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Abstract-- A multi-objective power unit commitment problem is 

framed to consider simultaneously the objectives of minimizing 

the operation cost and minimizing the emissions from the 

generation units. To find the solution of the optimal schedule of 

the generation units, a memetic evolutionary algorithm is 

proposed, which combines the non-dominated sorting genetic 

algorithm-II (NSGA-II) and a local search algorithm. The power 

dispatch sub-problem is solved by the weighed-sum lambda-

iteration approach. The proposed method has been tested on 

systems composed by 10 and 100 generation units for a 24 hour 

demand horizon. The Pareto-optimal front obtained contains 

solutions of different trade off with respect to the two objectives 

of cost and emission, which are superior to those contained in the 

Pareto-front obtained by the pure NSGA-II. The solutions of 

minimum cost are shown to compare well with recent published 

results obtained by single-objective cost optimization algorithms. 

 
Index Terms-- power unit commitment, environmental/ 

economic dispatch, multi-objective optimization, evolutionary 

algorithm, memetic algorithm, non-dominated sorting genetic 

algorithm, local search, lambda-iteration approach. 

I.  INTRODUCTION 

he unit commitment problem (UCP) involves determining 

the optimal start-up and shut-down schedules of the 

generation units, and the economic dispatch of the online 

generators to meet the forecasted demand over a specific 

short-term time period (e.g. 24 hours) [1]. The classical 

single-objective UCP aims at minimizing the total operational 

costs of all generation units, given a number of equality 

constraints (e.g. system power balances) and inequality 

constraints (e.g. system spinning reserve requirement, 

generation limits, minimum up and down times, and ramp rate 

limits).  

The UCP is a large-scale, non-linear, and mixed 

combinatorial and continuous optimization problem of 

difficult solution [2]. In the literature, a large number of 

techniques have been proposed, e.g. priority list [3], dynamic 

programming [4], branch and bound [5, 6], mixed integer 

programming [7, 8], Lagrangian relaxation [9, 10], simulated 

annealing [11], and evolutionary algorithms (EAs) [12-16]. 

Detailed surveys can be found in [17, 18]. 

However, most existing UCPs are formulated in the form of 

single-objective optimization to minimize the total operation 
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cost [1, 12, 14-16, 19]. On the other hand, the increasing 

awareness of environmental protection is pushing the utilities 

to improve their design and operational strategies, for 

reducing the emissions from the power plants [20]. As a 

result, the consideration of the environmental impacts of 

power generation in the UCP is receiving intensive research 

efforts [20-23], particularly by inclusion within the economic 

dispatch problem (which is a sub-problem included in UCP). 

To do so, emissions are converted into monetary units through 

forms of carbon tax or/and emission trading, and then directly 

included in the total operation cost objective function. 

However, due to the variations/uncertainties of the electrical 

market and system behavior, it is often difficult to capture the 

complicated emission-cost relationships in a single objective 

function. Alternatively, recent studies on the environmental/ 

economic dispatch problem (EEDP) are proposing to account 

for emissions as a separate objective, also to be minimized. 

Different approaches have been proposed to tackle the 

multi-objective EEDP, such as weighted sum [24],  -

constraint [23], and simultaneous optimization [20-22]. The 

weighted sum approach obtains a set of Pareto-optimal 

solutions by varying the weights of different objectives. 

However, this requires a number of runs equal to the number 

of desired Pareto-optimal solutions. In addition, this method is 

not able to obtain Pareto-optimal solutions where the 

problems have non-convex fronts. The  -constraint method 

can avoid this difficulty by optimizing the most important 

objective and treating other objectives as constraints bounded 

by some allowable levels of  . These levels are then changed 

to generate the entire Pareto-optimal solution set. However, 

this approach is time-consuming and tends to find weakly 

non-dominated solutions [20]. 

Recent trends of research have shifted to simultaneous 

optimization of the separate objectives by dominance, in 

search of the Pareto-optimal front [25]. Furthermore, some 

recent works have incorporated the emission objective into the 

generation scheduling sub-problem  [26, 27].  

In this study, we merge the multi-objective formulation of 

the two UCP sub-problems of dispatching and scheduling by 

including the emission objective into an overall environmental 

UCP (EUCP), and propose a novel approach to its solution 

based on memetic algorithms (MAs), an extension of 

evolutionary algorithm (EAs) which combines heuristics for 

global search and local search. The approach is tested on two 

case studies, with 10 and 100 units and a 24 hour horizon. 

EAs, especially genetic algorithm (GA) [28], have been 

shown as powerful techniques for solving multi-objective 

optimization problems [29]. As extensions, MAs [30] are 

population-based meta-heuristic search methods combining 

global search algorithms (e.g. EAs) with local search 
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techniques (e.g. Lamarckian local search, tabu search, chaotic 

search). The rationale behind MAs is that the deficiency of 

EAs in local exploitation can be compensated by the inclusion 

of local search techniques which, on their account, are often 

inadequate in global exploration. MAs have been reported to 

converge to high quality solutions more efficiently than 

conventional EAs [31, 32]. The success of the multi-objective 

version of MAs (MOMAs) is dependent on the handling of 

multiple objectives in the local search and the balance 

between global search and local search [32]. In this study, we 

explore two local search strategies (LSSs) equipped with one 

local search operator (LSO) specifically designed for the UC 

P. 

