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Abstract— This paper reports the hardware implementation of a 

low-cost parameter estimation method (LIMBO) and describes 

its use for tracking the parameters of a resonant MEMS sensor. 

We show how this method can be used to identify the impulse 

response (IR) of a sensor with minimal A/D-D/A requirements. 

Based on this IR, we develop digital estimators capable of 

extracting the resonance frequency and the quality factor. The 

full electronic architecture is simulated on a mixed-signal 

environment and implemented on FPGA-based digital hardware. 

For a specifically emulated sensor, results show that the 

resonance frequency can be identified and tracked from 3kHz up 

to 12kHz with a Normalized Square Error (NSE) of 1.38E-1. The 

quality factor is linearized with a correlation coefficient of 0.986 

between Q=1 to Q=60. Those results can be easily scaled to any 

frequency range by adapting the sampling frequency. 

Resonant sensor interface, frequency estimation, quality factor 

estimation, MEMS, LIMBO, resonant sensor. 

 INTRODUCTION 

Resonant sensors are widely used in many application areas 
since the mechanical resonant phenomenon can be easily 
associated with a physical quantity to be measured. The 
resonance frequency and the quality factor are the common 
choice to carry sensing information [1]. A shift in these 
quantities can be used to sense a variety of physical properties 
such as acceleration, pressure, chemical concentrations, 
viscosity, angular speed… However, in classical sensing 
applications, inevitable changes in the operating conditions 
(temperature, pressure) or in the manufacturing process are 
detrimental to the nominal sensor operation. They should be 
electronically detected and compensated for. Most electronic 
architectures for resonant sensor parameters tracking involve 
high resolution analog-to-digital converters (ADC) and digital-
to-analog converters (DAC) [2,3] requiring long design effort 
and larger silicon area. The architecture proposed in this article 
relies on direct digital excitation (instead of the DAC) and 
binary observation and therefore only requires a comparator 
instead of a full ADC.  

The electronic interface that has been designed includes the 
least-mean square version of the LIMBO identification method 
described in [4]. Specific digital estimators have been 
developed to extract frequency and quality factor from the 
estimated impulse response. In this article, we present the 

simulation and FPGA implementation results for an innovative 
and low cost hardware method for online tracking of the major 
parameters of a resonant sensor. 

ARCHITECTURE DESCRIPTION 

The principle of the proposed architecture is represented on 
Fig.1. The resonant sensor is directly excited by a digital signal 
and the sign of its output signal is observed by the mean of a 
comparator (1-bit ADC). Based on those data the sensor 
impulse response (IR) can be identified. A convergence 
estimator monitors that the algorithm has computed the correct 
estimated IR which can be used for by resonance frequency 
and quality factor estimators. All the blocks are digital except 
for the comparator and can be implemented on any digital-
logic target such as a Field Programmable Gate Array (FPGA). 

Figure 1.   Architecture of the binary-based identification electronic interface 

for MEMS resonant sensor 

Impulse Response Identification Method  

The sensor IR identification method is based on the 
LIMBO algorithm (Least-mean-square Identification Method 
based on Binary Observation). The known input signal    is 
filtered by a discrete time invariant system        to produce 
the scalar estimate  ̂  of the system output   . H has a finite 
impulse response of length P which can be represented by a 

column vector     |   
 . At step  , this LMS-like algorithm 

can be written as: 
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   is the vector of binary stimulus signal,    is the sign of 
the output of the sensor and  ̂ the sign of its estimation. The 
only external information required to update the estimated IR 
   is the sign of the sensor output signal. For the identification 
to be accurate, the output signal must contain full information 
on the sensor’s dynamic and therefore the input signal need to 
be similar as possible to a white noise with a flat power 
spectral density. As shown in Fig. 2, a 256-bits Linear 
Feedback Shift Register (LFSR) has been used in this study 
with a characteristic polynomial given by           
            [5]. All values are coded on N bits and      
is supported by a P times N bits register based memory. 

 

Figure 2.  Detailed representation of the LIMBO implementation  

Convergence Estimator 

The only error information being the difference of sign 
between the observed sensor output and the estimated output, a 
real-time convergence estimator can be defined by: 

     ∑ |    ̂ |
   
    ,  (4) 

It is the sum of sign differences over the last P samples 
processed by the identification algorithm. The Register 
Transfer Level (RTL) diagram of Fig. 3 details the hardware 
implementation of    where a P bits shift register is loaded 
with the sign difference at each sample and the sum of the sign 
differences computed by a combinatorial adder tree. 

 

Figure 3.  RTL diagram for Δx computation 

Resonance Frequency Estimator 

The principle of this estimation is based on counting the 
number of samples contained in k pseudo-periods of the 
impulse response. Data interpolation around zero crossing 

samples of the IR is used to increase the precision of the 
estimation.  
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Figure 4.  RTL diagram of Resonance Frequency Estimator 

On Fig. 4, the RTL diagram of the frequency estimator 
shows that the IR is stored in a register bank of P coefficients 
coded on N-bits. The sign of IR is continuously scanned at 
sample rate to detect each half period. When authorized by the 
convergence estimator, the number of sample in a period 
between two zero-crossing samples is accumulated as well as 
the number of half-periods. 

Quality Factor Estimator 

In order to extract the quality factor (Q) from the estimated 
impulse response, it is necessary to transform the estimated 
transfer function in a function of Q. The numerical 
computation of the area under the IR of a second-order 
resonator can be written as: 
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where   is the resonance frequency,    √        , 

  
  

  
 and    the index of each half-period. 

