
HAL Id: hal-00780483
https://centralesupelec.hal.science/hal-00780483

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the iISS small-gain theorem through transient
plus ISS small-gain regulation

Hiroshi Ito, Randy Freeman, Antoine Chaillet

To cite this version:
Hiroshi Ito, Randy Freeman, Antoine Chaillet. Revisiting the iISS small-gain theorem through
transient plus ISS small-gain regulation. Asian Journal of Control, 2013, 15 (1), pp.11-19.
�10.1002/asjc.538�. �hal-00780483�

https://centralesupelec.hal.science/hal-00780483
https://hal.archives-ouvertes.fr


REVISITING THE IISS SMALL-GAIN THEOREM THROUGH TRANSIENT

PLUS ISS SMALL-GAIN REGULATION

Hiroshi Ito, Randy A. Freeman, and Antoine Chaillet

ABSTRACT

Recently, the small-gain theorem for input-to-state stable (ISS) systems has been extended to the class of integral

input-to-state stable (iISS) systems. Feedback connections of two iISS systems are robustly stable with respect to disturbance if

an extended small-gain condition is satisfied. It has been proved that at least one of the two iISS subsystems needs to be ISS for

guaranteeing globally asymptotic stability and iISS of the overall system. Making use of this necessary condition for the stability,

this paper gives a new interpretation to the iISS small gain theorem as transient plus ISS small-gain regulation. The observation

provides useful information for designing and analyzing nonlinear control systems based on the iISS small-gain theorem.

Key Words: Integral input-to-state stability, nonlinear interconnected systems, small gain theorem.

I. INTRODUCTION

For analysis and design of nonlinear systems the ISS

small-gain theorem has been widely used [12,17]. The

theorem covers the class of input-to-state stable (ISS) systems

and answers the question of whether their feedback intercon-

nection is again ISS. It was first proved with a trajectory-

based approach in [12]. A version relying on the Lyapunov

functions associated with each of the subsystems was subse-

quently presented in [11]. While the construction of a Lya-

punov function for the overall interconnection is useful from

the analysis and design viewpoints, the trajectory-based proof

is simpler and illustrates more intuitively the idea of contrac-

tion. Recently, the small-gain theorem has been extended to

the interconnection of integral input-to-state stable (iISS)

systems in [6,10]. The iISS is a more general robustness

property than ISS [14,15], and the theorem in [6,10] includes

the ISS small-gain theorem as a special case. In these refer-

ences, a Lyapunov function is explicitly constructed for the

overall interconnection. Another approach, developed in [1],

makes use of monotonicity and nullclines in verifying that the

equilibrium of the interconnection of iISS systems is globally

asymptotically stable (GAS). Although the approach pro-

posed there does not apply to systems with exogenous inputs,

it offers a useful interpretation of GAS for feedback connec-

tions of iISS and ISS subsystems.

This paper revisits the iISS small-gain theorem and

gives an insight into its mechanism. It also gives an interpre-

tation which connects the iISS small-gain theorem with the

contractive behavior of trajectories explained by the stan-

dard ISS small-gain theorem. In order to understand how the

trajectories of interconnected systems evolve, this paper

assumes that iISS dissipation inequalities are given for both

individual subsystems. As illustrated by the result in [5] on

cascaded iISS systems, the use of dissipation inequalities of

subsystems is more successful than using trajectory bounds

when dealing with interconnected iISS systems. This paper

follows this idea to tackle feedback interconnected systems.

The proof this paper develops splits the system trajectory into

a transient response and a subsequent response governed by

the ISS small-gain condition. This paper illustrates how this

strategy enables us to deal with iISS systems which are not

ISS.

Notations. The Euclidean norm of a real vector on Rn is

denoted by the symbol |·|. A continuous function w : R+ :=

[0,•) → R+ is said to be positive definite and denoted by w ∈
P if it satisfies w (0) = 0 and w (s) > 0 holds for all s > 0. A

function is of class K if it belongs to P and is strictly increas-

ing; of class K• if it is of class K and is unbounded. A

continuous function b : R+ ¥ R+ → R+ is of class KL if b (·, t)

is of class K for each t ! 0, and b (s,·) is non-increasing and

goes to zero as t → • for each s ! 0. The identity map on R

is denoted by Id. If w is a class K• function, its inverse w-1 is

of class K•. For w ∈ K\K•, its inverse w-1 is defined on the

finite interval [0,limt→•w (t)) since the continuous function

w is strictly increasing and w (0) = 0. Following the conven-

tion employed in [6, 10], in this paper, s < limt→•w (t) or
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• = limt→•w (t) is implied whenever w-1(s) is used. For a

function g ∈ P, we write g ∈ O(>L) with a non-negative

number L if there exists a positive number K > L such that

lim sups→0g (s)/sK < • holds. We write g ∈ O(L) when K = L.