The rest of this paper is organized as follows: Section II 

presents the multi-objective formulation of the EUCP; Section 

III presents the general concept of multi-objective 

optimization; Section IV describes the proposed MOMA; 

Section V presents the experiment results and the comparisons 

to published results; Section VI presents the conclusions of 

this study and some discussions about future extensions.   

II.  MULTI-OBJECTIVE FORMULATION OF THE 

ENVIRONMENTAL POWER UNIT COMMITMENT PROBLEM 

A.  Objective Functions 

The first objective is to minimize the operation cost    of the 

N-units system, in arbitrary monetary units [m.u.]. The 

operation cost includes the fuel cost of the generation unit, the 

start-up cost and the shut-down cost, over the entire time 

horizon, usually observed in hours: 

        
    

    
      

      
    

        
     

    
   

 
      

(m.u.)  (1) 

where Tmax is the total number of hours in the scheduling 

horizon, t (=1,2,…,Tmax) is the hourly time index, N is the total 

number of generation units, i (=1,2,…,N) is the generation 

unit index,   
  is the binary commitment state of unit i at time t 

(  
 =1 if unit i is committed at time t;   

 =0 otherwise),    
  is 

the generation cost of unit i at time t,   
  is the start-up cost of 

unit i at time t, and    is the shut down cost of unit i.    
  can 

be defined as: 

   
       

        
                         (2) 

where   ,    and    are the fuel cost coefficients of unit i, and 

  
  is the actual power output from unit i at time t.   

  can be 

defined as:  

  
   

  
          

   
    

     
   

    
   

  
           

     
   

    
   

                     
     (3) 

where   
     

 is the consecutive time duration when the unit i 

has been offline just before time t,   
   

 is the minimum down 

time of unit i,    
  is the number of cold-start hours of unit i, 

  
  is the hot-start cost of unit i, and   

  is the cold-start cost of 

unit i.    is usually modeled as a constant value for each shut-

down of each unit. 

The second objective function is to minimize the release of 

air pollutants into the atmosphere [33],   :  

       
    

     
   

 
    (lb)                  (4)      

where    
  (lb) represents the quantity of pollutants produced 

by unit i at time t and it is defined as:  

   
       

        
                       (5) 

where   ,    and    are the emission coefficients of unit i. 

B.  Constraints 

1. System power balance: the total power generation at time 

t equals the total demand. Hence, 

   
   

  
                                             (6) 

where    is the load demand at time t. 

2. System spinning reserve requirements: a reserve is 

required to deal with real-time potential sudden load increases 

due to unexpected demand increase or failure of any of the 

working units. Hence, 

   
              

                           (7) 

where    is the system spinning reserve requirement at time t, 

and        is the rated upper generation limit of unit i. 

3. Unit minimum up/down times: 

Minimum up time:      
       

                        (8) 

Minimum down time:   
     

   
   

                 (9) 

where   
    

 is the consecutive time duration when the unit i 

has been online just before time t,   
   is the minimum up 

time of unit i. 

4. Unit generation limits: for stable operation, the power 

output of each generation unit must fall into a region of 

operation defined by lower and upper limits: 

         
                                  (10) 

where        is the rated lower generation limit of unit i. 

5. Ramp-rate limits: due to the mechanical characteristics 

and thermal stress limitations of each unit, the power output 

of each unit is restricted by its ramp-rate limits: 

  
    

    
       

     
                         (11) 

where   
  and   

  are the ramp-up and ramp-down limits of 

unit i, respectively. 

EUCP can be formulated as a non-linear mixed 

combinatorial and continuous multi-objective optimization 

problem, as follows: 

                                                 (12) 

Subject to:                                            (13) 

                                        (14) 

 

where      
    

      
      

       
         

      is a 

       matrix with the powers   
 as its elements and 

     
    

      
      

       
         

      is a        

matrix with the commitment states   
  as its elements. 

III.  MULTI-OBJECTIVE OPTIMIZATION 

Many real world applications involve simultaneous 

optimization of several objective functions, which are often 

competing or/and conflicting with each other, and subject to a 

number of equality and inequality constraints. In general, 

these multi-objective problems can be formulated as follows: 

 

Minimize                                                 (15) 

Subject to:           
                               

                              
   (16) 

where    is the oth objective function, U is a decision vector 

that represents a solution, O is the number of objectives,    is 

the j-th of the J equality constraints and    is the k-th of the K 
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inequality constraints. The objective functions       must be 

evaluated in correspondence of each decision variable vector 

  in the search space. The final goal is to identify a set of 

optimal decision variable vectors   
           , instead 

of a single optimal solution. In this set of optimal solutions, 

no one can be regarded to be better than any other with 

respect to all the objective functions. The comparison of 

solutions may be achieved in terms of the concepts of Pareto 

optimality and dominance [34]: taking a minimization 

problem as example, solution    is regarded to dominate 

solution    (      ) if both following conditions are 

satisfied: 

                                          (17) 

                                          (18) 

If any of the above two conditions is violated, the solution    

does not dominate the solution   , and    is said to be 

nondominated by   . The solutions that are nondominated 

within the entire search space are denoted as Pareto-optimal 

and constitute the Pareto-optimal set, and the corresponding 

values of the objective functions form the so called Pareto-

optimal front in the objective functions space. The goal of a 

multi-objective optimization algorithm is to guide the search 

for finding solutions of the Pareto-optimal set. 

