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Abstract

Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North
Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the
architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and
function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt
ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from
the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production,
allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental
measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements
include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration,
the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one-
to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates
that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle
compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows
that the balance between internode and needle growth varies only slightly within the range of precipitations considered
here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different
soils and climates.
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Introduction

Land degradation and desertification in arid, semiarid and dry

sub-humid areas is a global issue with increasing importance, and

also an immense problem causing environmental degradation and

the ever increasing loss of natural resources in China [1]. To

combat desertification, the Chinese government started the

implementation of the Three-North Shelterbelt Programme,

which is composed of a network of shelterbelts and tree plantations

across the entire region in North China since 1978 [2]. Mongolian

Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree

species in the network of Three-North Shelterbelt for windbreak

and sand stabilisation in China. The natural distribution of

Mongolian Scots pines is mainly in the Hulun Buir sandy lands,

northeast China. Because it has high tolerance to cold, drought,

soil infertility and grows naturally in the sandy land, this species

had been introduced to the edge of sandy lands in northern China

to protect nearby lands from moving sand dunes since the 1950s.

In these arid and semi-arid regions, the competition for the limited

water resources is a major factor influencing the sensitive balance

of these ecosystems. In that context, model-assisted analysis of

water balance in Mongolian Scots pine, in relation to canopy

development and ecophysiological dynamics, is of value for better

understanding of its role and behaviour within these shelterbelt

ecosystems [3,4].

Functional-structural plant models (FSPMs) are effective tools

for studying the growth and development of plants by integrating

three-dimensional (3D) plant architecture with eco-physiological

processes [5,6]. Some early FSPMs focused more on the dynamic

changes of plant function in static tree architecture than on

architectural development, e.g., ECOPHYS [7,8], EMILION [9]

and SIMWAL [10]. Later, LIGNUM [11,12] and L-PEACH

[13,14] simulated tree metabolism and carbon allocation within a

dynamic tree architecture. The GreenLab model is a discrete

dynamic model that represents biomass production and allocation

at organ scale with feedback effects of internal trophic competition

on plant morphology [15]. It is thus able to simulate the plant

phenotypic plasticity that results from interactions between its

growth, morphological differentiation and the trophic condition of

the organism [16]. The GreenLab model has been applied to
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crops, e.g., maize [17], wheat [18], tomato [19] and trees such as

beech [20], eucalyptus [21] and Chinese pine [22].

At present, the interactions between plant growth and the

environment are of primary interest when discussing the feedback

processes between plant structure and function [23]. In a previous

study, we modelled the 3D structure of Mongolian Scots pine

using the formalism of a dual-scale automaton [24]. However,

such a structural model represents only the dynamics of tree

architectural development in a particular environment [25], and

does not account for plant physiology and plasticity in response to

environmental change (e.g. precipitation). In this study, our

objective is to adapt the GreenLab model to analyse the effects

of water availability on tree height, secondary growth (basal

diameter) and biomass accumulation in Mongolian Scots pines.

For young plantations in arid and semiarid areas, light intercep-

tion was not considered as a discriminant process for pine tree

growth since solar radiation was abundant and variability in terms

of branch orientation was not very high. In contrast, cumulative

precipitation was much less than the cumulative reference

evapotranspiration in our study region [26]. Therefore, the effects

of water availability could be focused upon in our study.

In this paper, we show how to couple soil water dynamic to the

GreenLab model as it is applied to Mongolian Scots pine. The

resulting model considers 3D architecture, plant biomass and soil

water-content availability. Our goals in this paper are: a) to

introduce water-use efficiency into the GreenLab model; b) to

apply this adapted GreenLab model to Mongolian Scots pine; to

calibrate the model; and to quantitatively validate the model using

detailed measurement data; c) finally, to analyse the effects of

decreases or increases in precipitation on canopy architecture and

biomass accumulation of Mongolian Scots pine trees by numerical

simulation.

Materials and Methods

Study Site and Experiments
The study area is the plantation station of the Liaoning Sand

Stabilisation and Afforestation Institute, located in Zhanggutai

(122u22’E, 42u43’N), Liaoning province, China. This region is

adjacent to the Kerqin sandy land, which is one of the four biggest

sandy lands in China. Long-term (1953–2006) mean annual

precipitation is 505.9 mm, concentrated mainly between May and

October. Mean annual temperature is 6.0uC with monthly mean

temperatures ranging from 212.1uC in January to 24.1uC in July.

The soil type is classified as aeolian sandy soil according to the

Chinese classification, or arenosols according to the Food and

Agriculture Organisation (FAO) classification, with

93.98%66.00% sand, 5.49%65.46% silt, and 0.52%60.55%

clay. The soil texture is uniform through the whole profile (0–

300 cm). Pines were planted in 1 m (between-row)61 m (within-

row) spacing in the study plot. The understory is bare sandy land.