The symbols ⁄ and ∧ denote logical sum and logical product,

respectively. For f,g : R+ → R+, we use the simple nota-

tion lim f (s) = lim g(s) to describe {lim f (s) = • ∧ lim

g(s) = •} ⁄ {• > lim f (s) = lim g(s)}. Note that the • case is

included. In a similar manner, lim f (s) ! lim g(s) denotes

{lim f (s) = • ⁄ • > lim f (s) ! lim g(s)}. A system ɺx f x= ( )

admitting a unique maximal solution x(t) ∈ Rn for any initial

condition x(0) ∈ Rn is said to be GAS if its origin is globally

asymptotically stable. We let U denote the set of all measur-

able locally essentially bounded signals u:R+→Rm. A system

ɺx f x u= ( , ) admitting a unique solution x(t) on Rn for any

initial condition x(0) ∈ Rn and any u ∈ U is said to have the

Bounded Energy Frequently Bounded State (BEFBS, [2])

property with respect to input u and state x if there exists

! ∈ K• such that, if σ τ τ( ( ) )u d
0

∞

∫ < ∞ then lim inft→•|x(t)| <

• for all initial conditions x(0). We will make a slight abuse

of sup, limsup and inf, liminf to mean the essential supremum

and infimum, respectively, where appropriate. A system

ɺx f x u= ( , ) is said to be iISS with respect to u if there

exist c ∈ K•, b ∈ KL and g ∈ K such that, for any

x(0) ∈ Rn and any u ∈ U, a unique solution x(t) ∈ Rn

exists for all t ! 0 and furthermore it satisfies

χ β γ τ τ( ( ) ) ( ) , ( )x t x t u d
t

≤ ( ) + ( )∫0
0

. A system ɺx f x u= ( , )

is said to be ISS with respect to u if there exist b ∈ KL and

g ∈ K such that, for any x(0) ∈ Rn and any u ∈ U, a unique

solution x(t) ∈ Rn exists for all t ! 0 and furthermore it sat-

isfies |x(t) " b(|x(0)|,t) + g (supt∈[0,t]|m(t)|). These are standard

definitions borrowed from [14,15,3].

A preliminary version of the material in this paper was

presented at the 49th IEEE Conference on Decision and

Control [9]. Some errors have been corrected, and the results

are refined further in this paper.

II. A REVIEW OF IISS SMALL-GAIN

THEOREM

Consider the following interconnected system:

Σ
Σ
Σ

:
: ( , , )

: ( , , )

1 1 1 1 2 1

2 2 2 1 2 2

ɺ

ɺ

x f x x r

x f x x r

=

=





(1)

where x ti
ni( )∈ℝ , r ti

mi( )∈ℝ , x x xT T T n= ∈[ , ]1 2 ℝ and

r r rT T T m= ∈[ , ]1 2 ℝ . In addition to the existence of a unique

maximal solution x(t) for any initial condition x(0) ∈ Rn and

any measurable, locally essentially bounded external input r,

we assume that the two subsystems satisfy the following

dissipation inequalities:

Assumption 1. For each i ∈ {1,2}, there exist a

continuously differentiable, positive definite and radially

unbounded function Vi: xi
ni∈ → +ℝ ℝ and class K functions

ai, !i, !ri such that

ɺV V x V x rr1 1 1 1 1 2 2 1 1≤ − + +α σ σ( ( )) ( ( )) ( ) (2)

ɺV V x V x rr2 2 2 2 2 1 1 2 2≤ − + +α σ σ( ( )) ( ( )) ( ) (3)

hold for all r ∈ U along the trajectories x(t) of (1).

This assumption imposes that each subsystem Si is iISS

with respect to input (x3-i, ri) and state xi (see, for instance

[3]). We stress that we have assumed ai ∈ K instead of ai ∈ P
without any loss of generality due to the necessity result in [7]

for iISS feedback connections with !i ∈ K. In the case of

cascade, assuming ai ∈ K is not necessary [4,5].The follow-

ing is a result in [10], which is referred to as the iISS small-

gain condition in this paper.

Theorem 1. Suppose that Assumption 1 holds and that

there exist w1, w2 ∈ K• satisfying

α ω σ α ω σ1
1

1 1 2
1

2 2
− −

+

+ + ≤
∀ ∈
# # # # #

ℝ

( ) ( ) ( ) ,

.

Id Id s s

s
(4)

Then, the following statements hold true:

(i) For r(t) ≡ 0, the system (1) is GAS.

(ii) If it holds that

{lim ( ) lim ( ) }, , ,
s

i
s

is s i
→∞ →∞

−= ∞ ∨ < ∞ =α σ 3 1 2 (5)

then the system (1) is iISS with respect to input r and

state x.

It is strongly stressed that the small-gain condition (4)

with the existence of w1, w2 ∈ K• implicitly requires that

lim ( ) lim ( ) lim ( ).
s s s

s s s
→∞ →∞ →∞

= ∞ ∨ >α α σ2 2 2 (6)

It is also important that the property (6) implies that S2 is ISS

with respect to its feedback input x1 (see for instance [16,3]).

On the other hand, S1 does not have to be ISS with respect

to its feedback input x2. The small-gain condition for iISS

subsystems indicates that the interconnection is stable if the

stability property of one subsystem, S2, is “strong” enough to

compensate the “weak stability” of the other subsystem, S1.