When     , the solution of (5) is given by: 
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Fig. 5 clearly shows that for high values of   ,      has a 
linear behavior. 

Figure 5.  Numerical Estimation of the area of the impulse response as a 

function of Q 
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As shown in Fig.6, the coefficients of the estimated IR are 
stored in a register-bank which is scanned to compute both the 
sum of the absolute value of each coefficient and the maximum 
of the IR. The numerical sum can then be normalized by the 
gain of the estimated transfer function providing a value 
proportional to   at a given resonance frequency. 

Figure 6.  RTL diagram of Quality Factor Estimator 

RESULTS 

The architecture was validated and optimized by simulation 
then implemented on a FPGA based experimental set-up. 
Results will be detailed in terms of convergence of the 
algorithm and performance of the estimators. 

Simulation Methodology and Experimental Set-Up 

The digital electronics has been described in VHDL and 
simulated all together with the analog parts of the architecture 
in CADENCE Virtuoso AMS Designer Environment. The 
mathematical model of sensor has been translated in Verilog-
AMS with tunable resonance frequency and quality factor. In 
respect to the configurability of the LIMBO algorithm, it is 
possible to modify the length of the estimated impulse response 
(P), the number of bits used to code each coefficient (N) and 
the sampling frequency. 

The experimental set-up shown in Fig.7 is used to 
implement our architecture around an Altera Stratix IV FPGA 
(Terasic DE4 Board). For design flexibility, the MEMS 
resonant sensor is replaced by a Multiple Feedback (MFB) 
active filter where the resonance frequency and the quality 
factor can be adjusted.  

Figure 7.  Experimental Set-up showing a digital FPGA development board 
associated with the analog front end used to emulate a MEMS resonant sensor 

LIMBO Identification Algorithm Behavior and Performance 

For a 400ms simulation with P=256, N=19 and a sampling 
frequency of 142kHz , Fig.8 shows the typical evolution of     
over time when identifying a sensor with Q=20 and a 7kHz 
resonance frequency. The LIMBO algorithm has converged 
after only 150ms when less than 3% of the preceding 
estimation of    differ in sign with the real output sign. 

 

Figure 8.  Typical evolution of Δx for P=256, N=19, Fsampling=142kHz. 

 

Resonance Frequency Identification 

After tuning the LIMBO algorithm for an optimal 
frequency estimation at 7kHz, multiple identification have been 
performed for resonance frequency ranging from 3kHz up to 
12kHz. The result from the proposed estimator is compared to 
the Steiglitz-McBride algorithm. This iterative technique for 
linear systems identification serves as a standard to extract the 
transfer function from an identified impulse response. As 
shown in Fig 9, the error of estimation increases as the 
resonance frequency is far from the optimal 7kHz value. 
Nevertheless a maximal normalized square error of 0.138 
indicates a correct estimation over the considered frequency 
range. 

Figure 9.  Resonance Frequency Estimation Results – P=350, N=19, 

Fsampling=142kHz – Simulation duration : 400ms  

Sensor Quality Factor : Q=20 



 

Figure 10.  Resonance Frequency Estimation Results – P=350, N=19, 

Fsampling=142kHz – Simulation duration : 400ms –  
Sensor Quality Factor : Q=20 

To test the sensitivity of the frequency estimator coupled 
with the LIMBO identification algorithm, a series of long 
simulation (1.7 seconds) have been conducted by varying the 
resonant frequency from 7100Hz to 7150Hz in steps of 10Hz. 
The most interesting result comes from Fig. 10 that shows the 
ability of the proposed solution to measure a resonance 
frequency with an NSE of about 0.01. This performance is also 
compared with the Stieglitz-McBride reference method. 

Quality Factor Identification 

Based on the same simulation protocol, the performances of 
the quality factor estimator have been investigated. For a fixed 
resonance frequency of 7kHz and a quality factor ranging from 
2 up to 60, the results of the estimator runs are presented on 
Fig.10. The quality factor estimation has a higher linearity in 
the range of 10 to 45 with a correlation coefficient of 0.98602. 
In the extended range between 2 and 60, the linear regression 
presents the Pearson correlation coefficient of 0.87731. For 
quality factors lower than 10, the impulse response is short 
with respect to the sampling frequency and the number of 
coefficients available to represent the impulse response. For 
quality factors higher than 50, the impulse response is not 
entirely observable in the identification windows and the 
damping behavior is not correctly identified.  

 

Figure 11.  Quality Factor Estimation Results – P=350, N=19, 

Fsampling=142kHz – Simulation duration : 400ms –Sensor Resonance 

Frequency 7kHz 

CONCLUSION 

This paper reports the full description of digital architecture 
that has proven to be able to accurately estimate the resonant 
frequency and quality factor of a resonant sensor using only 
binary one-bit input and output. This approach opens the usage 
of MEMS resonant sensor without the need for complex and 
costly analog circuit such as ADCs or DACs. The originality of 
this work rest in the association of a binary least mean square 
identification algorithm with two specific parametric estimators 
which have been described in a Hardware Description 
Language, simulated in a mixed signal environment and finally 
implemented in a FPGA. A typical MEMS resonant sensor can 
be identified in 150ms when less of 3% of the estimated output 
sign differ from the real sensor’s output. After successful 
estimation of the impulse response the resonance frequency has 
been identified from 3kHz up to 12kHz (NSE=0.0138) as well 
as the quality factor from Q=1 up to Q=60. Further work will 
concentrate on the identification and the design of new 
estimators for other type of MEMS sensors such as non-
resonant micro-wire temperature and pressure transducers. 
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