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Strong iISS: combination of iISS and ISS with respect to small inputs*

Antoine Chaillet1, David Angeli2, Hiroshi Ito3

Abstract— This paper studies the notion of Strong iISS,
which imposes both integral input-to-state stability (iISS) and
input-to-state stability (ISS) with respect to small inputs. This
combination characterizes the robustness property, exhibited
by many practical systems, that the state remains bounded
as long as the magnitude of exogenous inputs is reasonably
small but may diverge for stronger disturbances. We provide
three Lyapunov-type sufficient conditions for Strong iISS. One
is based on iISS Lyapunov functions admitting a radially non-
vanishing (class K) dissipation rate. However we show that it is
not a necessary condition for Strong iISS. Two less conservative
conditions are then provided, which are used to demonstrate
that asymptotically stable bilinear systems are Strongly iISS.
Finally, we discuss cascade and feedback interconnections of
Strong iISS systems.

I. INTRODUCTION

Since its introduction by Sontag in 1989, input-to-state sta-
bility (ISS [15]) has become one of the key concepts in the
analysis and control of nonlinear systems. The ISS property
requires that the norm of solutions be upper-bounded by a
vanishing transient term depending on the initial state, plus a
term which is somewhat proportional to the magnitude of the
input signal applied to the system. A strength of ISS stands in
its Lyapunov characterization: any ISS system admits a storage
function with a class K∞ dissipation rate [19]. ISS provides a
crucial robustness feature: for any bounded input, the resulting
solutions are bounded as well (BIBS property). This property
is one of the numerous robustness features guaranteed by ISS:
see [17] for a survey.

Despite its indubitable success, the solutions’ boundedness
under arbitrary bounded input (possibly of large amplitude)
makes ISS a very strong requirement in many applications.
Indeed, several practical systems do provide some robustness
to inputs of “reasonable” amplitude, but generate unbounded
behaviours when the applied disturbance is too intense. To
overcome this intrinsic limitation, the ISS property has been
relaxed following two main philosophies. The first one stands
in a local version of ISS (namely LISS [20]), confining both
the state and the input signal to a compact neighbourhood
of the origin [7]. However, LISS being actually equivalent to
asymptotic stability of the system without input (0-AS), the
practical relevance of LISS is conditioned by the estimate of the
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domain of attraction and of the size of tolerated inputs [8]. The
second one is known as integral input-to-state stability (iISS
[16]). Instead of bounding the solution’s norm by the amplitude
of the applied input, it involves a term that quantifies the energy
fed into the system. Its Lyapunov characterization [4] only
differs from that of ISS by the fact that the dissipation rate is
allowed to be just a continuous positive definite function (rather
than a class K∞ function). The fact that the dissipation rate
is not necessarily unbounded, and may even vanish for large
values of the state norm, explains why iISS does not guarantee
the BIBS property; in other words, some iISS systems may be
destabilized by inputs of arbitrarily small amplitude.

The objective of this note is to introduce and character-
ize an intermediate property, halfway between the robustness
strengths of ISS and the generality of iISS. More precisely, we
define the notion of Strong iISS as the combination of iISS, and
ISS with respect to small inputs. This combination ensures that
the solutions of any Strongly iISS system are globally bounded
as long as the amplitude of the input signal is below a specific
threshold, and, above this threshold, they inherit all properties
of iISS systems.

We start by providing the necessary definitions in Section II.
In Section III, we demonstrate by means of a counter-example
that the intuitive characterization of Strong iISS by means
of a Lyapunov function with a class K dissipation rate (i.e.,
not necessarily unbounded, but surely non vanishing for large
states) is not valid in general. Alternative Lyapunov conditions
for Strong iISS are provided in Section IV: in particular we
show that, if ISS with respect to small inputs and forward com-
pleteness can be shown based on the same Lyapunov function,
then the system is Strongly iISS. Specific results for particular
classes of nonlinear systems, including bilinear systems, are
also provided. Section V then addresses the interconnection
of Strongly iISS systems: we show that, similarly to ISS but
unlike iISS, Strong iISS is naturally preserved under cascade
interconnection, and we recall small gain conditions for the
feedback-interconnection of Strongly iISS systems. All proofs
are provided in Section VI.