Due to this asymmetry, we need to select or interchange the

indices “1” and “2” so that (4) holds when iISS subsystems

are involved. The condition (4) reduces to the one for the ISS

small-gain theorem [12,11] when a1, a2 ∈ K•. We have

(5) since the nonlinear gain α ω σi i i
− +1 (# #Id ) of the sub-

system Si is computed independently of the influence of ri

from the dissipative inequality (2) or (3). The necessity of the

2 Asian Journal of Control, Vol. 15, No. 3, pp. 1–9, March 2013

© 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



condition (6) for stability of the interconnected system is

investigated in [10], which is summarized as follows:

Theorem 2. Suppose that ai ∈ O(1) and !i ∈ O(>0) which

are continuously differentiable on (0, •) are given for i = 1,2.

Then, the following statements hold true:

(i) The system (1) with r(t) ≡ 0 is GAS for all subsystems

satisfying Assumption 1 only if

lim ( ) lim ( )
s

j
s

js s
→∞ →∞

≥α σ (7)

holds for at least one of j ∈ {1,2}.

(ii) The system (1) is ISS with respect to input r and state

x for all subsystems satisfying Assumption 1 only if

lim ( ) lim ( ) lim ( )
s

j
s

j
s

js s s
→∞ →∞ →∞

= ∞ ∨ >α α σ (8)

holds for at least one of j ∈ {1,2}.

Renumbering allow us to take j = 2 for (7) and (8)

without any loss of generality. This convention is used in the

rest of this paper. The above theorem does not exactly state

that (6) is necessary for the iISS of the interconnection. The

difference between (6) and (7) is the equality. The main body

of this paper does not address the equality case

∞ > =
→∞ →∞

lim ( ) lim ( )
s s

s sα σ2 2 (9)

since it formally prevents us from using the ISS small-gain

argument [12,11]. Notice that the equality case (9) is

incompatible with the small gain condition (4) defined with

w1, w2 ∈ K•. Taking into account the necessity of (6) for the

ISS case, this paper assumes (6) and makes use of it for

proving Theorem 1 in order to interpret the “iISS” small-gain

theorem as the combination of “a transient response” and

“the ISS small-gain dynamics”. In order to give the new

interpretation, this paper makes another assumption on the

influence of the exogenous signals r1 and r2, i.e., Assumption

2, which is the fundamental limitation of the idea of resorting

to the “ISS” small-gain argument for “non-ISS” systems.

Remark 1. The necessary conditions in Theorem 2 were

proved for ai ∈ O(>1) in [10]. It can be verified that

ai ∈ O(>1) can be replaced by ai ∈ O(1) for supply rates

given as functions of V1 and V2 as in Assumption 1 (See [8]).

III. ESTABLISHING 0-GAS

This section considers the interconnected system (1) in

the absence of the external signals, i.e., r(t) ≡ 0, and demon-

strates Item (i) of Theorem 1 by means of a transient response

plus the ISS small-gain argument. We refer to the stability as

0-GAS of S. Define the following set:

U2 2 2 2 2
1

2
2 ( ) ( ): : lim= ∈ ≤{ }

→∞

−x V x sn

s
ℝ #α σ

Notice that U2
2:= ℝn holds if lims→•!2(s) = •. The following

proposition separates each trajectory of the interconnected

system S into two phases.

Proposition 1. Suppose that Assumption 1 holds and that

there exist w1, w2 ∈ K• satisfying (4). Then for each

x n
2 0 2( )∈ℝ , there exists T ∈ R+ such that

x t t T2 2 ,( )∈ ∀ ≥U (10)

sup ( ) .
[ , ]τ

τ
∈

< ∞
0 T

x
(11)

Furthermore, the following two properties hold:

V x V x x

V

1 1 1
1

1 1 2 2 2 2

1 1
1

( ) (

( (

≥ + ∧ ∈
⇒ ≤ − − +

−

−

α ω σ
ω α

# #

ɺ #

Id U

Id Id

) ( ( ))

) ) 11 1 1( ( ))V x
(12)

V x V x

V V x

2 2 2
1

2 2 1 1

2 2
1

2 2

( ) ( )

( ( ) ) ( (

≥ +

⇒ ≤ − − +

−

−

α ω σ
ω α

# #

ɺ #

Id

Id Id

( ( ))

22)).
(13)

Proof. Assume that (4) is satisfied for some w1, w2 ∈ K•. It

implies that

sup ( ( )) lim ( )

lim( ) (

x s

s

V x s
2 2

1 2 2 1 2
1

2

1
1

1

∈ →∞

−

→∞

−

≤

≤ +

U

Id

σ σ α σ

ω α

# #

# ss).

From this property and (2)–(3) it follows that the properties

(12) and (13) hold. Next, suppose for the time being that

lim ( ) lim ( ) lim ( ).
s s s

s s s
→∞ →∞ →∞

< ∞ ∧ ≤α α σ1 1 1 (14)

Then, the small-gain condition (4) implies that there exists a

positive constant σ 2
max such that

lim ( ) .
s

maxs
→∞

≤ < ∞σ σ2 2 (15)

Since σ 2
max is independent of x1, the dissipation inequality (3)

of S2 and the property (6) implied by (4) guarantee that the

state x2(t) is bounded and eventually enters the forward invari-

ant set U2, i.e., (10). In fact, there exists d > 0 such that ɺV2 ≤ −δ
holds for all x2 ∉ U2. Note that T ! 0 fulfilling (10) is finite,

and that the state x1(t) is bounded over the time interval [0,T]

since S1 is iISS with respect to input x2. Thus, we have (11).