IV.  PROPOSED MULTI-OBJECTIVE MEMETIC ALGORITHM 

MAs perform global exploration by EA and local exploitation 

by a local search algorithm, in a balanced way [32]. In this 

Section, we first present a two-stage global search algorithm 

composed of a multi-objective EA (MOEA) for the generation 

scheduling problem and a weighted-sum lambda-iteration 

algorithm [35] for the environmental/economic dispatch 

problem (EEDP). Then, we propose a local search algorithm 

which dynamically switches on/off the units according to their 

performance with respect to the two objectives of cost and 

emission. 

A.  EA for multi-objective global exploration 

Genetic algorithms [28] are the most popular MOEAs. We use 

NSGA-II [36], which has become a standard approach with 

three advantages over NSGA: (i) denoting by      the 

number of candidate solutions (chromosomes) in the 

population, NSGA-II has        
  computational complexity 

while NSGA has        
  , (ii) NSGA-II includes elitism 

while NSGA does not, and (iii) NSGA-II ensures self-

maintained diversity while NSGA uses a predefined sharing 

parameter to control diversity. Detailed information regarding 

NSGA-II can be found in [36].  

 

i. Encoding and initial population generation 

The solution to the UCP consists of two parts: the on-off 

schedule,   
 , of each unit i at each hour t; the power,   

  

(continuous values), generated by each unit i at each hour t. In 

our approach, the on-off schedule   
  is identified through the 

global search by NSGA-II, and then the optimal values of   
  

are found by a weighted-sum lambda-iteration method for 

solving the EEDP with fixed schedule. In the population, the 

decision variables are coded as a binary string   

   
   

    
     

      
       

      where N is the total 

number of generation units and      is the number of hours in 

the scheduling horizon (e.g. equal to 24). The initial 

population of      chromosomes of the NSGA-II for solving 

the on-off schedule, is generated by the priority list (PL) 

method [19], which is efficient against the fact that the UCP is 

heavily constrained so that the purely random generation of 

the initial population could result to final solutions of low 

quality [3].  

To preserve the diversity of solutions, two types of PLs 

(namely, cost-based PL and emission-based PL) are 

considered for generating the initial population. In the cost-

based (or emission-based) PL, all generation units are located 

in the ascending order of their average full load costs (AFLCs) 

(or average full load emissions (AFLEs)). At the bottom of 

the cost-based (or emission-based) PL is the unit with the 

lowest AFLC (or AFLE), which indicates the highest priority 

for commitment. Two primary solutions are generated by 

committing the units in the order of their cost-based (or 

emission-based) priority ranks (denoted by        or       ) 
until the total maximum power output exceeds the load 

demand plus the spinning reserve requirements at each time 

interval. In case that the two units have equal priority, the 

sequence of their commitments is randomly determined. The 

variant solutions are generated by randomly turning on up to 3 

units ranked immediately after the units in the primary 

solutions at each time interval. Half of the entire population is 

generated from cost-based PL and half from the emission-

based PL. Figure 1 shows a candidate initial solution. 

 
Figure 1. The load curve and one initial solution generated by PL method 

 

ii. Fitness functions and EEDP 

The fitness functions are built with the inclusion of penalty 

functions for constraint handling. In the penalty function 

method, we combine the inequality constraint conditions in 

(7-9) into the objective functions (1) and (4), respectively, 

using penalty parameters as follows: 

                  

                  
   

  
     

    
      

                
       

 
    

    
       (19) 

where LP is the penalty due to the unmet load,   is the pre-

defined penalty constant with units $/MWh, and O is the total 

number of objective functions (in case of EUCP, O = 2). The 

constraints in (10), i.e. the unit generation limits, are handled 

in lambda-iteration method.  

2 4 6 8 10 12 14 16 18 20 22 24
12

200

400

600

hr

p
o

w
e

r

 

 

demand

demand + spinning reserve

Priority list 



 
 

4 

 

To obtain the fitness value corresponding to a binary vector 

 , the optimal values of the continuous vector   need to be 

determined by solving the      number of different EEDPs. 

Because the EEDP has two objectives, the weighted-sum  

approach [24] is used to aggregate the objectives for the 

implementation of the lambda-iteration method (with 

complexity O(N)). The weighted-sum fitness function (with 

fixed values of  ) has the following form: 

              
 
                       (20) 

where             is a vector of random weight values 

such that their sum is equal to 1. It should be noted that the 

real-valued vector   of EEDP can be integrated into the 

encoding scheme of MOEA for a simultaneous optimization. 

However, this approach might double the size of each 

individual solution in the population, thus significantly 

expanding the search space of the MOEA. Since the 

efficiency of the global search algorithm is a primary concern 

for large problem dimensions, we propose to use the 

weighted-sum lambda-iteration method for the EEDP. 

Introducing a Lagrange multiplier   , the EEDP at hour t for 

unit         can be written as: 

 

   
         

    
        

    
   

 

   

     
      

 

 

   

    
    

(21) 

where    and    are the weights for the two objective 

functions. At each generation of NSGA-II, a new set of 

weights are generated according to their definition in (20). 

Then the standard lambda-iteration algorithm is applied to 

solve the system of N equations to obtain the solution vector 

of powers   
         . 

