unit commitment problem by extended priority list[END_REF].

To preserve the diversity of solutions, two types of PLs (namely, cost-based PL and emission-based PL) are considered for generating the initial population. In the costbased (or emission-based) PL, all generation units are located in the ascending order of their average full load costs (AFLCs) (or average full load emissions (AFLEs)). At the bottom of the cost-based (or emission-based) PL is the unit with the lowest AFLC (or AFLE), which indicates the highest priority for commitment. Two primary solutions are generated by committing the units in the order of their cost-based (or emission-based) priority ranks (denoted by or ) until the total maximum power output exceeds the load demand plus the spinning reserve requirements at each time interval. In case that the two units have equal priority, the sequence of their commitments is randomly determined. The variant solutions are generated by randomly turning on up to 3 units ranked immediately after the units in the primary solutions at each time interval. Half of the entire population is generated from cost-based PL and half from the emissionbased PL. Figure 1 shows a candidate initial solution. 

ii. Fitness functions and EEDP

The fitness functions are built with the inclusion of penalty functions for constraint handling. In the penalty function method, we combine the inequality constraint conditions in (7-9) into the objective functions (1) and (4), respectively, using penalty parameters as follows: [START_REF] Billinton | A basic framework for generating system operating health analysis[END_REF] where LP is the penalty due to the unmet load, is the predefined penalty constant with units $/MWh, and O is the total number of objective functions (in case of EUCP, O = 2). The constraints in [START_REF] Ongsakul | Unit commitment by enhanced adaptive Lagrangian relaxation[END_REF], i.e. the unit generation limits, are handled in lambda-iteration method. To obtain the fitness value corresponding to a binary vector , the optimal values of the continuous vector need to be determined by solving the number of different EEDPs. Because the EEDP has two objectives, the weighted-sum approach [START_REF] Dhillon | Stochastic economic emission load dispatch[END_REF] is used to aggregate the objectives for the implementation of the lambda-iteration method (with complexity O(N)). The weighted-sum fitness function (with fixed values of ) has the following form:

(20) where is a vector of random weight values such that their sum is equal to 1. It should be noted that the real-valued vector of EEDP can be integrated into the encoding scheme of MOEA for a simultaneous optimization. However, this approach might double the size of each individual solution in the population, thus significantly expanding the search space of the MOEA. Since the efficiency of the global search algorithm is a primary concern for large problem dimensions, we propose to use the weighted-sum lambda-iteration method for the EEDP. Introducing a Lagrange multiplier , the EEDP at hour t for unit can be written as:

(21) where and are the weights for the two objective functions. At each generation of NSGA-II, a new set of weights are generated according to their definition in [START_REF] Abid | Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms[END_REF]. Then the standard lambda-iteration algorithm is applied to solve the system of N equations to obtain the solution vector of powers .

iii. Non-dominated sorting and genetic operators At a given search iteration (generation), the (parent) population is evaluated by a fast non-dominated sorting algorithm [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], which divides it into different Pareto frontiers by assigning to each chromosome of the population a rank equal to its non-domination level (e.g. 1 is the best, 2 is the second best, etc). First the top rank 1 is assigned to all the non-dominated solutions in the current population; then, the top rank solutions are temporarily removed from the current population and the second top rank is assigned to all the nondominated solutions in the remaining population, and so on.

On the results of the non-dominated sorting of the parent population, the binary tournament selection with replacement, cross-over, and mutation operators are applied to create the offspring population, still of size .

iv. Elitism mechanism

This operation involves two major steps: 1) create a union of chromosomes by combining parent and offspring populations, and sort the chromosomes in the union by a fast non-dominated sorting algorithm; 2) select the first chromosomes from the union to form a new parent population. The crowding distance measure is used in this step to compare the chromosomes with the same rank (a more 'crowded' chromosome has lower priority than a less 'crowded' one), where crowding refers to the density of solutions present in a neighborhood of specified radius [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF].

B. Local Search Algorithm (LSA)

Local search (LS) can enhance the search capability of EAs by carrying out local exploitation, provided that the global and local searches are well-balanced. In this Section, we utilize two local search strategies (LSSs) equipped with one local search operator (LSO) specifically designed for the UCP.