Finally, in the case that (14) does not hold, that is:

lim ( ) lim ( ) lim ( ),
s s s

s s s
→∞ →∞ →∞

= ∞ ∨ >α α σ1 1 1

the subsystem S1 is ISS with respect input x2, and we can

invoke the ISS small-gain argument [12,11] to obtain (10) and

3H. Ito et al: Revisiting the IISS Small-Gain Theorem
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(11). The time T can be made independent of x1(0) since

U2
2≠ ℝn implies (15). !

The property (12) implies that S1 exhibits an ISS

property when the input x2 is restricted to U2. Note

that Id - (Id + wi)
-1 ∈ K• since (Id - (Id + wi)

-1) " (s +

wi(s)) = wi(s). Due to (12) and (13), the convergence of x(t) to

the origin x = 0 departing from any x T n( )∈ ×ℝ 1
2U at t = T is

ensured by the small-gain condition (4). For instance, we can

follow the proof for the interconnection of the two ISS

subsystems given in [12,11] and [17] which describes the

small-gain argument with the domain restriction. Therefore,

Proposition 1 yields a proof of Item (i) of Theorem 1. The

behavior before t = T described by (10) and (11) is transient.

After the finite time t = T, the contractive dynamics kicks

in since the iISS small-gain condition acts as the ISS small-

gain condition in the domain U2 where the trajectories

evolve.

Remark 2. In the absence of external signals, i.e. r(t) ≡ 0, a

Lyapunov function establishing the GAS of the intercon-

nected system can be constructed even when (9) holds. In

fact, Theorem 1 in [10] derives such a Lyapunov function

from a small-gain condition. The small-gain condition is

exactly in the form of (4). However, the amplification factors

w1, w2 in (4) for GAS are not necessarily of class K• in the

absence of the exogenous signal r. Although the above argu-

ment in this section does not explicitly address (9), the obser-

vation of the transient plus the ISS small-gain dynamics still

holds true. Notice that the ISS small-gain theorem [12,11]

applies to the case of

lim ( ) lim ( ) . ( )
s s

s s
→∞ →∞

= ∧α σ1 1 9Eq (16)

directly since V1 and V2 become ISS Lyapunov functions of

the individual subsystems. Therefore, Proposition 1 holds

true even for wi ∉ K• in the case of (16). If

lim ( ) lim ( ) . ( )
s s

s s
→∞ →∞

> ∧α σ1 1 9Eq (17)

holds, by virtue of α σ2
1

2
−

∞∈# K , the argument given in this

section can be used by switching the indices “1” and “2”.

Note that the property (17) with the switching allows us to

assume w1,w2 ∈ K• for (4) there. The situation

lim ( ) lim ( ) . ( )
s s

s s
→∞ →∞

< ∧α σ1 1 9Eq (18)

is excluded by theorem 5 (i) in [10]. Therefore, for the GAS

case (i.e., for r(t) ≡ 0), the interpretation of the transient plus

the ISS small-gain dynamics is valid whenever

lim ( ) lim ( ).
s s

s s
→∞ →∞

≥α σ2 2 (19)

IV. ESTABLISHING IISS

This section proves Item (ii) of Theorem 1 under an

assumption about disturbance magnitude. The property (6)

implied by the small-gain condition (4) again plays a key role

in implementing the idea of a transient plus the ISS small-

gain argument. The proof consists of two parts. One is to

verify that the system (1) is 0-GAS (that is, GAS when

r(t) ≡ 0). The other part is to establish the Bounded Energy

Frequently Bounded State (BEFBS) property of the system

(1). It is shown in [2] that the combination of the above two

properties is equivalent to the iISS property of the system (1).

Since the 0-GAS has been proved in the previous section, this

section is devoted to the BEFBS property.