 

iii. Non-dominated sorting and genetic operators 

At a given search iteration (generation), the (parent) 

population is evaluated by a fast non-dominated sorting 

algorithm [36], which divides it into different Pareto frontiers 

by assigning to each chromosome of the population a rank 

equal to its non-domination level (e.g. 1 is the best, 2 is the 

second best, etc). First the top rank 1 is assigned to all the 

non-dominated solutions in the current population; then, the 

top rank solutions are temporarily removed from the current 

population and the second top rank is assigned to all the non-

dominated solutions in the remaining population, and so on. 

On the results of the non-dominated sorting of the parent 

population, the binary tournament selection with replacement, 

cross-over, and mutation operators are applied to create the 

offspring population, still of size     . 

 

iv. Elitism mechanism 

This operation involves two major steps: 1) create a union of 

      chromosomes by combining parent and offspring 

populations, and sort the chromosomes in the union by a fast 

non-dominated sorting algorithm; 2) select the first      

chromosomes from the union to form a new parent 

population. The crowding distance measure is used in this step 

to compare the chromosomes with the same rank (a more 

‘crowded’ chromosome has lower priority than a less 

‘crowded’ one), where crowding refers to the density of 

solutions present in a neighborhood of specified radius [36]. 

B.  Local Search Algorithm (LSA) 

Local search (LS) can enhance the search capability of EAs 

by carrying out local exploitation, provided that the global and 

local searches are well-balanced. In this Section, we utilize 

two local search strategies (LSSs) equipped with one local 

search operator (LSO) specifically designed for the UCP.  

 At each local search run, the LSO is applied to shut down 

or turn on a number of units located at the ‘boundaries’ of the 

schedules (as shown in Fig. 2) with a probability related to the 

AFLC rank        (or AFLE rank       ) of the units. It is 

noted that the units are ranked in ascending order of the rate 

values (e.g. the unit with lowest cost rate ranks 1
st
 in the cost 

rate ranking list). If unit i has the relationship 
        

 
 

          or 
        

 
           (where N is the total 

number of units, k is a parameter that controls the probability 

of the unit undergoing local search, and rand(0,1) is a uniform 

rand value in [0,1)) satisfied, then all the ‘01’ and ‘10’ 

combinations located at the boundaries (their number is 

denoted by   ) are subject to mutation with equal probability 

    . For each of the combinations eligible for mutation, it 

becomes ‘00’ or ‘11’ with probability equal to 0.5.  

 

 
Figure 2. The local search operator 

 

By the application of LSO to the schedule of each unit, a 

new vector solution   
  is generated which replaces the 

current one    only if it dominates. 

The algorithm design involves also the selection of the 

individuals undergoing local search and the length of the local 

search. In our LSA, we consider two LSSs, namely wide LS 

(WLS) and deep LS (DLS) to be combined with the global 

search algorithm separately. The former applies the LSO only 

one time onto all the      solutions in the population, 

whereas the latter selects the individual with best weighted-

sum of the fitness values (in eq.(20)) at each generation to be 

the initial solution, and then performs      times the LSO at 

each iteration.  

C.  Minimum Up/Down Constraints Handling 

The minimum up/down constraints are handled by the 

heuristic procedure coded below [15]: 
For           

For             

  If   
  = 1 

   If   
    = 0 

    If   
     

   
   

, Then   
  = 0, Endif  

Endif 

  Elseif   
  = 0 

   If   
    = 1 

    If   
       

  , Then   
  = 1, Endif  

Endif 

Endif 
End 

End 

 

Switch off Turn on 
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where   
    

and   
     

are the consecutive time duration 

when the unit i has been online/offline just before time t, 

respectively. This procedure is executed before performing 

the weighted-sum lambda-iteration method to solve the 

EEDP. 

D.  Computational Flow 

The computational flow of the proposed MOMA (NSGA-

II+LSA) is given in Figure 3. 

 
Figure 3. Flow chart of NSGA-II + LSA 

V.  EXPERIMENT DESIGN AND RESULTS 

In this Section, the proposed MOMA search is tested on UCPs 

of two different sizes: a classical 10-unit system of literature 

[37] and a 100-unit system, with a time horizon of 24 hours. 

The operation data and demand data of the 10-unit system are 

shown in Tables I and II, respectively. Table I summarizes the 

coefficients of power output limits and cost functions, taken 

from [37], and the coefficients of emission functions taken 

from [33]. Table II shows the load demand values, taken from 

[37]. The spinning reserve is assumed to be 10% of the 

demand. The 100-unit system is artificially created by 

duplicating the operation data of the 10-unit system 9 times 

and increasing the load demand value at each hour by 9 times. 

It is noted that the ramp rate limits are not included in these 

case studies. However, the proposed algorithm is able to 

handle this type of constraint by adding a penalty onto the 

weighted-sum of the objective functions in the economic 

dispatch sub-problem. 