Measurements of plant structure, organ biomass and soil

attributes were carried out in November, 2006, and, in August,

2007 in the same region, sampled on different trees of similar age

groups. The branching patterns were derived from field observa-

tions on trees aged from four to six years: the number of branches

of each branching order, their insertion angle in the vertical

direction and their azimuth were recorded for 100 trees of each

age-group (four, five and six year-olds). These observations were

also used to assess the duration of the growth cycle and of organ

functioning. The standard tree samples were selected from the

plots and taken for destructive measurements for one-, two-, four-,

five- and six-year-old trees in 2006 and one-, two-, three-, five- and

six-year-old trees in 2007 with four replications in each tree age

group. Length, diameter, fresh and dry biomasses of each

‘‘internodes’’ and needles inserted were recorded. Soil was

sampled at depth intervals of 20 cm through the soil profile (0–

300 cm). Soil mechanical composition was measured using a laser

particle-size analyser (MasterSizer 2000, Malvern, UK).

Model Description
A new module for computing daily soil water dynamic proposed

was introduced into the GreenLab model and coupled with plant

canopy architecture, biomass production and allocation modules.

Figure 1 shows the conceptual scheme of this model. The seed

gives the initial pool of biomass, which is used to build organs

(internodes, leaves) and thus the plant architecture. The seedling

takes up water from soil for leaf transpiration and biomass

production at each growth cycle (thermal time elapsed between

the formations of successive phytomers) equal to one year. The

biomass produced is derived from a product of the amount of

water transpired by plant and water-use efficiency (WUE). The

biomass produced is stored in the common pool of reserves and is

then distributed among organs, which ends the growth cycle. The

plant topology, which deals with the physical connections between

plant components, is constructed based on automaton rules at the

organ scale. Plant architecture can be constructed by topological

and geometric information, which includes the shape, size,

orientation and spatial location of the components.

The processes of 3D canopy development, biomass production

and allocation were simulated at a yearly time scale, as described

in detail in section 2.2.1, 2.2.2 and 2.2.3. The soil water dynamic

process was calculated daily, as described in detail in section 2.2.4.

The model flowchart is shown in Figure 2. The model requires as

input the geographic coordinate, meteorological data, soil texture

and seed biomass. Finally, the model outputted the biomass of

whole plant and individual organ and visualization of 3D canopy

architecture. Note that only the aboveground growth is modelled

in this work. This means that the model excludes the influences of

root extension on water uptake.

Plant Architecture
The developmental sequence of Mongolian Scots pine was

analysed qualitatively by identification of organ types and their

functioning times. Each growth unit (GU) is composed of

internodes, needles, one apical bud and several lateral buds. The

growth units are classified according to a botanical index called

physiological age (PA), which characterises the state of meristem

differentiation at growth unit initiation [27]. Each organ belonging

to a given PA-based class, shares the same set of parameters that

defines its functioning and its positioning in the tree’s architecture.

For the tree species studied here, PA is equivalent to branching

order and ranges from one for the trunk to four for the third-order

branches, the maximal branching order being three in the trees

sampled. Plant topology is constructed based on automaton rules

at the organ scale. Plant geometry, which mainly includes the

inclination and azimuth of the branch etc., is measured directly in

the experiments. A detailed description of the 3D canopy

architecture model can be found in [24].

Biomass Production
By considering the plant water-use efficiency, the aboveground

biomass is derived from the simulated amount of water transpired.

The water-use efficiency expresses the aboveground dry matter [g]

produced per unit land area [m2] per unit of water transpired

[mm]. Many experiments have shown that the relationship

between biomass produced and water consumed by a given

species is highly linear [28]. The aboveground biomass production

A Functional-Structural Mongolian Scots Pine Model
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Q(i) at tree age i [year] is obtained from actual transpiration Ta(i)

and water-use efficiency WUE:

Q(i)~
WUE:Ta(i)

1{Cw

ð1Þ

where Cw is the plant average water content [%].

Biomass Allocation
Biomass is allocated to the plant organs according to their

relative sink strengths, which indicates the abilities of different

kinds of organs to compete for biomass [29]. The overall demand

D(i) at tree age i is the sum of sink strengths of all the appearing

and growing organs in the aboveground plant, as shown in Eq. (2):

D(i)~
X

o~a,e

XM
k~1

po(k)No(k,i)zpc ð2Þ

where o represents organ type, a stands for needles (all needles on

one growth unit are treated as a single entity), e stands for

internode and pc stands for the sink strength of secondary growth;

M is maximum PA of the tree, being four for the third-order

branches in this study; po(k) represents the relative sink strength of

organ of type o and PA k; No(k, i) represents the number of organ of

type o and PA k appearing at tree age i.