First, notice that lims→•ai(s) > lims→•!i(s) does not

guarantee the ISS property of Si with respect to input (x3-i,ri)

since lims→•!ri(s) can anyway be larger than lims→•ai(s). In

fact, when there exists i ∈ {1,2} such that lims→•ai(s) < •

holds, the previously existing results show only the iISS of

the interconnected system [6,10]. Hence, in contrast to the

GAS case, the condition lims→•a2(s) > lims→•!2(s) is not

sufficient for resorting to the ISS small-gain argument in

the presence of external inputs. Therefore, in order to make

use of the small-gain argument of ISS-type, we introduce the

following:

Assumption 2. The following properties hold:

lim ( ) lim ( ) lim( ) ( )
s s s

s s s
→∞ →∞ →∞

= ∞ ∨ > +α α ω σ2 2 2 2Id # (20)

lim ( )

lim

s

s
r

s
→∞

−

→∞

− −

+

≥ +

ω σ α ω σ

σ α ω σ

1 1 2
1

2 2

1 2
1

2
1

2

( )

( )

# # # #

# # #

Id

Id (( ) ( )1s sr+{ }σ (21)

lim ( )

lim lim( ( ( ).

s

s s
r

s

s s

→∞

→∞ →∞

− −

= ∞ ∨

> − +

α

α ω σ

2

2 2
1 1

2( ) ) )Id Id #

(22)

Notice that we can pick w2 ∈ K• fulfilling (20) when-

ever there exists a pair of w1, w2 ∈ K• satisfying (4). Define:

UD
n

s
rx V x s s2 2 2 2 2

1
2 2

2: : ( ) lim { ( ) ( )} .= ∈ ≤ +{ }
→∞

−
ℝ #α σ σ

Let UD
n

2
2:= ℝ if lim ( ) lim ( ) ( )s s rs s s→∞ →∞< +α σ σ2 2 2 . The

next proposition shows that the above assumption allows us to

separate each trajectory of the interconnected system S into

two phases even in the presence of the external inputs.

Proposition 2. Suppose that Assumption 1 and the property

(5) hold. Assume that there exist w1, w2 ∈ K• satisfying (4)

and Assumption 2. Then for each x n
2 0 2( )∈ℝ , there exists

T ∈ R+ such that
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x t t TD2 2( ) ,∈ ∀ ≥U (23)

sup ( )
[ , ]τ

τ
∈

< ∞
0 T

x
(24)

UD
n T2

2 0= ⇒ =ℝ (25)

hold for any measurable, locally essentially bounded r.

Furthermore, there exist g ∈ K• and w ∈ R+ such that

sup limsup ( )

( ) , .

[ , )t T t

n
D

r t l x t l w

x T x T

∈ ∞ →∞
≤ ⇒ ≤ +

∀ ∈ ∈

( ) ( )

( )1 2 2
1

γ

ℝ U
(26)

Proof. First, assume that

lim ( ) lim ( )
s s

s s
→∞ →∞

= = ∞σ σ1 2 (27)

is satisfied. Then the condition (4) and the implicit

requirement (6) yield lims→•a1(s) = lims→•a2(s) = • and

U2
2= ℝn . We obtain (23), (24) and (26) for any T ∈ R+ by

using the ISS small-gain result in [12,11]. Hence, in the rest

of the proof, we assume

lim ( ) lim ( ) .
s s

s s
→∞ →∞

< ∞ ∨ < ∞σ σ1 2 (28)

The definition of x2 ∈ UD2 yields

sup ( ( )) lim { ( ) ( )}

lim

x s
r

s

D

V x s s
2 2

1 2 2 1 2
1

2 2

1

∈ →∞

−

→∞

≤ +

≤
U

σ σ α σ σ

σ

# #

#αα ω σ

σ α ω σ

2
1

2 2

1 2
1

2
1

2

−

→∞

− −

+

+ +

# #

# # #

( ) ( )

lim ( ) ( )

Id

Id

s

s
s

r

To derive the second inequality, the two cases separated by

w2 " !2(s) ! !r2(s) and w2 " !2(s) < !r2(s) are combined.

From (2) it follows that, for all x2 ∈ UD2,

ɺ # # #

# #

V V s
s

s

1 1 1 1 2
1

2 2

1 2
1

( ) ( ) ( )≤ − + +

+ +

→∞

−

→∞

−

α σ α ω σ

σ α

lim

lim (

Id

Id ωω σ σ2
1

2 1 1) .− +# r rs r( ) ( )
(29)

The property (21) applied to the above gives

ɺ # # # #V V s
s

1 1 1 1 1 2
1

2 2≤ − + + +
→∞

−α ω σ α ω σ( ) lim( ) ( ) ( )Id Id

(30)

Recall that (20) and (28) imply

lim( ) ( ) ( ) .
s

s
→∞

−+ + < ∞Id Idω σ α ω σ1 1 2
1

2 2# # # #

Applying this property and (4) to (30) and (29), we can verify

that there exist a function g1 ∈ K• and a constant w1 ! 0 such

that

sup

sup

limsup ( ) ( )[ , )

[ , )

t T

t T

t

r t l

x t

x t l∈ ∞

∈ ∞

→∞

≤ ⇒
∞

≤ +
1 1

1

1 1 1

( )

( ) <

γ ww

x T x Tn
D

1

1 2 2
1, ( )







∀ ∈ ∈( ) .ℝ U

(31)

If

lim ( ) lim ( ) ( ),
s s

rs s s
→∞ →∞

> +α σ σ2 2 2 (32)

is satisfied, the boundedness of UD2 and (31) yield the

bounded-input bounded-state property (26) over t ∈ [T, •)

provided that (23) holds. In the case of

lim ( ) lim ( ) ( ) ,
s s

rs s s
→∞ →∞

= + = ∞α σ σ2 2 2 (33)

the set UD2 is unbounded, i.e., UD
n

2
2= ℝ . We temporarily

assume that

lim ( ) lim ( ) .
s s

s s
→∞ →∞

< ∞ ∨ < ∞α α1 2 (34)

