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Abstract. The dynamic model of plant growth GreenLab describes plant architecture and
functional growth at the level of individual organs. Structural development is controlled by
formal grammars and empirical equations compute the amount of biomass produced by the
plant, and its partitioning among the growing organs, such as leaves, stems and fruits. The
number of organs initiated at each time step depends on the trophic state of the plant, which is
evaluated by the ratio of biomass available in plant to the demand of all the organs. The control
of the plant organogenesis by this variable induces oscillations in the simulated plant behaviour.
The mathematical framework of the GreenLab model allows to compute the conditions for the
generation of oscillations and the value of the period according to the set of parameters. Two
case-studies are presented, corresponding to emergence of oscillations associated to fructification
and branching.
Similar alternating patterns are commonly reported by botanists. In this article, two examples
were selected: alternate patterns of fruits in cucumber plants and alternate appearances of
branches in Cecropia trees. The model was calibrated from experimental data collected on
these plants. It shows that a simple feedback hypothesis of trophic control on plant structure
allows the emergence of cyclic patterns corresponding to the observed ones.

Keywords and phrases: dynamic system of plant growth, functional-structural plant mod-
els, GreenLab, cucumber plant, Cecropia trees

Mathematics Subject Classification: 92B05, 92B15

1. Introduction

Plants are complex systems whose dynamics of growth ensures the maintenance and development of vital
functions such as exploration and exploitation of its environment to access the resources, transport and
conduction of nutriments, mechanical stability and reproduction. To fulfill these multiple objectives,
plants produce biomass and invest it in different compartments - stem, roots, leaves, reproductive organs
- through processes of growth (stem elongation and thickening), branching, and flowering/fructification.
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At every growth stage, the expression of these processes is determined by (i) its genotype, (ii) its current
structure and functional state and (iii) the amount of available resources (water, light, minerals, gaz).
Therefore, different temporal patterns can be identified. For instance, in temperate regions, marked
cessation of growth are observed during winter seasons, thus resulting in an annual growth rhythm, with
alternation of periods of growth and cessation of growth. These temporal patterns generally affect the
plant morphology and anatomy. A well-known example is the presence of growth rings in woody trees,
allowing retrospective estimations of their age and providing information about their past conditions
(dendrochronology).
Another widely-reported pattern of alternation in tree development is alternate-bearing in fruit crops,
widespread throughout many perennial trees and shrubs (apple, pear, mango, beech trees...): a year with
intense fruit production is usually followed by a year of poor production [27]. This can be interpreted
as a trade-off between allocation to fruits or to reserves [35]. Managing alternate-bearing is a challenge
for fruit tree growers; potential remedial measures include intensive horticultural interventions, or in-
troduction of rootstocks or new cultivars [26]. Fluctuations in the dry matter allocation to fruits has
also been observed on horticultural plants such as cucumber plants or pepper plants [20]. Fruits are not
regularly distributed in the plant, but several phytomers with fruits are followed by phytomers without
fruits. Cyclic phenomena are also frequent for tropical trees, although in wet tropical forests, seasonal
fluctuations are less marked and environmental cues (temperature, light and rainfall) are not as strong
as in temperate zones. Such patterns were reported for two species of the Cecropia genus [12], [37], an
emblematic genus of pioneer tree in the neotropics.
However, the main factors that drive the emergence of these temporal or morphological patterns are
still poorly known. In particular, characterizing the relative influence of external factors and internal
regulations [31], [35] on these patterns is still an open question and is particularly difficult to investigate
through observations or experimentations, given the intractable interactions between all these factors and
processes.
In that context, the role of modeling is to unravel these complex interactions and to allow testing hy-
potheses. One key to model these oscillation phenomena lies in the complex interactions between plant
architectural development (via organogenesis) and functional growth (via photosynthetic biomass produc-
tion and allocation) [24]. Mathematical modeling of such phenomena and the analysis of the underlying
dynamic system may help underline the conditions for the generation of such oscillations and thus un-
derstand the biological processes at their origins.
The objective of this paper is to theoretically and numerically demonstrate the conditions for the emer-
gence of oscillatory patterns in plant architectural growth, and to illustrate the capacity of the model to
describe the appearance of such phenomena in real plants. Among the existing functional-structural mod-
els [7], the GreenLab model has been chosen to fulfill this aim. Indeed, this model focuses on processes
that are generic enough to be applied to most plant species (biomass prodution and allocation, coupled
with the plant topological development); its main principles are shared by several other ’carbon-driven’
models (e.g. TOMSIM [10], one extension of the ADELwheat model [5] or EcoMeristem [18]) so parts of
this work can be generalized; changes in plant topology are dynamically simulated in interaction with the
plant physiological state, which allows modelling phenomena such as fruit abortion or branch appearance.
Besides, a strong effort was put on its rigourous mathematical formalization, thus paving the way to the
study of its behaviour. In GreenLab [3], plant architecture, biomass production and partitioning among
organs are described with a discrete dynamic system. The mathematical formalism of the model allows
the study of the system behaviour. In a recurrent way, organs are set in place in the plant, biomass is
produced by leaves and redistributed among the growing organs. The number of organs initiated at each
time step depends on the trophic state of the plant. Hence a vigorous plant can build and support a
high number of organs. On the contrary, weak plants will produce fewer organs or even abort some. This
model allows testing the potentials and limits of the hypothesis of a development driven by the plant
trophic state. It generates oscillatory patterns that can be similar to those observed on real plants [25].
The model considers an average behavior. In real cases, stochastic processes may perturb this behavior,
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while still generating some alternated patterns as shown in [19]. The full study in the stochastic case is
still to achieve and the article focuses on the deterministic study.
In Section 2, we first recall the generic concepts of the dynamic system of plant growth used in this
paper, and we specify how ecophysiological functioning influences the development of plant organogen-
esis and structure. We analytically demonstrate that the model generates emergent oscillations of the
fructification or branching processes. These theoretical analyses are done for simple versions of the model
but they nevertheless provide a sound basis to understand and interpret the properties of more complex
versions of the model. In Section 3, we present two illustrations of these results on real plants: alternate
fruit bearing in cucumber and alternate branching patterns in Cecropia sciadophylla, a tropical tree. We
describe the model equations for these two particular species and their parameter identification from
experimental data, and show some numerical simulations of oscillations generated in the structure of
these plants. Finally we discuss the potential extensions and applications of this work, in particular for
realizing virtual experiments in order to optimize horticultural management strategies.