Notation. For a nondecreasing function γ : R≥0 → R≥0,
γ(∞) ∈ R≥0 ∪ {∞} denotes the quantity lims→+∞ γ(s).
A function α : R≥0 → R≥0 is of class PD if it is con-
tinuous and positive definite. It is of class K if, in addition,
it is increasing. It is of class K∞ if it is of class K and
α(∞) = ∞. β : R≥0 × R≥0 → R≥0 belongs to class KL
if, given any t ≥ 0, β(·, t) ∈ K and, given any s ≥ 0,
β(s, ·) is continuous, nonincreasing and tends to zero as its
argument tends to infinity. Given m ∈ N, Um denotes the
set of all measurable locally essentially bounded functions
u : R≥0 → Rm. |·| stands for the Euclidean norm. For a given
u ∈ Um and and set I ⊂ R≥0, ‖u‖ := ess supt≥0 |u(t)|
and ‖u‖I := ess supt∈I |u(t)|. Given a constant R ≥ 0,
we let Um

≤R denote the set {u ∈ Um : ‖u‖ ≤ R}. A square



matrix is Hurwitz if all its eigenvalues have negative real parts.
sat : R → R is the scalar saturation function defined as
sat(s) = min{1; |s|}sign(s) for all s ∈ R. Given a ∈
R∪{∞}, and two continuous function f, g : R→ R, we write
g(s) = O(f(s)) as s → a if lim sups→a |g(s)/f(s)| < ∞.
A function V : Rn → R≥0 is called a storage function if
it is continuously differentiable and satisfies V (0) = 0 and
V (x) > 0 for all x 6= 0. A storage function is said to be proper
if, in addition, the set {x ∈ Rn : V (x) ≤ c} is compact for
any fixed c ≥ 0.

II. DEFINITIONS

We consider nonlinear systems with inputs:

ẋ = f(x, u) , (1)

where x ∈ Rn is the state, u ∈ Um is the input and f :
Rn×Rm → Rn denotes a locally Lipschitz function satisfying
f(0, 0) = 0. Given x0 ∈ Rn and an input signal u ∈ Um, the
solution of (1) is referred to as x(·;x0, u) (or simply x(·) when
the context is clear) on the time domain where it is defined.

We start by recalling the following definition of iISS,
orginally introduced in [16].

Definition 1 (iISS): The system (1) is said to be Integral
Input-to-State Stable if there exist a class KL function β and
class K∞ functions µ1, µ2 such that, for all x0 ∈ Rn and all
u ∈ Um, its solution satisfies, for all t ≥ 0,

|x(t;x0, u)| ≤ β(|x0| , t) + µ1

(∫ t

0

µ2(|u(s)|)ds
)
.

It is well known that iISS guarantees to (1) some robustness
with respect to a class of inputs with finite energy. In particular,
it was shown in [16, Proposition 6] that if the above estimate
holds then, for all u ∈ Um satisfying

∫∞
0 µ2(|u(s)|)ds < ∞,

all solutions of (1) converge to the origin. On the other hand,
iISS does not guarantee any robustness to non-vanishing inputs,
as illustrated by the following example.

Example 1: The system

ẋ = − x

1 + x2
+ u

is iISS, but given any constant input u? > 0 (even arbitrarily
small), any solution starting from an initial condition x0 ≥ u?

grows unbounded.