At each local search run, the LSO is applied to shut down or turn on a number of units located at the 'boundaries' of the schedules (as shown in Fig. 2) with a probability related to the AFLC rank (or AFLE rank ) of the units. It is noted that the units are ranked in ascending order of the rate values (e.g. the unit with lowest cost rate ranks 1 st in the cost rate ranking list). If unit i has the relationship or (where N is the total number of units, k is a parameter that controls the probability of the unit undergoing local search, and rand(0,1) is a uniform rand value in [0,1)) satisfied, then all the '01' and '10' combinations located at the boundaries (their number is denoted by ) are subject to mutation with equal probability . For each of the combinations eligible for mutation, it becomes '00' or '11' with probability equal to 0.5. 20)) at each generation to be the initial solution, and then performs times the LSO at each iteration.

C. Minimum Up/Down Constraints Handling

The minimum up/down constraints are handled by the heuristic procedure coded below [START_REF] Jeong | A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems[END_REF]:

For For If = 1 If = 0 If , Then = 0, Endif Endif Elseif = 0 If = 1 If , Then = 1, Endif Endif Endif End End

Switch off

Turn on where and are the consecutive time duration when the unit i has been online/offline just before time t, respectively. This procedure is executed before performing the weighted-sum lambda-iteration method to solve the EEDP.

D. Computational Flow

The computational flow of the proposed MOMA (NSGA-II+LSA) is given in Figure 3. In this Section, the proposed MOMA search is tested on UCPs of two different sizes: a classical 10-unit system of literature [START_REF] Kazarlis | A Genetic Algorithm Solution to the Unit Commitment Problem[END_REF] and a 100-unit system, with a time horizon of 24 hours. The operation data and demand data of the 10-unit system are shown in Tables I and II, respectively. Table I summarizes the coefficients of power output limits and cost functions, taken from [START_REF] Kazarlis | A Genetic Algorithm Solution to the Unit Commitment Problem[END_REF], and the coefficients of emission functions taken from [START_REF] Basu | Economic environmental dispatch using multi-objective differential evolution[END_REF]. Table II shows the load demand values, taken from [START_REF] Kazarlis | A Genetic Algorithm Solution to the Unit Commitment Problem[END_REF]. The spinning reserve is assumed to be 10% of the demand. The 100-unit system is artificially created by duplicating the operation data of the 10-unit system 9 times and increasing the load demand value at each hour by 9 times. It is noted that the ramp rate limits are not included in these case studies. However, the proposed algorithm is able to handle this type of constraint by adding a penalty onto the weighted-sum of the objective functions in the economic dispatch sub-problem. Three EAs are applied in the experiments: pure NSGA-II, NSGA-II+DLS, and NSGA-II+WLS. The parameters of NSGA-II are set as follows: 1) the maximum generation and the population size are and 50, respectively, as suggested in [START_REF] Kazarlis | A Genetic Algorithm Solution to the Unit Commitment Problem[END_REF]; 2) 0.5 to 1 with step size 0.1, and the mutation probability changes from 0.01 to 0.05 with step size 0.01. The possible combinations of these two probabilities are tested on the 10-unit system: the best combination is found to be 0.9 for crossover probability and 0.01 for mutation probability, and is retained for all numerical evaluations. In the two MOMAs, the number of local searches and the population size are set to 10, so to have the same number of optimal dispatch evaluations as the pure NSGA-II. The rest of the parameters of the MOMAs are identical to those of 