2. A Dynamic Plant Model Adapted to the Analysis of Architectural Cyclic

Patterns

2.1. General Principles of the Model

2.1.1. Time and Architecture Discretization

In this paragraph, we present the generic mathematical frame of the GreenLab model [3, 28]. For ap-
plications on real plant species, different versions are derived from this common frame, to adapt to the
specificities of each species.
Plant growth equations can be written in the form of a discrete dynamic system. The elementary unit
chosen to describe the plant architecture is a botanical entity called phytomer. It is composed of an
internode (the part of stem between the insertion points of two successive leaves), one or several leaves
(consisting of a blade and potentially of a petiole) and axillary production that can develop into fruits
or new branches. When apical or lateral buds blossom, they give birth to new phytomers. A phytomer
is modelled as a set of organs. Each organ is characterized by its type o and its chronological age. The
organs considered in the model are blades (o = a), petioles (o = p), buds (o = b), internodes (o = e), fruits
(o = f). Phytomers are denoted by m. All the phytomers of the same chronological age are assumed to
be identical. Note that the equations can be easily extended to the case where phytomers have different
behaviors but can be classified, according to their morphological properties, in a finite number of classes
[1].
The model time step is synchronized with the natural pace of plant architecture setting. It is defined as
the time lag between the emergence of two successive phytomers [1].
In the next section, we detail only the equations necessary for our case study but a more comprehensive
description can be found in [3, 25].

2.1.2. Model equations

In GreenLab, the plant structure is modeled by its topology, that is to say the dynamic graph representing
the phytomers and their connexions (apical or lateral) [8]. Topological equations thus give the number
of new organs at each time step. All the phytomers are assumed to have the same topological properties:
they are connected to one apical phytomer at least, and potentially several branches. No branch death
nor delays in branch appearance are considered here, but the generalization is straightforward.
If b(n) denotes the number of buds per phytomer at time step n that will give new branches at time step
n+ 1, then v(n), the total number of new phytomers at time step n, is given by the recurrence equation
2.1. At time step 1, there is only one phytomer.

∀n ≥ 1, v(n+ 1) = v(n)(1 + b(n)) =

n
∏

k=1

(1 + b(k)) (2.1)
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Functional equations allow to compute biomass production, allocation and organ masses. At time step
n, the amount of biomass Q(n) produced by the plant is computed by an empirical function G of the
plant photosynthetic surface area, called S(n), and of the environmental variables represented in E(n).
Pf is the vector of the plant functional parameters.