In the same way, vanishing inputs may generate unbounded
solutions for iISS system; see e.g. [5], [6]. Nonetheless, many
iISS systems do exhibit some robustness to vanishing inputs,
or inputs with sufficiently small magnitude. This is obviously
the case of all ISS systems [15], which are known to generate
bounded solutions for any bounded inputs. A lot of dynamical
systems can also stand exogenous inputs that are sufficiently
small, but exhibit non proper behaviours for too large inputs.
This is actually very common in control practice: while the
plant’s state remains bounded for small perturbations, too large
disturbances typically generates unbounded solutions. A nat-
ural way to describe this limited robustness property would
be to consider ISS only for small inputs, as in the following
definition.

Definition 2 (ISS wrt small inputs): The system (1) is said to
be Input-to-State Stable with respect to small inputs if there
exist a constant R > 0, a class KL function β and a class K∞

function γ such that, for all x0 ∈ Rn and all u ∈ Um
≤R, its

solution satisfies, for all t ≥ 0,

|x(t;x0, u)| ≤ β(|x0| , t) + γ(‖u‖) . (2)

ISS with respect to small inputs constitutes a stronger re-
quirement than the property referred to as local ISS (LISS)
in e.g. [20], [7]. Indeed, it imposes that (2) holds for small
inputs, but over the whole state space Rn, whereas LISS is a
local property both in the state and in the input. In particular,
LISS does not ensure global asymptotic stability of the origin
for the unperturbed dynamics (0-GAS), while ISS with respect
to small inputs does.

If the above state estimate holds for all u ∈ Um, then we
recover the classical definition of ISS [15]. However, given a
finite R, the above property does not provide any information
on the behaviour of the system when the magnitude of the input
signal u overpasses R. In particular, the system’s solutions are
not even guaranteed to exist at all time when ‖u‖ > R, as
illustrated by the following example.

Example 2: Consider the scalar system

ẋ = −x+ u+ ξ(u)x2 ,

where ξ : R → R denotes any locally Lipschitz function
satisfying ξ(u) = 0 for all u ∈ [−1; 1] and |ξ(u)| ≥ 1 for
all |u| ≥ 2. For instance, one can pick ξ(u) := sat(u − 2) +
sat(u + 2). This system can easily be shown to be ISS with
respect to u ∈ U1

≤1. However, for any constant u ≥ 2, the
solution satisfies ẋ(t) ≥ −x(t)+x(t)2, which has finite escape
time for any initial state greater than 1.

Therefore, while ISS with respect to small inputs guaran-
tees interesting robustness properties when the system is per-
turbed by sufficiently small inputs, an additional requirement
is needed to ensure at least the forward completeness of the
system for larger inputs. The aim of this paper is to study an
intermediate property, half way between the strength of ISS and
the generality of iISS. We refer to this notion as Strong iISS.

Definition 3 (Strong iISS): The system (1) is said to be
Strongly iISS if it is both iISS, and ISS with respect to small
inputs. In other words, there exist β ∈ KL and µ1, µ2, γ ∈ K
such that, for all u ∈ Um, all x0 ∈ Rn and all t ≥ 0, its
solution satisfies the following two properties:

|x(t)| ≤ β(|x0| , t) + µ1

(∫ t

0

µ2(|u(s)|)ds
)

‖u‖ ≤ R ⇒ |x(t)| ≤ β(|x0| , t) + γ(‖u‖) .
ISS is thus a special case of Strong iISS, which itself com-

bines ISS with respect to small inputs and iISS, which both are
special cases of LISS. Figure 1 summarizes these inclusions.
Example 1 illustrates the fact that iISS ; Strong iISS, while
Example 2 demonstrates the fact that ISS wrt small inputs ;
Strong iISS.

The rest of this paper aims at providing some insights
into the Strong iISS property and to confront it with existing
robustness properties.