A new organ o (leaf or internode) with PA k gains biomass in

proportion to its sink strength and the ratio between the biomass

supply from the previous cycle and current demand at tree age i, as

shown in Eq. (3):

Dqo(k,i)~
po(k)

D(i)
Q(i{1), with k[ 1, L, Mg, o[f a,egf ð3Þ

At each growth cycle, biomass allocation to organs and organ

dimensions (e.g. internode length and diameter, and needle surface

areas) were computed with empirical equations describing source-

sink relationships and allometric rules. Relevant equations used for

biomass repartition in tree stem and associated allometric rules are

given in the Appendix S1. A detailed description of biomass

allocation can be found in [30].

Soil Water Dynamic
Plant root zone can be presented by means of a container in

which the water content may fluctuate. Root zone depletion is

used to express the water content. A soil water dynamic equation is

introduced to illustrate the interactions and feedbacks between the

plant architecture, function and water resources. Soil water

Figure 1. Conceptual scheme of the functional-structural tree model coupled with soil water balance for Mongolian Scots pines: the
seed gives the initial pool of biomass, which is used to build organs (internodes, leaves) and thus the plant architecture. The
seedlings take up water from soil for leaf transpiration and biomass production during each growth cycle. The biomass produced is a product of the
amount of water transpired by plant and water-use efficiency (WUE). The biomass is stored in the common pool of reserves and is then distributed
among organs, which ends the growth cycle. The plant topology, which deals with the physical connections between plant components, is
constructed based on automaton rules at the organ scale. Plant architecture can be constructed by topological and geometric information, which
includes the shape, size, orientation and spatial location of the components.
doi:10.1371/journal.pone.0043531.g001
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dynamic process at a plot depends on precipitation, canopy

interception, run-off, evaporation, transpiration and ground water

recharge. Because these Mongolian Scots pines were young and

the experimental plots were located at the edge of sandy land

(Groundwater level is low), canopy interception, runoff and

ground water recharge are neglected in the model. The daily

water dynamic in the soil profile, expressed in terms of depletion at

the end of the day n is:

Dr(n)~Dr(n{1){P(n)zETa(n) ð4Þ

ETa(n)~KsKcET0(n) ð5Þ

where Dr(n) is the root zone depletion at the end of day n [mm],

P(n) represents the precipitation on the day n [mm], Ks is the soil

water-stress coefficient, Kc is the crop coefficient, equal to 1 [31];

ETa(n) represents actual plant evapotranspiration on the day n

[mm] and ET0(n, i) is the reference plant evapotranspiration on the

day n of year i [mm d21]. The soil water dynamic process is

calculated at the end of each day. The soil profile is considered as

no water deficit at the beginning of growth cycle in each spring.

That sets the initial value of Dr(0) = 0.

The coefficient of soil water-stress Ks(n) is calculated as proposed

by [31], shown in Eq. (6):

Ks(n)~
TAW{Dr(n)

TAW{RAW (n)

TAW~1000(hF{hw)Zr

RAW (n)~r(n)TAW (n)

r(n)~0:7z0:04(5{ETc(n))

8>>>>><
>>>>>:

ð6Þ

where TAW is the amount of available water that a plant can

extract from its root zone, and its magnitude depends on the soil

texture and rooting depth Zr [m]. Typical values for soil water-

content at field capacity hF and at wilting point hw are given in

Figure 2. Flowchart for the functional-structural tree model coupled with soil water balance for Mongolian Scots pines. The fluxes of
the model are computed on two time scales: daily for the plant transpiration and yearly for the processes of biomass production and 3D canopy
development. There are interactions and feedbacks between the plant architecture (shoots) and transpiration and water absorption through leaf area
index (LAI).
doi:10.1371/journal.pone.0043531.g002
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[31] for various soil texture classes; Dr(n) is the root zone depletion

at the end of day n [mm]; RAW is the readily available soil water in

the root zone, i.e. the water that a crop can extract from the root

zone without suffering water stress [mm]; r(n) is the average

fraction of TAW that can be depleted from the root zone before

water-stress occurs [0–1].

Transpiration
Actual plant transpiration Ta(i) is the sum of daily transpiration

amounts during the growth year i of a tree. It is calculated as

proposed by [32]:

Ta(i)~½1{ exp ({k
Sa(i)

Sp(i)
)�
XN(i)

n~1

Ks(n,i):Kc
:ET0(n,i) ð7Þ

where Sp(i) is the available ground area of a tree at age i [m2]; k is

the extinction coefficient of Beer Lambert’s law, equal to 0.5 [29];

Sa(i) is the total functioning leaf area of a tree at age i, i.e. the sum

of all individual leaf areas [m2]; N(i) is the maximal growth days at

tree age i; Ks(n, i) is the soil water-stress coefficient at day n of year i;

crop coefficient Kc is equal to 1.0 for coniferous trees [31].