 
TABLE I. OPERATION DATA FOR OF THE 10-UNIT SYSTEM  

Unit 1 2 3 4 5 6 7 8 9 10 

     
(MW) 

455 455 130 130 162 80 85 55 55 55 

     
(MW) 

150 150 20 20 25 20 25 10 10 10 

Cost function coefficients 

A 1000 970 700 680 450 370 480 660 665 670 

B 16.19 17.26 16.6 16.5 19.7 22.2 27.74 25.9 27.2 27.79 

C 0.0004
8 

0.0003
1 

0.002 0.00211 0.00398 0.0071
2 

0.00079 0.0041
3 

0.0022
2 

0.0017
3 

    
(Hr) 

8 8 5 5 6 3 3 1 1 1 

     
(Hr) 

8 8 5 5 6 3 3 1 1 1 

    ($) 4500 5000 550 560 900 170 260 30 30 30 

   ($) 9000 10000 1100 1120 1800 340 520 60 60 60 

    (Hr) 5 5 4 4 4 2 2 0 0 0 

Initial 
state 
(Hr) 

8 8 -5 -5 -6 -3 -3 -1 -1 -1 

Emission function coefficients 

D 42.90 42.90 40.27 40.27 13.86 13.86 330.00 330.00 350.00 360.00 

E -0.5112 -0.5112 0.5455 -0.5455 0.3277 0.3277 -3.9023 -3.9023 -3.9524 -3.9864 

F 0.0046 0.0046 0.0068 0.0068 0.0042 0.0042 0.0465 0.0465 0.0465 0.0470 

 
TABLE II. DEMAND DATA ON 24 HOUR TIME HORIZON 

Hr Demand 
(MW) 

Hr Demand 
(MW) 

Hr Demand 
(MW) 

Hr Demand 
(MW) 

1 700 7 1150 13 1400 19 1200 

2 750 8 1200 14 1300 20 1400 

3 850 9 1300 15 1200 21 1300 

4 950 10 1400 16 1050 22 1100 

5 1000 11 1450 17 1000 23 900 

6 1100 12 1500 18 1100 24 800 

 

 Three EAs are applied in the experiments: pure NSGA-II, 

NSGA-II+DLS, and NSGA-II+WLS. The parameters of 

NSGA-II are set as follows: 1) the maximum generation and 

the population size are      and 50, respectively, as 

suggested in [37]; 2)  0.5 to 1 with step size 0.1, and the 

mutation probability changes from 0.01 to 0.05 with step size 

0.01. The possible combinations of these two probabilities are 

tested on the 10-unit system: the best combination is found to 

be 0.9 for crossover probability and 0.01 for mutation 

probability, and is retained for all numerical evaluations. In 

the two MOMAs, the number of local searches and the 

population size are set to 10, so to have the same number of 

optimal dispatch evaluations as the pure NSGA-II. The rest of 

the parameters of the MOMAs are identical to those of 

Intialiize the parameters:  

Population size     , maximum number of 

generations 

 

Start 

Generate initial population by PL method 

 

Generate a random weight vector  . Evaluate 

current population     by weighted-sum 

lambda-iteration procedure using   

 

 

Apply non-dominated sorting to classify     
into different non-dominated fronts 

 

End 

Generate an offspring      from     by 

binary tournament selection, and genetic 
operators: cross-over, mutation 

 

Generate a      from     by binary 
tournament selection and genetic operators 

 

Evaluate       

 

                , apply non-dominated 

sorting to     . 

Select the first      individuals to create a new 

    
 

 

Generate a new random weight vector   

 

Evaluate      

Apply one LSS (e.g. WLS or DLS) to      

Maximum number of 

generations reached? 

Apply one LSS (e.g. WLS or DLS) to     , 
                 and obtain optimal 

front from      

Yes 

No 
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NSGA-II. Because genetic algorithms are stochastic, in the 

comparative study each algorithm is run 20 times. Since 

solving EEDP is the most time-consuming step in the 

algorithm, it is only performed if the given unit commitment 

schedule satisfies the spinning reserve constraint.  

All the experiments have been carried out in MATLAB on 

a PC with Intel Core i5 of 3.4 GHz and 4 GB RAM.  

 

A.  Convergence Property and Single-Objective 

Performance Comparison 

The convergence plots of the algorithms applied to the 10-unit 

system are shown in Fig 4. The data reported are the minimum 

operation cost and emission values in the Pareto-front at each 

generation during the search. It is observed that in general the 

MOMAs converge faster than the NSGA-II. 

 

 
Figure 4. Convergence plots of the competing algorithms 

 

Table III presents the best, average and worst solutions of 

minimum cost out of the 20 runs of the MOEA algorithms, on 

the 10-unit and 100-unit systems, respectively. The MOMAs 

appear to be more robust, on average. Their performance 

compare well also with the published results, reported in Table 

IV. The best, average and worse computation times of each 

method are also presented in Table III. It can be seen that the 

methods have similar computation times due to the fact that 

the number of fitness evaluations is the same for each method.   
 

TABLE III. COST OPTIMIZATION RESULTS OF MOMAS AND NSGA-II  

No of Units Cost ($) NSGA-II NSGA-II + DLS NSGA-II + WLS 
10 Best  565898 563938 564114 

 Average 567212 564240 564554 

 Worst 569923 564723 565296 

100 Best 5625616 5605918 5618657 

 Average 5627331 5611614 5624631 

 Worst 5634676 5617595 5632097 

No of Units Time 
(Sec) 

NSGA-II NSGA-II + DLS NSGA-II + WLS 

10 Best  83 80 82 

 Average 85 82 86 

 Worst 90 87 93 

100 Best 3603 3484 3454 

 Average 4354 4254 4326 

 Worst 4708 4639 4530 

 

Table IV presents the best solutions obtained by the NSGA-

II+DLS and the comparison to the solutions obtained with the 

single-objective optimization methods of the literature [10-12, 

37-39]. It is shown that the NSGA-II+DLS is able to achieve 

results comparable to the best ones of the published work.  