III. A COUNTER-EXAMPLE TO A LYAPUNOV
CHARACTERIZATION

It is well known that both ISS and iISS of (1) are equivalent
to the existence of a proper storage function V : Rn → R≥0



Fig. 1. Schematic hierarchy between ISS-related concepts.

and a class K∞ function γ satisfying for all x ∈ Rn and all
u ∈ Rm,

∂V

∂x
(x)f(x, u) ≤ −α(|x|) + γ(|u|) . (3)

The function α is often referred to as a dissipation rate asso-
ciated to the storage function V . If α ∈ K∞, then we recover
the ISS characterization, cf. [19]. If α ∈ PD, then the above
dissipation inequality is equivalent to the iISS of (1), cf. [4].

A natural conjecture is then that, when α is a class K
function, this estimate is equivalent to Strong iISS. Indeed,
such a dissipation rate would imply the decrease of V for large
values of the state if the input is of sufficiently small amplitude.
While this conjecture may sound quite intuitive, it happens to
be wrong. The following example shows that the necessity part
of this statement is not true.

Example 3 (Strong iISS ; K dissipation rate): Consider
the scalar system

ẋ = − x

1 + x2
+ r(|u| − 1), (4)

where r denotes the unit ramp1 . We claim that:
a) this system is Strongly iISS;
b) given any α ∈ K and γ ∈ PD, no differentiable function

V : R→ R≥0 may satisfy (3). In particular, (4) admits no
storage function with a class K dissipation rate.

To prove Item a), notice that the total derivative of the function
V1(x) := 1

2 ln(1 + x2) along the solutions of (4) yields

V̇1 ≤ −
x2

(1 + x2)2
+ r(|u| − 1) ≤ − x2

(1 + x2)2
+ |u| ,

which establishes iISS by noticing that s 7→ s2/(1 + s2)2 is
a PD function. In addition, for all |u| ≤ 1, the derivative of
V2(x) = x4/4 yields

V̇2 ≤ −
x4

1 + x2
≤ − x4

1 + x2
+ |u| ,

which establishes ISS with respect to inputs in U1
≤1. Item a)

follows.

1r(s) = 0 for all s ≤ 0, and r(s) = s for all s > 0.

Now, consider any differentiable function V : R → R≥0.
Then it holds that

V̇ = −∂V
∂x

(x)
x

1 + x2
+
∂V

∂x
(x)r(|u| − 1). (5)

Therefore, the dissipation inequality (3) may only be satisfied
with α ∈ K if the term ∂V

∂x (x) x
1+x2 does not vanish for large

state values (as it is the only negative term in (5)). This imposes
in particular that

lim inf
x→∞

1

x

∂V

∂x
(x) ≥ c, (6)

for some constant c > 0. Considering u = 2, it then follows
from (5) that

lim inf
x→+∞

V̇ ≥ lim
x→+∞

c x r(1) = +∞,

whereas the right-hand side of (3) imposes V̇ ≤ γ(2) for all
x ∈ R. This contradiction establishes Item b).

IV. SUFFICIENT CONDITIONS FOR STRONG IISS

A. Class K dissipation rate
While the necessity part of this conjecture is contradicted by

Example 3, the existence of a storage function with a class K
dissipation rate does guarantee the Strong iISS property. We
formally state this sufficient condition in the following result.

Theorem 1: Assume that there exists a proper storage func-
tion V : Rn → R≥0 satisfying, for all x ∈ Rn and all u ∈ Rm,

∂V

∂x
(x)f(x, u) ≤ −α(|x|) + γ(|u|) , (7)

where α ∈ K and γ ∈ PD. Then the system (1) is Strongly
iISS.

The dissipation inequality (7) clearly implies iISS [4]. In
addition, for sufficiently small inputs, a too large increase
of the state norm makes the total derivative of V negative,
thus inducing a bounded input-bounded state property, which
ensures ISS with respect to small inputs. The full proof is
provided in Section VI-A.

Note that Example 3 disallows the converse of Theorem 1.
In other words, the class of iISS systems with K dissipation
rate is a strict subset of the class of Strongly iISS systems.
Thus, the next sections are devoted to the development of less
conservative sufficient conditions for Strong iISS.