Daily reference evapotranspiration ET0(n) is calculated by the

Penman-Montieth equation [33]:

ET0(n)~
0:408:D(n):R(n)zc:900=(T(n)z273):Vw(n):(es(n){ea(n))

D(n)zc:(1z0:34:Vw(n))
ð8Þ

where D(n) represents the slope of the vapour pressure curve, R(n)

is the net radiation at the plant surface [MJ m22 d21], c is the

psychrometric constant [kPa uC21], T(n) represents the mean daily

air temperature at a height of 2 m [uC], Vw(n) represents the mean

daily wind speed at a height of 2 m [m s21] and es(n)-ea(n)

represents the saturation vapour pressure deficit [kPa].

Parameterisation and Data Sources
Daily meteorological data were obtained from a local weather

station about 30 km South of the study area and included

atmospheric pressure [Pa], mean air temperature [uC], maximum

air temperature [uC], minimum air temperature [uC], mean

relative humidity, sunshine duration [h], wind speed [m s21] and

precipitation [mm]. The soil texture and maximum effective

rooting depth was measured in the experiment. Field water-

capacity and soil water content at wilting point were obtained

from [31]. Some parameters of the plant growth model, namely

leaf functioning time and plant density were observed and

recorded in the plantation plot. Topological and geometrical

parameters were obtained from a large quantity of field data of

branch number, branch angle, branch azimuth and internode

length and diameter for one- to six-year-old pines. Water content

of the plant Cw and specific leaf weight e were calculated from

organ fresh and dry biomasses and needle lengths and diameters.

Organ scale coefficient b and shape coefficient b were calculated

directly by analysing organ fresh biomass and dimensions.

Thirteen hidden parameters of the plant growth module,

including water-use efficiency, sink strengths of needles, sink

strengths of of internodes and ring repartition coefficients were

estimated using a generalised least-square (GLS) method, which

generates a set of parameters that minimises the sum of squares of

errors between the measured data and the model outputs. The

mathematical equations used in the fitting process can be found in

[17]. The goodness of fit was expressed in the root-mean-squared

error (RMSE) between the measured data and the corresponding

model outputs. Digiplant is a software that includes an implemen-

tation of the GreenLab model and its parameter estimation [34]. It

was used to estimate the parameters according to the measured data

stored in so-called target files. The target files were given as input,

and included the length, diameter of internodes and fresh biomass of

internodes and needles of every growth unit for the six-year-old

Mongolian Scots pines, and the accumulated fresh biomass of

internodes and needles for one- to five-year-old pines. A common set

of hidden parameters were estimated for all the target trees in

parallel. Based on the generalized least squares methods for non-

linear models, an adaptation of the 2-stage Aitken estimator was

used, where the observations were classified into groups with respect

to the type of organs (that have potentially very different size orders)

and the error terms of each group, assumed mutually independent,

have common unknown variance [35,36]. The model was calibrated

using the measurement data of August 2007 and validated using the

measurement data of November 2006. Two datasets about pine

architecture and biomass measured at different time are indepen-

dent of each other. The whole model was written in C++ and

implemented in Code::Blocks 8.02 platform (http://www.

codeblocks.org/).

Symbols and description of the main parameters and variables

used in the model are listed in Table 1.

Results

Soil Water Dynamic Process
The simulations were performed daily for soil water dynamic

process in the plantation plot. Figure 3 shows the daily

precipitation, actual evapotranspiration and transpiration of six-

year-old trees during the growth period in 2007. The growing

season for perennial plants is considered to be between the first 5

consecutive days in spring and the last 5 consecutive days in fall

with a mean daily temperature at or above 0uC, generally from

mid April through mid October. The simulated results were

calculated from the 100th to the 280th day of 2007 which is the

growth season for Mongolian Scots pine. Most precipitation in the

research area occurred in July and August. Ks, ETa and Ta

increased significantly after each rainfall event. In the plot of six-

year-old trees, annual precipitation was 412.6 mm in 2007, and

actual evapotranspiration and actual transpiration were 383.5 mm

and 170.9 mm, respectively.

Model Calibration
The sink strength of needles, and primary and secondary

growth of ‘‘internodes’’ are listed in Table 1. The results show that

the sink strength of organs on branches (PA = 2, 3, 4) are

significantly lower than those on the trunk for primary growth, as

well as for secondary growth. It means that the trunk growth

demand is dominant in Mongolian Scots pine. The ring

repartition coefficient and proportion coefficient l (as shown in

Eq. (A.1)) is 0.03, which means that the relative position of needles

has almost no influence on the secondary growth of internodes.