A. Convergence Property and Single-Objective Performance Comparison

The convergence plots of the algorithms applied to the 10-unit system are shown in Table III presents the best, average and worst solutions of minimum cost out of the 20 runs of the MOEA algorithms, on the 10-unit and 100-unit systems, respectively. The MOMAs appear to be more robust, on average. Their performance compare well also with the published results, reported in Table IV. The best, average and worse computation times of each method are also presented in Table III. It can be seen that the methods have similar computation times due to the fact that the number of fitness evaluations is the same for each method. Table IV presents the best solutions obtained by the NSGA-II+DLS and the comparison to the solutions obtained with the single-objective optimization methods of the literature [START_REF] Ongsakul | Unit commitment by enhanced adaptive Lagrangian relaxation[END_REF][START_REF] Simopoulos | Unit commitment by an enhanced simulated annealing algorithm[END_REF][START_REF] Lau | Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment[END_REF][START_REF] Kazarlis | A Genetic Algorithm Solution to the Unit Commitment Problem[END_REF][START_REF] Senjyu | A unit commitment problem by using genetic algorithm based on unit characteristic classification[END_REF][START_REF] Hadji | A Solution to the Unit Commitment Problem Using Imperialistic Competition Algorithm[END_REF]. It is shown that the NSGA-II+DLS is able to achieve results comparable to the best ones of the published work. [START_REF] Kazarlis | A Genetic Algorithm Solution to the Unit Commitment Problem[END_REF] 565825 5627437 SA [START_REF] Simopoulos | Unit commitment by an enhanced simulated annealing algorithm[END_REF] 565828 5617876 UCC-GA [START_REF] Senjyu | A unit commitment problem by using genetic algorithm based on unit characteristic classification[END_REF] 563977 5626514 QEA-UC [START_REF] Lau | Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment[END_REF] 563938 5609550 ICA [START_REF] Hadji | A Solution to the Unit Commitment Problem Using Imperialistic Competition Algorithm[END_REF] 563938 5617913 NSGA-II+DLS 563938 5605918

The commitment schedule, power dispatch, fuel and startup costs, and emissions of the best minimum-cost solution obtained by NSGA-II+DLS on the 10-unit system are presented in Table V. Note that the total operation cost obtained by NSGA-II+DLS presented in Table IV is the sum of the total fuel cost and the total start-up cost presented in Table V. The best, average and worst solutions of minimum emission out of the 20 runs of the MOEAs are presented in Table VI.

The details of the best solution found by NSGA-II+WLS on 10-unit system are presented in Table VII. Comparing to the solution presented in Table V, units 4, 5 and 6 have much higher power outputs and units 1 and 2 have much lower power outputs. This is due to the fact that they have different AFLC and AFLE ranks, i.e. units 1, 2, 4, 5, and 6 rank 1, 2, 3, 5, and 6 in terms of AFLC, whereas they rank 4, 5, 6, 1, and 3 in terms of AFLE. 

B. Multi-Objective Optimization Performance Evaluation

Figure 5 illustrates the best Pareto front out of the 20 fronts obtained by each method for the 10-unit system. It is shown that the front of NSGA-II+DLS contains the minimum cost value ($563938) which equals to the best of the published results; the front of NSGA-II+WLS contains the minimum emission value (33062 lb). It is seen that LSA improves the Pareto-fronts. Also, the DLS has been more effective than the WLS in the search of minimum cost, and vice versa for the search of minimum emission. Figure 6 illustrates the overall Pareto front of each method, obtained by non-dominated sorting of all the solutions on the 20 fronts. It confirms the findings of Figure 5. A number of performance measures (e.g. generational distance [START_REF] Van Veldhuizen | Multiobjective evolutionary algorithms: classifications, analyses, and new innovations[END_REF], objective vector indicator [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF]) have been proposed to measure the performance of multi-objective optimization algorithms. The hyper-volume is widely used in recent studies by the MOEA community. The hyper-volume is the area (volume or hyper-volume) under the dominated region defined by the non-dominated set. Details on computing the hyper-volume measure can be found in [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF].