This property ensures lims→•!2(s) < •. Indeed, it is implied

by (5) if lims→•a1(s) < •. The property (6) yields

lims→•!2(s) < • in the case of lims→•a2(s) < •. The

dissipation inequality (3) of S2 with lims→•!2(s) < •

guarantees the existence of a function g2 ∈ K• and a constant

w2 ! 0 such that

sup

sup ( )

limsup ( ) ( )[ , )

[ , )

t T

t T

t

r t l

x t

x t l∈ ∞

∈ ∞

→∞

≤ ⇒
< ∞

≤ +
2 2

2

2 2 2

( )
γ ww

x T x Tn
D

n

2

1 2 2( ) , ( ) = .1 2







∀ ∈ ∈ℝ ℝU

(35)

Combining (31) and (35) yields (26) for an arbitrary T ∈ R+.

We now retract (34) and assume that

lim ( ) lim ( )
s s

s s
→∞ →∞

= ∞ ∧ = ∞α α1 2 (36)

holds. Then the standard ISS small-gain theorem yields (23),

(24) and (26) with T = 0 since UD
n

2
2= ℝ .

To see that one of (32) and (33) must hold, consider

(22). Then there exists b ∈ K• such that

lim ( )

lim ( ) lim(( ) ( ) )

s

s s
r

s

s

→∞

→∞ →∞

− − −

= ∞ ∨

≥ + − +

α

α β ω σ

2

2
1

2
1 1

2Id Id # (( ).s
(37)

By virtue of (37) and

lim ( ) lim( ) ( )
s s

s s
→∞ →∞

≥ +α ω σ2 2 2Id #

implied by (4), the property

lim ( ) lim( ) ( ( ) ( ))
s s

rs s s
→∞ →∞

≥ + +α β σ σ2 2 2Id # (38)

holds since
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lim lim ( ) lim (

)

s s
r

s
s s

→∞ →∞ →∞

−

−

+ ≤ +(

+ + − +

σ σ ω

β ω

2 2 2
1

1
2

( ) )

( ) (

Id

Id Id −− )1
2#α ( )s

is satisfied for lims→•a2(s) < •. Thus, we arrive at one of (32)

and (33).

Next, we shall establish (23), (24) and (25). Since the

case where both (33) and (36) hold has already been solved,

we only need to consider the complementary case. If (33) and

(34) hold, we have obtained UD
n

2 = 2ℝ for which (31), (35)

and (26) are satisfied for an arbitrary T ∈ R+. Taking T = 0 is

satisfactory for (23), (24) and (25). Consider the remaining

case where (32) holds. By virtue of UD
n

2
2≠ ℝ , the implica-

tion (25) holds true, i.e., it can be skipped. The dissipation

inequality (3) of S2 guarantees that the state x2(t) which is

bounded enters the set UD2 in a finite time T ! 0 and remains

there, i.e., (23), and T can be picked independently of x1(0).

Note that the state x1(t) is also bounded in the time interval

[0,T] since S1 is iISS with respect to input (x2,r1) and state x1.

Hence, we arrive at (24). !

Proposition 2 demonstrates that, even in the presence of

the external signal r, the behavior up to t = T can be consid-

ered as a transient in view of (23) and (24). After t = T, the

bounded-input bounded-state property (26) takes effect since

the iISS small-gain condition acts as the ISS small-gain con-

dition in the domain UD2 where the trajectories evolve. The

bounded-input bounded-state property for t ∈ [T, •) pre-

ceded by the transient for t ∈ [0,T) implies the BEFBS prop-

erty of S with respect to input r and state x. Note that we have

T = 0 if UD
n

2 = 2ℝ . These facts together with the 0-GAS

proved in the previous section complete the proof of Item (ii)

of Theorem 1.

V. ANOTHER FORMULATION

FOR DISTURBANCE

In the presence of external signals, the idea of the

reduction to the ISS small-gain argument in the presence of

an iISS subsystem can be seen more or less in a compact

manner if one uses dissipation inequalities of another type for

the iISS property of the individual subsystems. To this end, in

this section, we replace Assumptions 1 and 2 with the follow-

ing two assumptions.

Assumption 3. For each i ∈ {1,2}, there exist a continu-

ously differentiable positive definite and radially unbounded

function Vi: ℝ ℝ
ni → + and class K functions ai, !i, !ri such

that

ɺV V x V x rr1 1 1 1 1 2 2 1 1≤ − +α σ σ( ( )) max{ ( ( )), ( )} (39)

ɺV V x V x rr2 2 2 2 2 1 1 2 2≤ − +α σ σ( ( )) max{ ( ( )), (| |)} (40)

hold for all r ∈ U along the trajectories x(t) of (1).