To evaluate the model, we compared the measurement data

and the fitted results at organ scale (Figure 4) and at plant scale

(Figure 5). Figure 4 (a and d) show the fitted data were consistent

with measured for fresh biomass of trunk internodes and needles,

with the relative errors are 7.7% and 5.6%, the root mean square

root (RMSE) of 3.72 g and 0.47 g. The fitted results for internode

length are higher than the observations with a relative error of

46.3%, a RMSE of 6.65 cm(Figure 4 (b)), while the relative error is

13.1% for internode diameter, a RMSE of 0.38 cm (Figure 4 (c)).

Obviously, the fitted results for biomass are better than those for

geometry. This may be due to continuing growth of internodes

after measurements were made in August. Figure 4 (e) shows the

ð8Þ
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comparison between the observations and fitted results for total

fresh biomass (internodes and needles) of trunk and branches of

different orders with a RMSE of 10.80 g, for which relative errors

were 0.3%, 4.3%, 9.7% and 21.8%. The WUE value for

Mongolian Scots pines is 4.5 kg m23, which is obtained by fitted

method in this study. Figure 4 (f) shows a significant linear relation

between above-ground biomass and cumulative transpiration, with

a slope for the linear regression line of 0.48, as indicated by its high

R2 (0.93). Figure 5 shows the comparison between the observations

and fitted results for fresh biomass at plant scale for different ages.

The model tended to overestimate above-ground biomass growth

with larger relative errors for trees at age one year and two years,

and decreasing to around 5% for trees at age five and six years.

The overestimate declining towards the end of the simulation is

Table 1. Symbols and description of the main parameters and variables used in the model for Mongolian Scots pine trees growth.
Values are given only for parameters. (GU: Growth Unit, PA: Physiological Age).

Parameters/Variables Description(unit) Value

Soil

Zr Maximum effective rooting depth [m] 1

hF
{ Soil water content at field capacity [m3 m23] 0.12

hW
{ Soil water content at wilting point [m3 m23] 0.07

Kc
{ Crop coefficient 1

Ks Soil water-stress coefficient

Dr Root zone depletion at the end of one day[mm]

ETa Actual plant evapotranspiration on one day [mm]

ET0 Reference plant evapotranspiration on one day [mm]

Plant

M Maximum PA of the tree 4

d Plant density [m22] 1

B Scale coefficient of single GU (PA = 1, 2, 3, 4) 76.4, 163.3, 197.7, 358.0

b Shape coefficient of single GU (PA = 1, 2, 3, 4) 20.24, 20.30, 20.20, 0.14

Cw Average water content of plant 60%

e Specific leaf weight [g cm22] 0.035

k{ Extinction coefficient 0.5

WUE{ Water-use efficiency [g kg21] 4.5

pe
{ Relative sink strength of ‘‘internodes’’ (PA = 1, 2, 3, 4) 1.37, 0.12,

0.04, 0.01

pa
{ Relative sink strength of needles (PA = 1, 2, 3, 4) 1(ref), 0.42, 0.17, 0.05

pc
{ Relative sink strength of growth rings 11.09

l{ Coefficient for needle influence on ring partitioning 0.03

Rp
{ Secondary sink for growth ring partitioning (PA = 2, 3, 4) [cm21] 0.07, 0.01, 0.001

Ta Actual plant transpiration on one day [mm]

Q(i) Aboveground biomass produced at tree age i [g]

D(i) Overall biomass demand at tree age i

No Number of organs of type o

Sp Available ground area of a tree

Sa Total functioning leaf area of a tree

Meteorology

D Slope of the vapour pressure curve

R Net radiation at the plant surface [MJ m22 d21]

c Psychrometric constant [k Pa uC21]

T Mean daily air temperature at a height of 2 m [uC]

Vw Mean daily wind speed at a height of 2 m

es Saturation vapour pressure [kPa]

ea Actual vapour pressure [kPa]

P Precipitation [mm]

Note: {The parameter values are obtained from the reference [27].
{The parameter values are obtained by fitting process. The other parameters and variables are measured directly in the experiments or obtained by simple calculation.
The entries with blank values are not constant in the model.
doi:10.1371/journal.pone.0043531.t001
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consistent with the self-correcting tendency of generalised least-

square method. These results indicate that the fitted data at the

plant scale are better than those at the organ scale.

Model Validation
The growth of six-year-old trees was simulated by using the

meteorological data from 2001 to 2006 in the calibrated model.