For each of the 20 runs of each algorithm, a hyper-volume value with the reference point at [ , ] for 10unit system or [ , ] for 100-unit system is calculated. Box plots of the hyper-volumes of each algorithm are shown in Fig. 9 and Table VIII summarizes the statistics of the results. It is seen that the mean and median values of MOMAs are in general higher than those of NSGA-II. In addition, MOMAs have lower standard deviations than that of NSGA-II. NSGA-II+DLS has the highest median and NSGA-II+WLS has the second highest median. It is also observed that the distributions of hyper-volume values are skewed. This implies that the standard t-test cannot be applied for significance testing, and thus the assumptionfree Wilcoxon rank-sum tests are performed instead [START_REF] Corder | Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach[END_REF]. Table IX summarizes the p-values of the Wilcoxon rank-sum tests of NSGA-II versus MOMAs. In the four paired comparisons, p-values are generally less than or equal to 0.05 except for one case that NSGA-II+WLS versus NSGA-II on 100-unit system. The improvements of MOMAs to NSGA-II in terms of median hyper-volume values are amount to 19.5% and 9.2% for DLS, and 10.3% and 5.6% for WLS. C. Unit Commitment Considering Ramp-Rate Limits NSGA-II+DLS is applied to solve the EUCP with ramp-rate limits. The ramp-rate limits are handled by the dynamic dispatch method proposed in [START_REF] Wang | Effects of ramp-rate limits on unit commitment and economic dispatch[END_REF]. The details of this method can be found in [START_REF] Wang | Effects of ramp-rate limits on unit commitment and economic dispatch[END_REF]. By including the ramp-rate limits, the 100-unit system with a time horizon of 24 hours is used as one testing bed. The ramp-rate limits for the units in this system are created by duplicating the data of a 10-unit system 9 times, where the ramp-rate limits are set to 160, 160, 100, 100, 100, 60, 60, 40, 40, and 40 MW [START_REF] Lau | Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment[END_REF], respectively. The same NSGA-II parameter settings are used on both the 100-unit systems with or without the ramp-rate limits. Table X presents the results obtained by NSGA-II+DLS. It is seen that the generating cost and emission are increased due to the inclusion of ramp-rate characteristics into the EUCP. The efficiency and effectiveness of NSGA-II+DLS also show small differences in the computation times and final optimal costs and emissions. 

VI. OBSERVATIONS AND DISCUSSIONS

From the numerical results presented in Section V, the following observations are made: 1) the local search algorithms can effectively improve the performance of NSGA-II on the EUCP, 2) the solutions obtained are comparable to published single-objective cost optimal results, 3) satisfactory multiple Pareto-optimal solutions are generated in one simulation run.

Two directions of improvement of the current work are: 1) EUCP formulation: more realistic settings, e.g. the spinning reserve cost aligning well with the electricity market where the spinning reserve is traded, and the valve point effects representing the non-linear input-output characteristics of the generation units, can be added into the cost objective function; 2) solution method design: the heuristics e.g. SA and EAs, can be applied to solve the EEDP when the valve point effects are considered, and the quantum inspired coding and mutation [START_REF] Han | Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[END_REF] can be introduced into NSGA-II to improve its computation efficiency.

One potential application of EUCP is to fit it into the electricity market structure considering emission trading. The UCP is an important problem with significant economical impact onto the newly deregulated electricity markets. In the simultaneous market structure such as the Pennsylvania, New Jersey, and Maryland (PJM) market of the U.S. and the British market, an independent system operator (ISO) needs to solve it to obtain the hourly market clearing prices and to determine the awards [START_REF] Zhai | Unit commitment with identical units successive subproblem solving method based on Lagrangian relaxation[END_REF]. With the effort to reduce the negative trends of climate changes, the emission trading mechanism such as the European Union Emission Trading Scheme (EU ETS) permits the allocation of specified amounts of emission allowance to various industrial installations including generation units [START_REF]EU Emissions Trading[END_REF]. Under this scheme, it is expected that the electricity market clearing outcome will be affected by the emission allowance [START_REF] Kockar | Unit commitment for combined pool/bilateral markets with emissions trading[END_REF]. The proposed EUCP method might be suitable for this combined scheme as it can provide the multiple Pareto-optimal generation schedules to the generating company and ISO when the emission allowance is traded and amount of allowance is changed.