 
TABLE IV. COMPARISONS WITH PUBLISHED BEST RESULTS OF SINGLE 

OBJECTIVE COST OPTIMIZATION 

Methods 10-unit 100-unit 
ELR [10] 563977 5605678 

GA [37] 565825 5627437 

SA [11] 565828 5617876 

UCC-GA [38] 563977 5626514 

QEA-UC [12] 563938 5609550 

ICA [39] 563938 5617913 

NSGA-II+DLS 563938 5605918 
 

The commitment schedule, power dispatch, fuel and start-

up costs, and emissions of the best minimum-cost solution 

obtained by NSGA-II+DLS on the 10-unit system are 

presented in Table V. Note that the total operation cost 

obtained by NSGA-II+DLS presented in Table IV is the sum 

of the total fuel cost and the total start-up cost presented in 

Table V.  

 
TABLE V. MINIMUM COST SOLUTION: SCHEDULE AND DISPATCH, AND 

CORRESPONDING COSTS AND EMISSIONS FOR THE 10-UNIT SYSTEM  

Hr 

Generation units 
 

Fuel 
cost ($) 

Start-up 
cost ($) 

Emission 
(lb) 

1 2 3 4 5 6 7 8 9 10 

1 455 245 0 0 0 0 0 0 0 0 13683 0 956 

2 455 295 0 0 0 0 0 0 0 0 14555 0 1055 

3 455 370 0 0 25 0 0 0 0 0 16809 900 1271 

4 455 455 0 0 40 0 0 0 0 0 18598 0 1559 

5 455 390 0 130 25 0 0 0 0 0 20020 560 1415 

6 455 360 130 130 25 0 0 0 0 0 22387 1100 1553 

7 455 410 130 130 25 0 0 0 0 0 23262 0 1704 

8 455 455 130 130 30 0 0 0 0 0 24150 0 1863 

9 455 455 130 130 85 20 25 0 0 0 27251 860 2191 

10 455 455 130 130 162 33 25 10 0 0 30058 60 2599 

11 455 455 130 130 162 73 25 10 10 0 31916 60 2945 

12 455 455 130 130 162 80 25 43 10 10 33890 60 3229 

13 455 455 130 130 162 33 25 10 0 0 30058 0 2599 

14 455 455 130 130 85 20 25 0 0 0 27251 0 2191 

15 455 455 130 130 30 0 0 0 0 0 24150 0 1863 

16 455 310 130 130 25 0 0 0 0 0 21514 0 1424 

17 455 260 130 130 25 0 0 0 0 0 20642 0 1319 

18 455 360 130 130 25 0 0 0 0 0 22387 0 1553 

19 455 455 130 130 30 0 0 0 0 0 24150 0 1863 

20 455 455 130 130 162 33 25 10 0 0 30058 490 2599 

21 455 455 130 130 85 20 25 0 0 0 27251 0 2191 

22 455 455 0 0 145 20 25 0 0 0 22736 0 1959 

23 455 425 0 0 0 20 0 0 0 0 17645 0 1441 

24 455 345 0 0 0 0 0 0 0 0 15428 0 1177 

Total 10920 9685 2080 2210 1515 352 225 83 20 10 559848 4090 44520 

 

The best, average and worst solutions of minimum emission 

out of the 20 runs of the MOEAs are presented in Table VI. 

The details of the best solution found by NSGA-II+WLS on 

10-unit system are presented in Table VII. Comparing to the 

solution presented in Table V, units 4, 5 and 6 have much 

higher power outputs and units 1 and 2 have much lower 

power outputs. This is due to the fact that they have different 

AFLC and AFLE ranks, i.e. units 1, 2, 4, 5, and 6 rank 1, 2, 3, 

5, and 6 in terms of AFLC, whereas they rank 4, 5, 6, 1, and 3 

in terms of AFLE.  
 

TABLE VI. EMISSION OPTIMIZATION RESULTS OF MOMAS AND NSGA-II  

No of 
Units 

Emission 
(lb) 

NSGA-II NSGA-II + 
DLS 

NSGA-II + 
WLS 

10 Best 33192 33329 33062 

 Average 33814 33777 33529 

 Worst 34578 34174 34070 

100 Best 344379 329938 342947 

 Average 346982 341065 349578 

 Worst 352123 344560 357974 
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TABLE VII. MINIMUM EMISSION SOLUTION: SCHEDULE AND DISPATCH, AND 

CORRESPONDING COSTS AND EMISSIONS FOR THE 10-UNIT SYSTEM 

Hr 

Generation units 
 

Fuel 
cost ($) 

Start-up 
cost ($) 

Emission 
(lb) 