B. A characterization conjecture
The following statement constitutes an alternative sufficient

condition for Strong iISS. Its proof is provided in Section VI-B.

Theorem 2: Assume that there exists a proper storage func-
tion V : Rn → R≥0, ρ ∈ PD, η ∈ K∞ and κ ∈ K such that,
for all x ∈ Rn and all u ∈ Rm,

∂V

∂x
f(x, u) ≤ −ρ(|x|) + η (max{0; |u| − κ(|x|)}) . (8)

Then the system (1) is Strongly iISS.

It is worth stressing that (8) can be equivalently written in
the following decomposed form:

V̇ ≤ −ρ(|x|) + η(|u|) (9)
|u| ≤ κ(|x|) ⇒ V̇ ≤ −ρ(|x|), (10)



where V̇ denotes ∂V
∂x (x)f(x, u). Note that, in contrast to The-

orem 1, ρ is not required to be of classK. The first of these two
dissipation inequalities corresponds to the iISS characterization
[4], while the second one ensures ISS with respect to small
inputs (see the proof in Section VI-B for details).

These combined properties can easily be checked on Exam-
ple 3 with the function V (x) = 1

2 ln(1+x2) by picking κ(s) =
sat(s) for all s ≥ 0. On the other hand, in view of (9)-(10),
any function V fulfilling the assumptions of Theorem 1 also
satisfies the requirements of Theorem 2. These observations
show that Theorem 2 is strictly less conservative than Theorem
1.

Although we have not yet succeeded in establishing this fact,
we conjecture that the dissipation inequality (8) is actually a
necessary condition for Strong iISS.

Conjecture 1: The converse of Theorem 2 holds.

C. Link with forward completeness
As illustrated by Example 2, unlike ISS with respect to small

inputs, Strong iISS guarantees that the system is forward com-
plete even for large inputs. The following result states that if
both ISS with respect to small inputs and forward completeness
can be established through the same Lyapunov function, then
the system is Strongly iISS.

Theorem 3: Assume that there exist a proper storage func-
tion V : Rn → R≥0, some functions α, γ ∈ K, two constants
Rx, Ru ≥ 0 and three continuous nondecreasing functions
η, ν1, ν2 : R≥0 → R≥0 such that, for all x ∈ Rn and all
u ∈ Rm,

|u| ≤ Ru ⇒
∂V

∂x
f(x, u) ≤ −α(|x|) + γ(|u|) (11)

|x| ≥ Rx ⇒
∂V

∂x
f(x, u) ≤ ν1(|u|)η(V ) + ν2(|u|). (12)

Assume also that

η(s) = O(s), as s→ +∞. (13)

Then the system (1) is Strongly iISS.

Note that (11) immediately implies that (1) is ISS with
respect to small inputs [19]; the contribution of the above result
is mostly to establish iISS. Its proof is provided in Section VI-
C.

In view of [3], the condition (12) together with the sublin-
earity requirement (13) constitutes a characterization of the for-
ward completeness of (1). Consequently, Theorem 3 basically
states that if the forward completeness and the ISS with respect
to small inputs can be established through the study of the same
Lyapunov function, then the system is also iISS (thus Strongly
iISS).

An extension of the counter-example [4, Section V] shows
that, in general, ISS with respect to small inputs and forward
completeness are not enough to guarantee iISS; the use of a
common Lyapunov function for the two properties is therefore
crucial for the result.

The assumptions of Theorem 1 clearly guarantee those of
Theorem 3. In addition, the Strong iISS of the system in
Example 3 can be checked by means of Theorem 3 with the
function V (x) = 1

2 ln(1 + x2). This shows that Theorem 3 is
strictly less conservative than Theorem 1.

Theorem 3 allows to recover and extend a result originally
presented in [16].