VII. CONCLUSIONS

In this study, we have included the environmental objective of low emissions into the UCP. The multi-objective problem that derives is handled within the dominance scheme of optimization which leads to the identification of the Pareto fronts and sets. A multi-objective memetic algorithm is then originally designed to solve EUCP. Within the MOMA, the global exploration is done by NSGA-II and the local exploitation by one local search strategy (DLS or WLS) combined with one local search operator which dynamically turns on/off the units at the boundaries of the generation schedules. The effectiveness of the proposed MOMA is demonstrated on a 10-unit system and a 100-unit system, with a time horizon of 24 hours.
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 1 Figure 1. The load curve and one initial solution generated by PL method

Figure 2 .

 2 Figure 2. The local search operator By the application of LSO to the schedule of each unit, a new vector solution is generated which replaces the current one only if it dominates. The algorithm design involves also the selection of the individuals undergoing local search and the length of the local search. In our LSA, we consider two LSSs, namely wide LS (WLS) and deep LS (DLS) to be combined with the global search algorithm separately. The former applies the LSO only one time onto all the solutions in the population, whereas the latter selects the individual with best weightedsum of the fitness values (in eq.(20)) at each generation to be the initial solution, and then performs times the LSO at each iteration.

Figure 3 .

 3 Figure 3. Flow chart of NSGA-II + LSA

Fig 4 .

 4 The data reported are the minimum operation cost and emission values in the Pareto-front at each generation during the search. It is observed that in general the MOMAs converge faster than the NSGA-II.
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 4 Figure 4. Convergence plots of the competing algorithms
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 56 Figure 5. Best fronts out of the 20 Pareto-optimal fronts of 10-unit system

Figure 7 .Figure 8 .

 78 Figure 7. Best fronts out of the 20 Pareto-optimal fronts of 100-unit system

Figure 9 .

 9 Figure 9. Box plots of the hyper-volumes of the algorithms on 10-unit system and 100-unit system

  are population-based meta-heuristic search methods combining global search algorithms (e.g. EAs) with local search Y. F. Li 1 , Member, IEEE, N. Pedroni 2 , E. Zio 1,2 , Senior Member, IEEE A Memetic Evolutionary Multi-Objective Optimization Method for Environmental Power Unit Commitment T techniques (e.g. Lamarckian local search, tabu search, chaotic search). The rationale behind MAs is that the deficiency of EAs in local exploitation can be compensated by the inclusion of local search techniques which, on their account, are often inadequate in global exploration. MAs have been reported to converge to high quality solutions more efficiently than conventional EAs

TABLE I .

 I OPERATION DATA FOR OF THE 10-UNIT SYSTEM

	Unit	1	2	3	4	5	6	7	8	9	10
		455	455	130	130	162	80	85	55	55	55
	(MW)										
		150	150	20	20	25	20	25	10	10	10
	(MW)										
					Cost function coefficients				
	A	1000	970	700	680	450	370	480	660	665	670
	B	16.19	17.26	16.6	16.5	19.7	22.2	27.74	25.9	27.2	27.79
	C	0.0004	0.0003	0.002 0.00211 0.00398 0.0071	0.00079 0.0041	0.0022	0.0017
		8	1				2		3	2	3
		8	8	5	5	6	3	3	1	1	1
	(Hr)										
		8	8	5	5	6	3	3	1	1	1
	(Hr)										
	($)	4500	5000	550	560	900	170	260	30	30	30
	($)	9000	10000	1100	1120	1800	340	520	60	60	60
	(Hr)	5	5	4	4	4	2	2	0	0	0
	Initial	8	8	-5	-5	-6	-3	-3	-1	-1	-1
	state										
	(Hr)										
					Emission function coefficients				
	D	42.90	42.90	40.27	40.27	13.86	13.86	330.00 330.00 350.00 360.00
	E	-0.5112 -0.5112 0.5455 -0.5455 0.3277 0.3277 -3.9023 -3.9023 -3.9524 -3.9864
	F	0.0046 0.0046 0.0068 0.0068 0.0042 0.0042 0.0465 0.0465 0.0465 0.0470

TABLE II .