1 2 3 4 5 6 7 8 9 10 

1 216 216 0 130 137 0 0 0 0 0 15334 0 518 

2 207 207 0 130 127 80 0 0 0 0 16983 170 541 

3 217 217 69 130 138 80 0 0 0 0 19404 550 696 

4 245 245 88 130 162 80 0 0 0 0 21192 0 857 

5 264 264 101 130 162 80 0 0 0 0 22039 0 948 

6 301 301 126 130 162 80 0 0 0 0 23736 0 1157 

7 324 324 130 130 162 80 0 0 0 0 24585 0 1275 

8 349 349 130 130 162 80 0 0 0 0 25435 0 1404 

9 363 363 130 130 162 80 72 0 0 0 28396 520 1772 

10 384 384 130 130 162 80 74 55 0 0 31283 60 2159 

11 382 382 130 130 162 80 74 55 55 0 33367 60 2417 

12 379 379 130 130 162 80 74 55 55 55 35483 60 2685 

13 384 384 130 130 162 80 74 55 0 0 31283 0 2159 

14 363 363 130 130 162 80 72 0 0 0 28396 0 1772 

15 349 349 130 130 162 80 0 0 0 0 25435 0 1404 

16 282 282 113 130 162 80 0 0 0 0 22887 0 1048 

17 264 264 101 130 162 80 0 0 0 0 22039 0 948 

18 301 301 126 130 162 80 0 0 0 0 23736 0 1157 

19 349 349 130 130 162 80 0 0 0 0 25435 0 1404 

20 384 384 130 130 162 80 74 55 0 0 31283 320 2159 

21 363 363 130 130 162 80 72 0 0 0 28396 0 1772 

22 277 277 110 130 162 80 64 0 0 0 24907 0 1290 

23 256 256 96 130 162 0 0 0 0 0 19503 0 844 

24 225 225 74 130 146 0 0 0 0 0 17748 0 675 

Total 7428 7428 2563 3120 3787 1680 653 275 110 55 598287 1740 33062 

 

B.  Multi-Objective Optimization Performance Evaluation  

Figure 5 illustrates the best Pareto front out of the 20 fronts 

obtained by each method for the 10-unit system. It is shown 

that the front of NSGA-II+DLS contains the minimum cost 

value ($563938) which equals to the best of the published 

results; the front of NSGA-II+WLS contains the minimum 

emission value (33062 lb). It is seen that LSA improves the 

Pareto-fronts. Also, the DLS has been more effective than the 

WLS in the search of minimum cost, and vice versa for the 

search of minimum emission. Figure 6 illustrates the overall 

Pareto front of each method, obtained by non-dominated 

sorting of all the solutions on the 20 fronts. It confirms the 

findings of Figure 5. 

 

 
Figure 5. Best fronts out of the 20 Pareto-optimal fronts of 10-unit system 

 
Figure 6. Overall fronts out of the 20 Pareto-optimal fronts of 10-unit system 
 

Figures 7 illustrate the best and overall Pareto fronts of 

each method, obtained from all the 20 fronts on the 100-unit 

system, respectively. It is observed that the front of NSGA-

II+DLS obtains both the minimum cost and the minimum 

emission solutions.  

 
Figure 7. Best fronts out of the 20 Pareto-optimal fronts of 100-unit system 

 

 
Figure 8. Overall fronts out of the 20 Pareto-optimal fronts of 100-unit system 
 

A number of performance measures (e.g. generational 

distance [40], objective vector indicator [41]) have been 

proposed to measure the performance of multi-objective 

optimization algorithms. The hyper-volume is widely used in 

recent studies by the MOEA community. The hyper-volume is 

the area (volume or hyper-volume) under the dominated 

5.65 5.7 5.75 5.8 5.85 5.9 5.95

x 10
5

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 10

4

Operation Cost ($)

E
m

is
s
io

n
 (

lb
)

 

 

NSGA-II

NSGA-II+WLS

NSGA-II+DLS

Minimum cost

Minimum emission

5.65 5.7 5.75 5.8 5.85 5.9 5.95

x 10
5

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 10

4

Operation Cost ($)

E
m

is
s
io

n
 (

lb
)

 

 

NSGA-II

NSGA-II+WLS

NSGA-II+DLS

5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

x 10
6

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

5

Operation Cost ($)

E
m

is
s
io

n
 (

lb
)

 

 

NSGA-II

NSGA-II+WLS

NSGA-II+DLS

5.6 5.62 5.64 5.66 5.68 5.7 5.72 5.74 5.76 5.78 5.8

x 10
6

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6
x 10

5

Operation Cost ($)

E
m

is
s
io

n
 (

lb
)

 

 

NSGA-II

NSGA-II+WLS

NSGA-II+DLS



 
 

8 

 

region defined by the non-dominated set. Details on 

computing the hyper-volume measure can be found in [41].  

For each of the 20 runs of each algorithm, a hyper-volume 

value with the reference point at [     ,        ] for 10-

unit system or [     ,        ] for 100-unit system is 

calculated. Box plots of the hyper-volumes of each algorithm 

are shown in Fig. 9 and Table VIII summarizes the statistics 

of the results. It is seen that the mean and median values of 

MOMAs are in general higher than those of NSGA-II. In 

addition, MOMAs have lower standard deviations than that of 

NSGA-II. NSGA-II+DLS has the highest median and NSGA-

II+WLS has the second highest median. 
 

 
Figure 9. Box plots of the hyper-volumes of the algorithms on 10-unit system 

and 100-unit system 
 

TABLE VIII. STATISTICS OF THE HYPER-VOLUME VALUES  

 10-unit 100-unit 

mean std median mean std median 

NSGA-II 0.0103 0.0012 0.0100 0.0091 0.0008 0.0089 

NSGA-II 
+ DLS  0.0118 0.0010 0.0120 0.0105 0.0008 0.0103 

NSGA-II 
+ WLS 0.0115 0.0009 0.0112 0.0098 0.0010 0.0097 

 

It is also observed that the distributions of hyper-volume 

values are skewed. This implies that the standard t-test cannot 

be applied for significance testing, and thus the assumption-

free Wilcoxon rank-sum tests are performed instead [42].  