The height and fresh biomass of a simulated tree were compared

Figure 3. Simulation of soil water dynamic in a plot of six-year-old Mongolian Scots pines in 2007. The growth season for Mongolian
Scots pine in 2007 is from 100th to the 280th day. Rainfall, Ks, ETa and Ta represent, respectively, daily precipitation, the simulated values of water-
stress coefficient, actual evapotranspiration and actual transpiration. The soil texture is 93.98%66.00% sand, 5.49%65.46% silt, and 0.52%60.55%
clay and is uniform through the whole profile (0–300 cm). Maximum effective rooting depth Zr is 1 m, soil water content at field capacity hF is 0.12 m3

m23 and soil water content at wilting point hW is 0.07 m3 m23. Trees were planted in 1 m (between-row)61 m (within-row) spacing in the plot.
doi:10.1371/journal.pone.0043531.g003

Figure 4. Comparisons between measured and fitted results at organ scale for six-year-old Mongolian Scots pines measured in
2007. (a) Internode fresh biomass, with RMSE = 3.72 g; (b) Internode length, with RMSE = 6.65 cm; (c) Internode diameter, with RMSE = 0.38 cm; (d)
Needle biomass, with RMSE = 0.47 g; (e) Total fresh biomass of different PA (including internodes and needles), with RMSE = 10.80 g. PA1, PA2, PA3
and PA4 represent, respectively, trunk, first-order branch, second-order branch and third-order branch; (f) Linear regression between aboveground
dry biomass and sum of transpiration estimated (y = 0.48x, R2 = 0.93, p = 0.0001).
doi:10.1371/journal.pone.0043531.g004
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with observations for testing the accuracy of the model predictions.

Table 2 shows the meteorological conditions from 2001 to 2007.

The mean air temperature and precipitation were lower in 2001

than in the other years. For six-year-old trees measured at the

same site conditions, the average height and above-ground fresh

biomass were 105.4 cm and 1065 g in 2006, and 82.9 cm and

808.3 g in 2007. The comparisons between simulations and

observations of biomass and dimension are shown in Figure 6. The

relative errors of the fresh biomasses of trunk, first-order, second-

order and third-order branches and of above-ground plant parts

were respectively 21.6%, 28.8%, 21.6%, 238.4% and 6.7%.

These relative errors increased with branching order. Obviously,

the sink strength of a third-order branch was overestimated. This

discrepancy may be caused by the small number of third-order

branches. The estimated parameters by using GLS method are the

global optimal solution. Therefore, the simulated results are better

for the large number of first-order and second-order branches, but

worse for the small number of third-order branches. However,

compared with the trunk and first-order branches, the total fresh

biomass of the third-order branches was much lower. For instance,

for a six-year-old tree measured in 2006, the total fresh biomass of

the third-order branches was only 0.9% of the above-ground parts.

Therefore, in our experimental database, these had little influence

on the simulated result of total fresh biomass of the above-ground

parts.

Using the plant topological and geometrical information

measured in the field, the 3D architecture of Mongolian Scots

pines was visualised at successive ages from one to six years,

according to local soil data and meteorological data recorded from

2001 to 2006 (Figure 7(a)). The azimuth of branches on the same

node follows a uniform distribution, and the inclination of

branches are between about 70u and 90u and the inclination will

increase with branch age [24]. Figure 7(b) showed a photo of 5-

year-old Mongolian Scots pine taken in Nov, 2006. From the

Figure 7, we can see the architecture of 5-year-old Mongolian

Scots pine simulated is similar with real one. The simulated tree

heights were 4.4 cm, 11.3 cm, 21.0 cm, 36.4 cm, 63.3 cm and

104.6 cm from one to six years, respectively. The mean values and

standard deviation of corresponding tree height measured in 2006

were 8.961.7 cm, 14.765.0 cm, 30.964.9 cm, 69.766.1 cm and

117.4610.6 cm for one-, two-, four-, five- and six-year-old trees.

Considering the individual difference of tree growth, the simulated

tree heights stayed in a reasonable range.

Sensitivity Analysis
Sensitivity analysis provides the opportunity to systematically

test the model behavior and to get insights into how the simulated

Figure 5. Comparisons between measured and fitted fresh biomass at plant scale for Mongolian Scots pines from one- to six-year
old measured in 2007. (a) Aboveground fresh biomass, with RMSE of 26.8 g; (b) Internodes fresh biomass, with RMSE of 13.0 g; (c) Needles fresh
biomass, with RMSE of 18.6 g; (d) Total fresh biomass of different PA(including internodes and needles), with RMSE = 9.4 g. PA1, PA2, PA3 and PA4,
represent, respectively, trunk, first-order branch, second-order branch and third-order branch.
doi:10.1371/journal.pone.0043531.g005
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system operates. It has been used to determine the percentage of

variation in tree height, basal diameter and biomass when

precipitation changes from 50% less than actual to 50% more

than actual in 5% steps.