 II DEMAND DATA ON 24 HOUR TIME HORIZON

	Hr	Demand	Hr	Demand	Hr	Demand	Hr	Demand
		(MW)		(MW)		(MW)		(MW)
	1	700	7	1150	13	1400	19	1200
	2	750	8	1200	14	1300	20	1400
	3	850	9	1300	15	1200	21	1300
	4	950	10	1400	16	1050	22	1100
	5	1000	11	1450	17	1000	23	900
	6	1100	12	1500	18	1100	24	800

  Because genetic algorithms are stochastic, in the comparative study each algorithm is run 20 times. Since solving EEDP is the most time-consuming step in the algorithm, it is only performed if the given unit commitment schedule satisfies the spinning reserve constraint.All the experiments have been carried out in MATLAB on a PC with Intel Core i5 of 3.4 GHz and 4 GB RAM.

	NSGA-II.		
			Start
		Intialiize the parameters:
		Population size	, maximum number of
			generations
		Generate initial population by PL method
		Generate a random weight vector . Evaluate
		current population	by weighted-sum
		lambda-iteration procedure using
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		into different non-dominated fronts
		Generate an offspring	from	by
		binary tournament selection, and genetic
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		Evaluate
		Apply one LSS (e.g. WLS or DLS) to
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		generations reached?
				Yes
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				and obtain optimal
		front from
			End

TABLE III .

 III COST OPTIMIZATION RESULTS OF MOMAS AND NSGA-II No of Units Cost ($) NSGA-II NSGA-II + DLS NSGA-II + WLS

	10	Best	565898	563938	564114
		Average	567212	564240	564554
		Worst	569923	564723	565296
	100	Best	5625616	5605918	5618657
		Average 5627331	5611614	5624631
		Worst	5634676	5617595	5632097
	No of Units Time	NSGA-II NSGA-II + DLS NSGA-II + WLS
		(Sec)			
	10	Best	83	80	82
		Average	85	82	86
		Worst	90	87	93
	100	Best	3603	3484	3454
		Average	4354	4254	4326
		Worst	4708	4639	4530

TABLE IV .

 IV COMPARISONS WITH PUBLISHED BEST RESULTS OF SINGLE

	OBJECTIVE COST OPTIMIZATION
	Methods	10-unit	100-unit
	ELR [10]	563977	5605678
	GA		

TABLE V .

 V MINIMUM COST SOLUTION: SCHEDULE AND DISPATCH, AND CORRESPONDING COSTS AND EMISSIONS FOR THE 10-UNIT SYSTEM

	Hr	1	2	3	4	Generation units 5 6	7	8	9	10	Fuel cost ($)	Start-up cost ($)	Emission (lb)
	1	455	245 0	0	0	0	0	0	0	0	13683 0	956
	2	455	295 0	0	0	0	0	0	0	0	14555 0	1055
	3	455	370 0	0	25	0	0	0	0	0	16809 900	1271
	4	455	455 0	0	40	0	0	0	0	0	18598 0	1559
	5	455	390 0	130 25	0	0	0	0	0	20020 560	1415
	6	455	360 130 130 25	0	0	0	0	0	22387 1100	1553
	7	455	410 130 130 25	0	0	0	0	0	23262 0	1704
	8	455	455 130 130 30	0	0	0	0	0	24150 0	1863
	9	455	455 130 130 85	20	25 0	0	0	27251 860	2191
	10	455	455 130 130 162	33	25 10 0	0	30058 60	2599
	11	455	455 130 130 162	73	25 10 10 0	31916 60	2945
	12	455	455 130 130 162	80	25 43 10 10 33890 60	3229
	13	455	455 130 130 162	33	25 10 0	0	30058 0	2599
	14	455	455 130 130 85							

TABLE VI .

 VI EMISSION OPTIMIZATION RESULTS OF MOMAS AND NSGA-II

			x 10 5								
		5.74								NSGA-II	
	Cost ($)	5.7 5.72								NSGA-II+WLS NSGA-II+DLS
	Operation	5.66 5.68									
		5.64									
			50	100	150	200	250	300	350	400	450	500
							Iteration				
		3.6	x 10 4								
		3.55								NSGA-II	
										NSGA-II+WLS
	(lb)	3.5								NSGA-II+DLS
	Emission	3.4 3.45									
		3.35									
		3.3	50	100	150	200	250	300	350	400	450	500
							Iteration				
												No of	Emission	NSGA-II	NSGA-II +	NSGA-II +
												Units	(lb)	DLS	WLS
												10	Best	33192	33329	33062
												Average	33814	33777	33529
												Worst	34578	34174	34070
												100	Best	344379	329938	342947
												Average	346982	341065	349578
												Worst	352123	344560	357974

TABLE VII .