Corollary 1: Assume that there exist a proper storage func-
tion V : Rn → R≥0, class K∞ functions λ and γ, and a
positive constant q such that, for all x ∈ Rn and all u ∈ Rm,

∂V

∂x
(x)f(x, u) ≤ −(q − λ(|u|))V (x) + γ(|u|).

Then the system (1) is Strongly iISS.

This dissipation inequality was used in [16, Theorem 2] to
establish iISS. Corollary 1 states that Strong iISS actually holds
under the same condition. Its proof is omitted due to space
constraints.

D. Systems with specific structures
We now show that Hurwitz linear systems perturbed by

sector-bounded disturbances are Strongly iISS. We summarize
this fact though the following proposition, whose proof is
omitted.

Proposition 1: Given A ∈ Rn×n, consider the system

ẋ = Ax+ ϕ(x, u) , (14)

where ϕ : Rn × Rm → Rn is a locally Lipschitz function
satisfying, for all x ∈ Rn and all u ∈ Rm,

|ϕ(x, u)| ≤ (c1 + c2 |x|)g(|u|) , (15)

for some constants c1, c2 ≥ 0 and g ∈ PD. Then (14) is
Strongly iISS if and only if A is Hurwitz.

We stress that, when the constant c2 in (15) is zero, then
the system (14) is actually ISS. On the other hand, for a
perturbation that violates (15) with c2 = 0, it can be shown
that (14) is no longer ISS.

Remark 1 (Strong iISS of bilinear systems): Systems of the
form (14) satisfying (15) include, in particular, the class of
bilinear systems:

ẋ =

(
A+

m∑
i=1

uiAi

)
x+Bu ,

where A ∈ Rn×n, Ai ∈ Rn×n for all i ∈ {1, . . . ,m}
and u = (u1, . . . , um)T . A necessary and sufficient condition
(namely, A Hurwitz) for the iISS of such systems was already
established in [16, Theorem 5]. The above proposition shows
that ISS with respect to small inputs (hence Strong iISS) also
holds under the same condition.

E. Exploiting zero-output dissipativity
Exploiting the notion of zero-output smooth dissipativity,

we can derive an alternative growth order condition on the
supply functions for Strong iISS. This notion, introduced in [4],
imposes the existence of a proper storage function W : Rn →
R≥0 satisfying, for all x ∈ Rn and all u ∈ Rm,

∂W

∂x
(x)f(x, u) ≤ σ(|u|), (16)

where σ denotes a class K function. The following result is a
consequence of Theorem 1 that exploits this property.

Proposition 2: Assume that (1) is zero-output smooth dissi-
pative and that there exist a differentiable function V0 : Rn →



R≥0 and κ0, α0, η0, γ0 ∈ K such that, for all x ∈ Rn and all
u ∈ Rm,

V0(x) ≥ κ0(|x|) (17)

∂V0
∂x

f(x, u) ≤ −α0(V0) + η0(V0)γ0(|u|), (18)

with η0 and α0 satisfying

η0(s) = O(α0(s)) as s→ sup
x∈Rn

V0(x). (19)

Then there exists a proper storage function V : Rn → R≥0
satisfying (3) with a class K dissipation rate α and γ ∈ PD. In
particular, (1) is Strongly iISS.

The proof of this result is omitted due to space constraints.
Is is worth noting that (18) is actually a direct consequence of
0-GAS of (1), cf. [4, Lemma IV.10]. The main requirement of
the above definition therefore stands on the growth constraint
(19). Note that, due to the continuity of η0 and α0 on R≥0, this
condition is trivial if V0 is bounded.

Note indeed that, in this statement, the function V0 is neither
required to be zero at zero, nor to be radially unbounded.
Condition (17) only imposes that V0 is positive for all x ∈
Rn \ {0} and that it does not vanish for large values of the
state norm. If, however, V0 is a proper storage function, then the
assumption of zero-output smooth dissipativity can be replaced
by a growth condition on η0, as summarized by the following
statement whose proof is omitted.