Table IX summarizes the p-values of the Wilcoxon rank-sum 

tests of NSGA-II versus MOMAs. In the four paired 

comparisons, p-values are generally less than or equal to 0.05 

except for one case that NSGA-II+WLS versus NSGA-II on 

100-unit system. The improvements of MOMAs to NSGA-II 

in terms of median hyper-volume values are amount to 19.5% 

and 9.2%  for DLS, and 10.3% and 5.6% for WLS. 

 
TABLE IX. RESULTS OF WILCOXON RANK-SUM TESTS   

 10-unit 100-unit 

NSGA-II 
+ DLS 

NSGA-II 
+ WLS 

NSGA-II 
+ DLS 

NSGA-II 
+ WLS 

p-values 0.01 0.02 0.02 0.10 

Improvement (%) 19.5% 10.3% 16.1% 8.4% 

C.  Unit Commitment Considering Ramp-Rate Limits 

NSGA-II+DLS is applied to solve the EUCP with ramp-rate 

limits. The ramp-rate limits are handled by the dynamic 

dispatch method proposed in [43]. The details of this method 

can be found in [43]. By including the ramp-rate limits, the 

100-unit system with a time horizon of 24 hours is used as one 

testing bed. The ramp-rate limits for the units in this system 

are created by duplicating the data of a 10-unit system 9 times, 

where the ramp-rate limits are set to 160, 160, 100, 100, 100, 

60, 60, 40, 40, and 40 MW [12], respectively. The same 

NSGA-II parameter settings are used on both the 100-unit 

systems with or without the ramp-rate limits. Table X presents 

the results obtained by NSGA-II+DLS. It is seen that the 

generating cost and emission are increased due to the inclusion 

of ramp-rate characteristics into the EUCP. The efficiency and 

effectiveness of NSGA-II+DLS also show small differences in 

the computation times and final optimal costs and emissions.  

 
TABLE X. RESULTS OF NSGA-II+DLS ON 100-UNIT UC SYSTEM 

WITH/WITHOUT RAMP-RATE LIMITS    

NSGA-II+DLS Without ramp-
rate limits 

With ramp-
rate limits 

Average time (Sec) 4254 4583 

Cost ($) Best 5605918 5608524 

Average 5611534 5611614 

Worst 5615476 5617595 

Emission 
(lb)  

Best  329938 335500 

Average 341065 341516 

Worst 344560 351900 

 

VI.  OBSERVATIONS AND DISCUSSIONS 

From the numerical results presented in Section V, the 

following observations are made: 1) the local search 

algorithms can effectively improve the performance of 

NSGA-II on the EUCP, 2) the solutions obtained are 

comparable to published single-objective cost optimal results, 

3) satisfactory multiple Pareto-optimal solutions are generated 

in one simulation run. 

Two directions of improvement of the current work are: 1) 

EUCP formulation: more realistic settings, e.g. the spinning 

reserve cost aligning well with the electricity market where 

the spinning reserve is traded, and the valve point effects 

representing the non-linear input-output characteristics of the 

generation units, can be added into the cost objective function; 

2) solution method design: the heuristics e.g. SA and EAs, can 

be applied to solve the EEDP when the valve point effects are 

considered, and the quantum inspired coding and mutation [44] 

can be introduced into NSGA-II to improve its computation 

efficiency.   

One potential application of EUCP is to fit it into the 

electricity market structure considering emission trading. The 

UCP is an important problem with significant economical 

impact onto the newly deregulated electricity markets. In the 

simultaneous market structure such as the Pennsylvania, New 

Jersey, and Maryland (PJM) market of the U.S. and the British 

market, an independent system operator (ISO) needs to solve 

it to obtain the hourly market clearing prices and to determine 

the awards [45]. With the effort to reduce the negative trends 

of climate changes, the emission trading mechanism such as 

the European Union Emission Trading Scheme (EU ETS) 

permits the allocation of specified amounts of emission 

allowance to various industrial installations including 

generation units [46]. Under this scheme, it is expected that 

the electricity market clearing outcome will be affected by the 

emission allowance [47]. The proposed EUCP method might 

be suitable for this combined scheme as it can provide the 
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multiple Pareto-optimal generation schedules to the generating 

company and ISO when the emission allowance is traded and 

amount of allowance is changed.  

 

VII.  CONCLUSIONS  

In this study, we have included the environmental objective of 

low emissions into the UCP. The multi-objective problem that 

derives is handled within the dominance scheme of 

optimization which leads to the identification of the Pareto 

fronts and sets. A multi-objective memetic algorithm is then 

originally designed to solve EUCP. Within the MOMA, the 

global exploration is done by NSGA-II and the local 

exploitation by one local search strategy (DLS or WLS) 

combined with one local search operator which dynamically 

turns on/off the units at the boundaries of the generation 

schedules. The effectiveness of the proposed MOMA is 

demonstrated on a 10-unit system and a 100-unit system, with 

a time horizon of 24 hours.  
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