Q(n) = G(S(n), E(n), Pf ) (2.2)

This biomass is shared among the growing compartments of the plant. These compartments can
include the growth of newly appeared organs (denoted by index buds) and the expansion of existing
organs (index orgs), the constitution of successive layers of rings on axes - for trees - (index rings), the
growth of roots (index roots). The parts of the biomass production which are allocated to each of these
compartments are determined according to a proportional model [36]: the demand of each compartment
is calculated according to specific rules and they share the available biomass proportionally to their
respective demands. For instance, the biomass allocated to the expansion of organs is:











Qorgs(n) = Dorgs(n) ·
Q(n)

D(n)
where D(n) = Dbuds(n) +Dorgs(n) +Drings(n) +Droots(n)

= F (S(n), Q(n), v(n), No(1 : n), Pd)

(2.3)

No(1 : n) = (No(1), · · · , No(n)) with No(d) the number of organs of type o appeared at time step d.
The total plant demand, D(n), is the demand of the compartments receiving biomass at the beginning
of time step n + 1. It depends on the plant topology, on its current functional state variables and on a
set of parameters, denoted Pd. Then the biomass of each compartment is in turn shared among all its
constitutive elements. Let us detail the case of the orgs compartment, which is the core of the dynamic
loop of the system. Again, the proportional model is applied to share Qorgs between all growing organs.
The demand of an organ of type o and chronological age d is defined by its sink strength, po(d): it
measures its ability to attract biomass and is usually modelled by a parametric function. As an organ
expands during Te time steps, po(d) = 0 when d > Te.

Dorgs(n) =
∑

o∈{a,p,b,e,f}

min(n+1,Te)
∑

d=2

v(n− d+ 1) ·No(n− d+ 1) · po(d) (2.4)

The product v(n− d+ 1) ·No(n− d+ 1) represents the number of organs of type o and age d. At time

step n, an organ receives an amount of biomass proportional to the ratio
Qorgs(n)

Dorgs(n)
that is equal to

Q(n)

D(n)
(see equation 2.3).
Regarding the demand of new organs, denoted by Dbuds(n), an intermediate variable has to be defined
in some cases: if the number of new organs dynamically depends on the current values of some state
variables, the demand is first computed taking into account all the potential organs that could appear
at the next time step, then the actual number of organs is computed by specific functions, and then the
demand value is updated with this information. As an example, the number of new branches b(n) is
modeled as a function of the ratio Q(n)/D(n) which is a good measure of the internal competition in the
plant and was thus chosen as a control variable for plant self-regulation [24]:

b(n) = H(Q(n)/D(n), Pt) , (2.5)

with Pt the plant topological parameters.
The plant photosynthetic surface area is the sum of the surface areas of all the photosynthetic organs.
In this article, only leaf blades are supposed to be photosynthetic and they remain active while their
chronological age is lower than Ta. The surface area of one leaf blade is the ratio of its mass divided by
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its mass per unit area, which is supposed constant for all leaves and denoted by e. Equation 2.6 therefore
gives the general equation to compute the photosynthetic surface area.

S(n) =
1

e

Ta
∑

d=1

v(n− d+ 1) ·Na(n− d+ 1)

d
∑

k=1

pa(k)
Q(n− d+ k − 1)

D(n− d+ k − 1)
(2.6)

Equations 2.1 to 2.5 define the reccurence equations of plant growth and the plant growth model thus
comes in the form of a discrete dynamic system.

2.1.3. Model Parameterization

Apart from the parameters that can be measured directly on plants, some ecophysiological parameters
of the functional equations (parameters Pf from Equation (2.2) and parameters of the empirical sink
functions po) and some topological parameters (Pt from Equation (2.5) ) need to be estimated from
experimental data by model inversion, as detailed by [4]. If plant topology is given (that is to say if
the development sequence v(n) is known and Pt = ∅), the model outputs are continuous functions of
the parameters and continuous optimization methods can be applied straightforwardly for likelihood
maximization or generalized least squares minimization. Regarding topological parameters driving the
retroaction of functioning on organogenesis Pt, Equation (2.5) generally includes transformations from
real values to integers. Hence, it does not generate continuous variations of the model outputs and
Newton type methods can no longer be applied. We need to resort to heuristic methods to minimize the
cost function. We choose the simulated annealing algorithm [14].
Owing to the relative simplicity of functional-structural interactions in the GreenLab model, it is possible
to perform the estimation of topological and ecophysiological parameters in a recursive loop with separated
steps. In a first step, the topology is fixed to the measured one (that is to say that sequences b(n) and
v(n) are considered given). It allows the estimation of the ecophysiological parameters with a continuous
method. Once these functional parameters are estimated, topological data (e.g. number of branches or
organs) are added into the target observation data and the topological parameters are estimated while
ecophysiological data are considered known. Several trials are usually needed to ensure convergence to a
reasonable solution with the simulated annealing.
Theoretical analyses of the model properties in terms of emergent oscillatory patterns have been carried
out on two case studies: fructification and branching.