Corollary 2: Assume that (18) and (19) hold for all x ∈ Rn

and all u ∈ Rm, with a proper storage function V0 : Rn →
R≥0 and classK functions κ0, α0, η0 and γ0. Assume also that∫ +∞

0

ds

1 + η0(s)
= +∞. (20)

Then there exists a proper storage function V : Rn → R≥0
satisfying (3) with a class K dissipation rate α and γ ∈ PD. In
particular, (1) is Strongly iISS.

V. INTERCONNECTING STRONGLY IISS SYSTEMS

A. Cascade interconnection
As already stressed, Strong iISS offers an interesting tradeoff

between ISS and iISS. It is well known that, although cascade
interconnections naturally preserves the ISS property [18], this
is not the case for iISS in general, cf. e.g. [5], [6], [10]. Those
references underline the need of additional assumptions for a
cascade of iISS to be itself iISS, either on the supply rates
of the associated Lyapunov functions, or on the decay rate of
the trajectories. The result below shows that no such additional
requirement is needed for Strong iISS.

Theorem 4: Let f1 : Rn1 × Rn2 → Rn1 and f2 : Rn2 ×
Rm2 → Rn2 denote two locally Lipschitz functions and
assume that the systems ẋ1 = f1(x1, u1) and ẋ2 = f2(x2, u2)
are Strongly iISS with respect to u1 and u2 respectively. Then
the cascade

ẋ1 = f1(x1, x2) (21a)
ẋ2 = f2(x2, u2) . (21b)

is Strongly iISS with respect to u2.

A similar result was established in [10] by relying on iISS
Lyapunov functions with class K dissipation rates. In view of

Example 3, Theorem 4 is thus strictly less conservative than
that result.

The proof of this result cannot be included due to space
constraints. It is made of two steps: 1) showing the uniform
asymptotic gain property (UAG) for sufficiently small inputs,
which is shown in [20] to be equivalent to ISS with respect
to small inputs; 2) establishing the bounded energy frequently
bounded state (BEFBS) property which, combined to 0-GAS,
is equivalent to iISS [2].

If (21b) is only iISS (rather that Strongly iISS), then the
cascade (21) can be shown to be itself iISS.

Corollary 3: Assume that the system ẋ1 = f1(x1, u1) is
Strongly iISS with respect to u1 and that ẋ2 = f2(x2, u2)
is iISS with respect to u2. Then the cascade (21) is iISS with
respect to u2.

Since Strong iISS implies 0-GAS by definition, the follow-
ing statement is a direct consequence of Theorem 4 for the case
when no exogenous inputs affect the system.

Corollary 4: Assume that ẋ1 = f1(x1, u1) is Strongly iISS
and that ẋ2 = f2(x2) is globally asymptotically stable (GAS).
Then the cascade

ẋ1 = f1(x1, x2) (22a)
ẋ2 = f2(x2) . (22b)

is GAS.

B. Feedback interconnection
The feedback interconnection of not necessarily ISS systems

has already been addressed in the literature, and Lyapunov-
based conditions for iISS have been provided in the literature.
See for instance [1] for the case of a feedback interconnection
without exogenous input and [12], [9], [11] for the case of
systems with inputs. See also [13] for an extension to more
than two interconnected subsystems. These references clearly
establish the necessity for the storage functions associated to
each subsystem to have a class K dissipation rate (unless the
supply function of each subsystem is radially vanishing). In
view of Theorem 1, this means that in practice Strong iISS
of each individual subsystem is a necessary requirement for
stability analysis through a small-gain argument based on the
subsystems’ dissipation inequalities.

VI. PROOFS

A. Proof of Theorem 1
Since α ∈ K ⊂ PD, iISS of (1) directly follows from the

classical iISS characterization [4]. In addition, consider any
R > 0 such that γ(R) ≤ 1

4α(∞). The existence of such a
R is ensured by the fact that α ∈ K and γ ∈ PD. Note that
the function α is then invertible over [0; 2γ(R)] and, given any
|u| ≤ R,

|x| ≥ α−1 ◦ 2γ(|u|) ⇒ ∂V

∂x
f(x, u) ≤ −α(|x|)

2
.