The biomass results show that the internodes compartment,

needles compartment and aboveground biomass responded

linearly to increases in precipitation (Figure 8). A 50% decrease

in daily precipitation resulted in a 59% decrease in total above-

ground biomass, a 48% decrease in trunk biomass, a 17% decrease

in tree height and a 17% decrease in basal diameter. A 50%

increase in daily precipitation resulted in a 57% increase in total

above-ground biomass, a 42% increase in trunk biomass, a 9%

increase in tree height and an 11% increase in basal diameter. The

effect of precipitation changes is more pronounced on tree biomass

than on tree height or on basal diameter.

The proportion of biomass partitioned between internodes and

needles varied from 1.22 to 0.90, which is small compared with the

variation in the range of precipitation. However, there was a

change in the dominant compartment: the internode biomass was

higher than needle biomass for very low precipitations, while the

Table 2. Meteorological conditions from 2001 to 2007.

Mean air temperature

(6C)

Mean soil temperature

(0 cm, 6C)
Total precipitation
(mm)

Thermal time

($106C)

2001 7.5 9.5 309.0 3691.9

2002 8.4 11.3 391.2 3634.0

2003 8.5 11.8 508.2 3683.1

2004 8.7 11.5 621.4 3784.9

2005 7.9 10.3 586.9 3660.4

2006 8.2 11.4 358.9 3615.9

2007 9.3 12.6 412.6 3754.4

doi:10.1371/journal.pone.0043531.t002

Figure 6. Comparison of fresh biomass, length, diameter between prediction and observation of three six-year-old pines measured
in 2006. The regression equations between observations and predictions and statistical tests for each indicator are listed as following: (a) Internodes
biomass, y = 1.01+0.96x, (R2 = 0.93, p,0.0001, n = 15); (b) Internodes length, y = 24.64+1.20x, (R2 = 0.91, p,0.0001, n = 15); (c) Internodes diameter,
y = 20.06+0.94x, (R2 = 0.99, p,0.0001, n = 15); (d) Needles biomass, y = 0.57+1.07x, (R2 = 0.99, p,0.0001, n = 8); (e) Trunk and branches fresh biomass,
y = 264.84+1.11x, (R2 = 0.97, p = 0.0168, n = 4); (f) Total fresh biomass, y = 54.46+0.89x, (R2 = 0.86, p = 0.0235, n = 6).
doi:10.1371/journal.pone.0043531.g006
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result was the reverse for precipitations greater than 90% of the

reference value. The variation trends for internode and needle

biomasses were generally consistent with those for total biomass.

Figure 9 shows the simulated 3D canopy architecture of six-

year-old trees under three precipitation regimes of 50%, 100%

and 150% of actual precipitation. Their heights are 96 cm,

115 cm, and 126 cm, respectively. Tree height simulated at the

actual precipitation was consistent with the observed value of

117.4610.6 cm.

Discussion

Model Performance
In this study, a new module of soil water dynamic was introduced

into the GreenLab model. The new adapted GreenLab model is

driven by transpiration with water use efficiency for plant biomass

affected by temperature, vapour pressure deficit and soil water

content. The growth engine of the adapted GreenLab model is water

driven through Eq. (1). The model does not simulate the lower

hierarchical processes expressing the intermediate steps involved in

accumulation of biomass. The underlying processes are synthetically

incorporated into one single coefficient defined water-use efficiency

(WUE). The basis for using Eq. (1) as the core of the model growth

engine lies in the conservative behaviour of WUE [37]. The WUE

value of 4.5 g kg21 for Mongolian Scots pines is obtained by the

fitted method in this study. This result is consistent with the range

from 3.29 to 6.63 g kg21 calculated for above-ground biomass of E.

globulus in [38]. Almeida et al. also gave similar values for fast-

growing E. grandis plantations in Brazil [39].

Comparison with Other FSPMs
The aim of most FSPMs is to investigate plant physiological

functions over quite short time periods (e.g. several hours, one day

or even a few years). These models are not suitable for extending

analysis of growth in larger regions or over longer periods because

of the large number of parameters to be used and high

computational costs. The GreenLab model is adequate for

applications at larger scales and also for ecological research by

simulating plant biomass production and allocation using empir-

ical equations. Le Chevalier et al. proposed a new generic

framework for simulating the development of large plant

ecosystems using the plant growth engine of the GreenLab model

[40]. In our study, we analysed the simulation results related to

tree height, basal diameter and biomass of above-ground plant

parts for different levels of precipitation.