2.2. Theoretical analysis of the generation of oscillations for fructification and

branching processes

Based on the generic model frame described above, we derive the equations of two models: one is designed
to analyze the fructification process and the other one the branching process. In both cases, we analyze the
theoretical conditions for the emergence of oscillations. Previous works on such mathematical studies can
be found in [22, 25]. These two simplified case-studies correspond to observations that have been widely
reported by botanists but that are not well understood from a biological point of view. Mathematical

studies focus on the sequence

(

Q(n)

D(n)

)

n∈N

regarding the important role played by this variable in the

model equations.

2.2.1. Conditions for the Generation of Oscillations associated to Fructification

Let us consider a single-stem plant, with one new phytomer appearing at each time step. In that case,
phytomers are composed of one internode, one leaf and one flower. The flower may or not become a fruit
depending on the plant trophic conditions. In the model, we assume that the flower aborts if the ratio of
biomass to demand is below a given threshold. Only the orgs compartment is considered.
In this case-study, the empirical function G (Equation 2.2) is based on the Beer-Lambert approximation,
where Pf = {µ, Sp, k} are crop parameters. Leaves are supposed to be photosynthetic during Ta time
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Table 1. Notation

Name Description
Q(n) Biomass produced at time step n

D(n) Plant demand at time step n

dr(n) Demand of the ring compartment
Dv Demand of vegetative organs(= (pa + pe(Te))

No(n) Number of organs of type o appeared at time step n

Nf (n) Number of infructescences on a growth unit appeared at n
b(n) Number of buds per phytomer at time step n

v(n) Number of new phytomers at time step n

E Environment input variable
S(n) Total blade surface

µ, Sp, k, R Crop parameters involved in functional equations
e Leaf thickness
Ta Number of time steps for a photosynthetic leaf
Te Number of time steps for organ to grow

po(d) Sink strength of organ of type o and chronological age d

(replaced by po if sink strength is independent on d)
pbk Sink stength of a new phytomer of rank k (cecropia)
o Type of organ (a: blade, e: internode, f:fruit, p:petiol)

B kpa

Spe

A Eµ

b B
Te(Te+1)

2

C
e(pe+pa)

µpa

θ Threshold for fruit apperance
m Number of leaves per phytomer
⌊x⌋ Integer part of x

steps, i.e. during their growth period. Hence the amount of biomass produced at time step n is given by
the following relationship:

Q(n) = Eµ






1− e

−k
S(n)

Sp






(2.7)

As the other compartments are not considered here, the plant demandD(n) is the organ demandDorgs(n).
There is only one new organ of each type (leaf, internode, fruit) at each time step, and organs are growing
during Te time steps. It is assumed that the organ sink variation does not depend on the organ age unlike
the real plant parametric function represented in 4. Hence equation 2.4 is equivalent to the following
equation:

D(n) = min(n+ 1, Te)(p
e + pa) +

min(n+1,Te)
∑

d=1

pf (d)δ(n− d+ 1) (2.8)

δ(n) denotes a variable equal to 0 if the flower created at time step n aborts and 1 if the corresponding

fruit grows. In the model, a fruit grows on the phytomer appeared at time step n if
Q(n+ d)

D(n+ d)
> θ, with

{d, θ} ∈ Pt. There is a delay between the fruit initiation and the beginning of its growth.