 VII MINIMUM EMISSION SOLUTION: SCHEDULE AND DISPATCH, AND CORRESPONDING COSTS AND EMISSIONS FOR THE 10-UNIT SYSTEM

	Hr	1	2	3	4	Generation units 5 6 7	8	9	10	Fuel cost ($)	Start-up cost ($)	Emission (lb)
	1	216 216 0	130 137 0	0	0	0	0 15334	0	518
	2	207 207 0	130 127 80 0	0	0	0 16983	170	541
	3	217 217 69	130 138 80 0	0	0	0 19404	550	696
	4	245 245 88	130 162 80 0	0	0	0 21192	0	857
	5	264 264 101 130 162 80 0	0	0	0 22039	0	948
	6	301 301 126 130 162 80 0	0	0	0 23736	0	1157
	7	324 324 130 130 162 80 0	0	0	0 24585	0	1275
	8	349 349 130 130 162 80 0	0	0	0 25435	0	1404
	9	363 363 130 130 162 80 72 0	0	0 28396	520	1772
	10 384 384 130 130 162 80 74 55 0	0 31283	60	2159
	11 382 382 130 130 162 80 74 55 55 0 33367	60	2417
	12 379 379 130 130 162 80 74 55 55 55 35483	60	2685
	13 384 384 130 130 162 80 74 55 0	0 31283	0	2159
	14 363 363 130 130 162 80 72 0	0	0 28396	0	1772
	15 349 349 130 130 162 80 0	0	0	0 25435	0	1404
	16 282 282 113 130 162 80 0	0	0	0 22887	0	1048
	17 264 264 101 130 162 80 0	0	0	0 22039	0	948
	18 301 301 126 130 162 80 0	0	0	0 23736	0	1157
	19 349 349 130 130 162 80 0	0	0	0 25435	0	1404
	20 384 384 130 130 162 80 74 55 0	0 31283	320	2159
	21 363 363 130 130 162 80 72 0	0	0 28396	0	1772
	22 277 277 110 130 162 80 64 0	0	0 24907	0	1290
	23 256 256 96	130 162 0	0	0	0	0 19503	0	844
	24 225 225 74	130 146 0	0	0	0	0 17748	0	675
	Total 7428 7428 2563 3120 3787 1680 653 275 110 55 598287 1740	33062

TABLE VIII

 VIII 

			. STATISTICS OF THE HYPER-VOLUME VALUES
			10-unit			100-unit
		mean	std	median mean	std	median
	NSGA-II	0.0103 0.0012	0.0100	0.0091 0.0008	0.0089
	NSGA-II				
	+ DLS	0.0118 0.0010	0.0120	0.0105 0.0008	0.0103
	NSGA-II				
	+ WLS	0.0115 0.0009	0.0112	0.0098 0.0010	0.0097

TABLE IX

 IX 

		. RESULTS OF WILCOXON RANK-SUM TESTS	
		10-unit	100-unit
		NSGA-II	NSGA-II	NSGA-II	NSGA-II
		+ DLS	+ WLS	+ DLS	+ WLS
	p-values	0.01	0.02	0.02	0.10
	Improvement (%)	19.5%	10.3%	16.1%	8.4%

TABLE X

 X 

	. RESULTS OF NSGA-II+DLS ON 100-UNIT UC SYSTEM
		WITH/WITHOUT RAMP-RATE LIMITS
	NSGA-II+DLS	Without ramp-	With ramp-
			rate limits	rate limits
	Average time (Sec)	4254	4583
	Cost ($)	Best	5605918	5608524
		Average	5611534	5611614
		Worst	5615476	5617595
	Emission	Best	329938	335500
	(lb)	Average	341065	341516
		Worst	344560	351900
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