Invoking classical results such as [14, Theorem 4.18], it follows
that the solutions of (1) are bounded for all inputs in Um

≤R and
that there exists a class K∞ function σ such that, for all x0 ∈
Rn,

lim sup
t→∞

|x(t;x0, u)| ≤ σ(‖u‖), ∀u ∈ Um
≤R.



This corresponds to the asymptotic gain property [20]. Noticing
that the system is also 0-GAS, we conclude from [20, Theorem
1] that the system is ISS with respect to all u ∈ Um

≤R.

B. Proof of Theorem 2
The dissipation inequality (9) is known to establish iISS [4],

so there is only ISS with respect to small inputs left to prove.
To that end, let R denote any positive constant such that R <
κ(∞). Then, for all |u| ≤ R, it holds that

|x| ≥ κ−1(|u|) ⇒ ∂V

∂x
(x)f(x, u) ≤ −ρ(|x|).

Reasoning as in the proof of Theorem 1, we conclude that (1)
is ISS with respect to inputs u ∈ Um

≤R.

C. Proof of Theorem 3
Assuming that (11) holds for some α, γ ∈ K and Ru ≥ 0,

we have in particular that, for all x ∈ Rn,

∂V

∂x
(x)f(x, 0) ≤ −α(|x|) .

Following the same reasoning as in the proof of [4, Lemma
IV.10], this ensures the existence of λ1 : R≥0 → R≥0
continuous and increasing and λ2 ∈ K such that, for all x ∈ Rn

and all u ∈ Rm,

∂V

∂x
(x)f(x, u) ≤ −α(|x|) + λ1(|x|)λ2(|u|) .

In particular

|x| ≤ Rx ⇒
∂V

∂x
f(x, u) ≤ λ1(Rx)λ2(|u|) . (23)

Now, consider the function W (x) := ln(1 + V (x)) for all x ∈
Rn. Noticing that the continuity of η together with (13) ensures
that the existence of η̄ > 0 such that η(V (x)) ≤ η̄V (x) for all
|x| ≥ Rx, Equation (12) ensures that, for all |x| ≥ Rx,

∂W

∂x
f(x, u) ≤ η(V )

1 + V
ν1(|u|) +

ν2(|u|)
1 + V

≤ η̄ν1(|u|) + ν2(|u|) . (24)

In the same way, (23) yields

|x| ≤ Rx ⇒
∂W

∂x
f(x, u) ≤ λ1(Rx)λ2(|u|) . (25)

It follows from (24) and (25) that

∂W

∂x
f(x, u) ≤ ν(|u|) , ∀x ∈ Rn, u ∈ Rm ,

where ν : R≥0 → R≥0 is the nondecreasing continuous
function defined as ν(·) := η̄ν1(·) + ν2(·) + λ1(Rx)λ2(·).
Since ν is not necessarily a class K function, zero-output
dissipativity does not follow yet. Nonetheless, (11) guarantees
that

|u| ≤ Ru ⇒
∂W

∂x
f(x, u) ≤ γ(|u|) .

Therefore, defining

γ̃(s) :=

 γ(s) if s ≤ Ru/2
as+ b if s ∈ (Ru/2;Ru]

ν(s) + 2γ(s) if s > Ru,

where a and b are conveniently chosen to ensure continuity, γ̃
is a class K function and it holds that ∂W

∂x f(x, u) ≤ γ̃(|u|)

for all x ∈ Rn and all u ∈ Rm. It follows that (1) is zero-
output dissipative. Consequently, recalling that it is 0-GAS in
view of (11) and invoking [4, Theorem 1], it is also iISS. The
conclusion follows by noticing that ISS with respect to small
inputs trivially results from (11).
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