Let us denote B =
kpa

Spe
, A = Eµ, Dv = (pa + pe)Te, b = B

Te(Te + 1)

2
. We define the sequence (αn =
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Q(n)

D(n)
)n∈N. From equations 2.6, 2.7, 3.1, this sequence α is defined by the recurrence equation:

αn+1 =















































A
1− e

−B

n
∑

d=1

dαd

(pe + pa)(n+ 1) + pf
∑n+1

d=1 δ(αn+1−d)
if n < Te,

A
1− e

−B

Te
∑

d=1

dαn−Te+d

Dv + pf
∑Te

d=1 δ(αn+1−d)
if n ≥ Te,

(2.9)

Three behaviours are observed according to parameter values:

1. If Ab < Dv, the sequence α tends to 0, the plant cannot bear any fruit (see appendix 4).
2. If Dv < Ab < Dv + Tep

f , the simulations present alternating patterns of fruits on the main stem, i.e.
sequences of phytomers without fruits followed by sequences of phytomers bearing fruits.

3. If Ab > Dv + Tep
f , there is a fixed point for the function f : x → f(x) =

A

Dv + Tepf
(1− e−bx). If this

fixed point is greater than the threshold, all the fruits can grow. Otherwise, alternating patterns of
fruits emerge on the stem.

These results are illustrated by numerical simulations of these three behaviours (fig. 1). The plant
parameters (Pf , Pt) are identical in the three examples, computed from model calibration (see section
3.1.2) but sink strengths are supposed constant all along organ expansion. The threshold value for fruit
growth is θ = 0.5. The model is tested with three levels for the environment input variable E, which
give three values for the parameter A corresponding to the three cases presented above. When E = 0.15,
Ab < Dv, hence the ratio of biomass to demand tends to 0 and so do the phytomer masses. No fruit is
produced by the plant. When E = 1, Dv < Ab < Dv + Tep

f , alternating patterns are produced, as the
ratio of biomass to demand sometimes exceeds θ, which induces fruit appearances and consequently an
increase in plant demand. This leads to the decrease of the ratio which becomes lower than θ. It induces
flower abortion and so on. When E = 2, Ab > Dv + Tep

f , the sequences converges to the value 0.5844
which is above the threshold. All the flowers will become fruits.

2.2.2. Branching

In this section, we consider a tree whose type corresponds to the Leeuwenberg architectural model [13].
Phytomers consist of an internode and m leaves; they bear m axillary buds, each of them can potentially
give rise to a new lateral branch. In the case of Leeuwenberg architectural models, the apical bud die
and is relayed by the axillary ones. It is the case considered in this study but this can be easily extended
to trees for which apical buds stay alive. No bud dormancy is considered: buds either produce a branch
at the time step after their initiation, or die. Bud outgrow is assumed to depend on the tree state of
internal trophic competition, represented by the ratio of available biomass to demand, Q/D: the number
of new phytomers at time step n is given by equation 2.5, with H a step function. b(n), the number of
buds per phytomer at time step n that will give new branches at time step n+1, is given by the following
equation:

b(n) =

⌊

1

θ

Q(n)

Dtemp(n)

⌋

(2.10)

where ⌊x⌋ denotes the integer part of x. θ denotes the threshold value to be exceeded to produce an
additional branch. In this equation, Dtemp(n) = Dorgs(n) +Drings(n) +Droots(n) +Dbuds(n). Dtemp(n)
is the demand of equation 2.3 with the potential number of new branches, including the sinks of the
potential buds. It is used to compute the number of new branches that can emerge at the current cycle,
and it is then updated to D(n), the effective demand, once the number of new organs is computed.
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Figure 1. Simulation of the Q/D ratio with three different values for the environment
variable E and corresponding plant representations. a. E = 0.15 the sequence tends to 0
and all the flowers abort. b. E = 1 Cyclic patterns of fruits are observed on main stem.
c. E = 2. The sequence α tends to a value that is above the threshold for fruit growth,
hence all the flowers become fruits.

The production function G is assumed to be an hyperbolic function of blade area, S(n). Equation 2.2
becomes:

Q(n) =
E

1

µ · S(n)
+R

(2.11)

As for equation 2.7, µ and R are parameters related to the biomass conversion efficiency and E is linked
to the environmental conditions. Here again, only the orgs compartment is considered and we assume

that organs reach their final sizes immediately (Te = 1, Ta = 1). Let us denote C =
e(pe + pa)

µpa
. From

[22], we know that
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– if (E − C) > R ·m · θ, m branches appear at each time step. The number of leaves and the biomass
production increase in an exponential way.

– if ∃k ∈ {0, . . . ,m− 1}, such that R ·m ·θk < Em−Ck < R ·m ·θ(k+1), then k out of m new branches
appear at each time step.