Assumption 4. The following properties hold:

lim max lim ( ), ( )
s s

r rs s s
→∞

−

→∞

−≥ { }σ α σ σ α σ σ1 2
1

2 1 2
1

2 1( )# # # #

(41)

lim ( ) lim ( ) lim ( ).
s s s

rs s s
→∞ →∞ →∞

= ∞ ∨ >α α σ2 2 2 (42)

Assumption 3 is quantitatively different from Assump-

tion 1. However, they are qualitatively equivalent in view of

the standard relation a + b " max{2a,2b} " 2a +2b for

a,b ∈ R+. The quantitative difference in the formulation

of subsystems brings in the technical difference between

Assumptions 2 and 4. Indeed, when the interconnection of

two iISS subsystems is defined with Assumption 3 in

Theorem 1, we are able to achieve the reduction to the tran-

sient plus the ISS small-gain argument under Assumption 4

which may look more intuitive than Assumption 2. The rest of

this section sketches this fact.

Since the 0-GAS property is proved in Section III, we

shall prove the BEFBS property of the system (1). As in

Section IV, we can assume (34). The properties (5) and (6)

ensure lims→•!2(s) < •. Suppose that lims→•!r2(s) < •. Due

to (42) and (6), the dissipation inequality (40) of S2 guaran-

tees that the state x2(t) which is bounded enters the set

UM
n

s
rx V x s s2 2 2 2 2

1
2 2:= : ( )2∈ ≤{ }

→∞

−
ℝ #lim max{ ( ), ( )}α σ σ

in a finite time T and stays there. When lims→•!r2(s) = •

holds, the same property holds with T which satisfies T < •

for each supt ∈ [0,•)|r2(t)| < •. The state x1(t) is also bounded for

the time interval [0,T] since S1 is iISS with respect to input

(x2,r1) and state x1. By definition we have:

sup ( ( ))

max lim lim

x

s s

M

V x

s

2 2

1 2 2

1 2
1

2 1 2
1( ),

∈

→∞

−

→∞

−

≤
U

σ

σ α σ σ α σ# # # # rr s2( ){ }.

From (39) it follows that, for all x2 ∈ UM2,

ɺ # #

# #

V V x s
s

s
r

1 1 1 1 1 2
1

2

1 2
1

2

≤ − +
→∞

−

→∞

−

α σ α σ

σ α σ

( ( )) max{lim ( ),

lim (ss rr), (| |)}.σ 1 1

(43)

Here, the property lim ( )s s→∞
− < ∞σ α σ1 2

1
2# # holds due to

lims→•!2(s) < • and (6). Thus, the assumption (41) and the

small-gain condition (4) lead us to the bounded-input

bounded-state property (31) with respect to state x1 in the

interval of t ∈ [T, •) for the initial conditions x2(T) ∈ UM2.

These facts allow us to arrive at Proposition 2 replacing

Assumptions 1 and 2 with Assumptions 3 and 4. Hence, we

obtain the BEFBS property of S, and Item (ii) of Theorem 1

is proved.
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Assumption 1 and Assumption 3 are qualitatively

equivalent in the sense that !i + !ri " max{2!i,2!ri} "

2!i + 2!ri. We can consider other variants of dissipation

inequalities for iISS. Although the coefficients appearing in

the transformation between two representations result in con-

servativeness in different forms, the essence of imposing the

constraint on the external inputs for the reduction to the ISS

small-gain argument remains the same.

Remark 3. As already stressed, the difficulty in establish-

ing the iISS via the transient plus the ISS small-gain dynam-

ics arises when the effect of ri’s is larger than the

contribution of ai’s. Both Assumption 1 and Assumption 3

allow the magnitude of !ri’s to be arbitrarily large. In order to

make the ISS small-gain argument work, the undesirably

large effect of ris is avoided by Assumptions 2 and 4. In

short, !ris are required to be sufficiently small in this paper.

It is worth noting that the pair of ISS with respect to small

inputs and forward completeness does not always imply iISS.

Indeed, one can construct a forward complete non-iISS

system which is ISS with respect to small inputs by modify-

ing the technique proposed in [3, Section V]. In the presence

of arbitrarily large !ri’s, removing Assumptions 2 and 4 is

inherently difficult.

Remark 4. Neither the pair (21)–(22) nor the pair (41)–

(42) is necessary for establishing the iISS property of the

interconnection of iISS subsystems. For example, in the case

where a1 = !2, a2 = d!1 with !r1, !r2 ∈ K• and some d > 1,

the function V = V1 + V2(1 + 1/d)/2 is an iISS Lyapunov func-

tion, thus immediately proving the iISS of the interconnec-

tion. In contrast to the approach pursued in this paper, this

case is covered by the iISS small-gain theorems proposed in

[6,10]. Therefore, the approach based on the ISS small-gain

argument plus the transient is more restrictive than the direct

iISS small-gain approach.