The high topological complexity and very large number of

organs in a tree raise huge difficulties in collecting detailed data at

Figure 7. Comparison between simulated images and taken photo for Mongolian Scots pine. (a) Visualization of the 3D architecture of a
Mongolian Scots pine simulated from one- to six-year old, according to local soil data and meteorological data recorded from 2001 to 2006; (b) A
photo of 5-year-old Mongolian Scots pine taken in Nov, 2006.
doi:10.1371/journal.pone.0043531.g007
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the organ scale. This is why most functional-structural tree models

use only aggregated or sampled experimental data as criteria for

evaluating their performance in representing the real develop-

mental processes of growth [41–43]. Lopez et al. also point out that

more quantitative validation of models is required to evaluate the

accuracy of simulated results [14]. We present here the calibrated

and validated processes of an adapted GreenLab model, and the

results are shown to be reasonable for Mongolian Scots pine. The

model can simulate the variability of plant tree height, basal

diameter and biomass fairly well based on automaton and source-

sink relationship principles. In recent studies of FSPMs, light is

taken as one of the main environmental factors, and 3D models of

crown architecture and function are used to simulate light

interception [44,45]. In GreenLab, the level of architectural

description needed is that of the topology [24], which needs to be

adequately simulated since it has interactions with the functional

part of the model (e.g. for ring biomass partitioning, and for

computing the demand). As regards the 3D orientations of organs

or branches, they have been integrated only for a purpose of

visualisation and are not used in the computations. In this

simulation study, only organ size in plant architecture changed

with different levels of precipitation. Although plant morphological

plasticity could be linked to the effects of competition for light, the

abundance of the solar radiation in arid and semiarid areas

suggests that not light but water was the main limiting

environmental factor for plant growth in our study region.

Besides, soil water dynamic has seldom been introduced to

three-dimensional models for assessing plant growth. L-Peach

captured the influence of water stress on growth by introducing a

relative water-stress index, which was produced by a sigmoid

function [14]. Wu et al. proposed a sub-model of plant growth and

development with a detailed representation of the root system, in

addition to sub-models for C and N cycling in the soil with links to

the plant, a soil-water component and a heat-transfer component

[46]. The model structure is very complex but above-ground plant

growth is simplified. In our study, by incorporating a soil water

Figure 8. Sensitivity analysis of biomass, height and diameter for a six-year-old Mongolian Scots pine when precipitation changes
from 50% less than actual to 50% more than actual in 5% steps.
doi:10.1371/journal.pone.0043531.g008
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dynamic module into the GreenLab model, the adapted model

allows accurate representation of 3D canopy architecture,

morphological and biomass dynamics under the influence of

different soil water contents.

Future Improvements to the Model
Root systems are central to the acquisition of water and

nutrients by plants, as root uptake controls actual plant

transpiration, water recharge and nutrient leaching to the ground

water [47]. GRAAL-CN is one of the first FSPMs to integrate both

shoot and root development with similar levels of details [48]. It

accounts for plant plasticity in response to resource availability

(carbon, nitrogen) but does not take into account water uptake by

the roots. However, their model could be a useful source of ideas

for future improvements to our model by adding details of root

structure and root extension that are lacking in our present

version. Similarly, in incorporating processes that take place in the

roots, such as water and nutrient uptake into the model, there is an

identified need to more faithfully capture the functional dynamics

of root-shoot interactions.

The daily water dynamic module in GreenLab is probably the

most questionable component, mainly on the grounds that it

neglects of effects of stomotal control on plant transpiration. The

canopy conductance and boundary layer conductance for

Mongolian Scots pines may be added to the original Penman-

Montieth equation (see Eq. (2.48) in [49] to calculate tree actual

transpiration, instead of Eq. (6). It would be better and have

clearer biophysics meaning for soil water dynamic module.

Additionally, more validation of the model, especially of the new

soil water dynamic module, is needed to evaluate the accuracy of

the simulated transpiration.

Another path for improvement is to take into account the effects

of source variations on sink satisfaction and the effects of the

source-sink ratio on plant architecture through effects on sink

numbers and hierarchies [50]. In our experiments, we observed

that the number of second- and third-order branches increased

with total biomass. Thus, a new version of the model which

integrated feedback between sources and sinks could be applied in

our future research [16].

In summary, the current version of the model may be improved

by incorporating increasing complex descriptions of various facets

related to the trees growth and their environmental interactions.

However, every increase in model complexity requires more

experiments to provide parameters values or other data. There-

fore, the prospective value of improvements has to be weighed

against the likely availability of the information needed to quantify

those improvements, and the gains in accuracy that might be

expected from them. The degree of model complexity depends on

the purpose for which the model is intended.

Conclusions
A functional-structural tree model that includes biomass

production, partitioning among organs and responses to water

availability has been developed for simulating the interaction

between plant and environment. This has been calibrated and

validated for Mongolian Scots pine based on plant biomass,

topological and geometrical descriptions of the plants, soil and

meteorological data. The characters of architecture and biomass

dynamics of Mongolian Scots pine have then been reproduced and

analysed under different levels of water stress using this adapted

GreenLab model. The model is expected to perform virtual

experiments that predict the behavior of Mongolian Scots pines in

other regions with different soils and climates.
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