VI. AN ILLUSTRATIVE EXAMPLE

Consider the interconnected system described by:

ɺx
x

x

x

x
x r1

1

1
2

1

1
2 2 1

1 2 1
= −

+
+

+
+

( )
( ) (44)

ɺx x
x

x
2 2

1
2

1
21

= − +
+

(45)

This pair satisfies the dissipation inequalities

ɺV
V x

V x
V x r1

1 1

1 1

2 2 1

2

1
≤ −

+
+ +

( )

( )
( ) (46)

ɺV V x
V x

V x
2 2 2

1 1

1 1

2

1
≤ − +

+







( )

( )

( )
(47)

for V x x1 1 1
2( ) = and V x x2 2 2

2( ) = . Note that the upper bounds in

(46) and (47), i.e., the supply rates, may not be completely

tight. The subsystem S1 is not ISS with respect to input x2, and

it is only iISS. The trajectory of (44)–(45) for the initial

condition x(0) = [2.2,2.2]T is plotted on the (V1,V2)-plane in

Fig. 1 for r1(t) ≡ 0. Fig. 1 also depicts the following sets:

Ω+−
+= ∈ ≤ ∧ ≥: {( , ) : ( ) ( ) ( ) ( )}V V V V V V1 2
2

1 1 1 2 2 2 2 1ℝ α σ α σ

Ω−−
+= ∈ ≥ ∧ ≥: {( , ) : ( ) ( ) ( ) ( )}V V V V V V1 2
2

1 1 1 2 2 2 2 1ℝ α σ α σ

Ω−+
+= ∈ ≥ ∧ ≤: {( , ) : ( ) ( ) ( ) ( )}.V V V V V V1 2
2

1 1 1 2 2 2 2 1ℝ α σ α σ

The boundaries of these sets are not necessarily the nullclines

of (44) and (45) owing to the lack of tightness in the

dissipation inequalities (46) and (47). Two phases are

observed in Fig. 1. The first phase is the transient evolving

outside U2 for which the trajectory heads. The second phase is

the trajectory converging to the origin without leaving U2.

Once the trajectory enters the positively invariant set U2, the

dynamic is governed by the ISS small-gain condition as

discussed in Section III. It is also seen in Fig. 1 near the origin

that the set W - - is too narrow to be an invariant set because

of the gaps in the dissipation inequalities. Fig. 2 shows the

response for the same initial condition in the presence of

the disturbance r1(t) = 1.8/(2 + t). The trajectory is bounded

and moves toward the set U2 which becomes positively

invariant again. Since the iISS small-gain condition acts as

the ISS small-gain condition in U2, we see that the trajectory

converges to the origin. It conforms to the converging-input

converging-state of the ISS property. The boundedness and

the converging property agree with the iISS property for the

entire t ! 0 which is established in Section IV.

Fig. 1. The trajectory of (44)–(45) on the (V1,V2)-plane for
r1(t) ≡ 0 and x(0) = [2.2,2.2]T with relation to the sets
W

+-, W--, W-+ and U2.
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VII. CONCLUDING REMARKS

The iISS small-gain theorem developed in [6,10] for

interconnections of two iISS subsystems has been revisited to

give it a trajectory-based interpretation linking with the con-

tractive mechanism of the ISS small-gain theorem. According

to the preceding study, an interconnection involving a non-

ISS subsystem is stable only if the other subsystem is ISS

with respect to its feedback input. By making use of this fact,

this paper has shown that the behavior of the interconnected

system can be split into two phases. In the first phase, roughly,

the trajectory of the ISS subsystem behaves almost independ-

ently of the other iISS subsystem and this phase lasts until the

trajectory of the ISS subsystem enters a neighborhood U2 of

the origin with a certain radius. In this phase, the behavior of

the merely iISS subsystem is almost a free response. In the

second phase, the interaction between the two subsystems

takes effect and the contractive behavior of the whole state

vector occurs since the small-gain constraint plays the role of

the ISS small-gain condition in U2. This observation would be

practically useful in designing and analyzing the dynamics

of nonlinear control systems based on the iISS small-gain

theorem. It is worth stressing that the above interpretation is

not always applicable. The external signals are not allowed to

be large either, as in (21)–(22) or (41)–(42). These assump-

tions ensure that the transient response actually dies in finite

time which allows us to make use of the “ISS” small-gain

argument for the subsequent behavior in dealing with “iISS”

subsystems. There are interconnected systems which violate

these assumptions and can anyway be proved to be iISS with

respect to the external signals by constructing Lyapunov

functions as in [6,10].

The independent study in [13] reported very recently

also combines the transient with a small-gain argument for a

system class which overlaps with the class of systems this

paper deals with although the study [13] does not formulate

systems in the framework of iISS. In [13], another stability

property so-called input-to-output stability is verified by

computing the input-to-output gain of interconnected systems

under the assumption that an estimate of trajectories is

somehow available during a finite time period when an ISS-

type small-gain criterion is invalid. External signals can be

incorporated into the stability analysis as far as the above

assumption is fulfilled. In contrast, this paper does not assume

anything more than the standard iISS dissipation inequalities

of subsystems, which would be less demanding than the time

embedded trajectory estimate used in [13]. An abstract model

in [13] covers a considerably broad class of systems at the

price of some complexities in the stability criterion.
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