– otherwise, alternating patterns appear in the branching system: the number of new branches oscillates
between k and k + 1 such that Em− C(k + 1) < R(k + 1)θm < Em− Ck.

When alternating patterns emerge, it is possible to give an integer approximation of the period:

p̂ = 1 +

ln









Em− Ck −Rm(k + 1)θ

mθ(k + 1)

(

C(k + 1)

mθ(k + 1)

(

1−
Ck

Em

)

−B
Ck

Em

)









ln(
Ck

Em
)

(2.12)

These behaviours are illustrated on figure 2. The period is not an integer with this set of parameters.
The number of new branches oscillates between 1 and 2 per phytomers, with the alternating pattern
:2− 1− 2− 1− 1− 2− 1. The trend of the ratio of biomass to demand highlights this periodic pattern.

Figure 2. Simulation of plant growth and corresponding trend on the ratio of biomass
to demand. Parameter values are :R = 1,m = 2, C = 1.4. Thus, p̂ = 2.57. NR and R
respectively stand for ’No Ramification’ and ’Ramification’.

3. Application to real plants and simulations

3.1. Cucumber Plants

In this section, an application of the model to cucumber plants is presented. A few specific adaptations
are implemented in the model for application to the data without changing the main hypotheses of the
model.

3.1.1. Model Equations for Cucumber

Unbranched plants are considered, which corresponds to the horticultural practice of branch pruning.
Hence ∀n, v(n) = 1. The growth of pruned Cucumber plants thus corresponds to the case-study presented
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in section 2.2.1 with addition of petioles in the model and without the hypothesis of constant sinks. The
resulting equation of the demand is therefore adapted from equation 2.8, with the same notations, as
follows:

D(n) =

min(n+1,Te)
∑

d=1

(pe(d) + pa(d) + pp(d)) +

min(n+1,Te)
∑

d=1

pf (d)δ(n− d+ 1) (3.1)

If n ≥ Te, Dv =
∑Te

d=1(p
e(d) + pa(d) + pp(d)) is independent on n and the only varying factor in the

computation of the demand is the number of growing fruits.

The sequence

(

αn =
Q(n)

D(n)

)

n∈N

follows the recurrent equation when n ≥ Te:

αn+1 = Eµ
1− exp

−
k

eSp

Te
∑

d=1

d
∑

k=1

pa(k)αn−d+k

Dv +
∑Te

d=1 p
f (d)δ(n+ 2− d)

(3.2)

(to be compared with equation 2.9).

3.1.2. Model Calibration

Cucumber plants (Cucumis sativus cv. JingYan Mini2 from the Beijing Academy of Agricultural and
Forestry Science) were grown in a greenhouse of Beijing Academy of Agricultural Sciences (BAAS) from
March 20th to June 15th 2006. Only natural daylight was supplied for plant growth. Air temperature
inside the greenhouse varied from 15oC to 30oC. Individual seedlings with one true leaf were planted in
29 × 24 × 25 cm containers, containing 1 : 2(v/v) vermiculite and peat mixed with 0.25 kg of poultry
compost. The containers were arranged in rows with row spacing of 1 m and 0.5 m within a row. The
plot size was 100 m2. Measured plants were pruned by removing all axillary buds immediately after
appearance. Four plants were randomly harvested at three different dates (May 10, May 17 and June
13). They were separated into root system and shoot, with the shoot further divided into phytomers.
Each organ was dry weighted and the leaf surface areas were estimated by analysis of leaf photographs.
Although model calibration has been carried out on several measured plants, it is only presented here
for one plant (figure 3), the other results being similar. The growth model was calibrated on plants
measured at the three dates, as if it were the same plant growing, which is not possible due to destructive
measurements. For each plant at the final stage, youngest plants were selected according to their number
of phytomers.
Model calibration allows us to reproduce the growth of the observed cucumber plants in terms of growth
rate and partitioning. Some parameters are directly deduced from measurements, such as Te and Ta

which are set to 20 time steps and e = 0.02g.m−2. E = 8.8MJ is proportional to the photosynthetically
active radiation in the greenhouse during one time step. The other parameters are estimated using the
method described in section 2.1.3. For equation 2.7, Sp = 0.44m2, and µ = 95.8. Estimated topological
parameters are θ = 0.5, d = 7. The parametric functions for organ sink strength and variation (parameters
po(d), d ∈ {1, Te}) are represented on figure 4.
There is a satisfying adequacy between measurements and model simulation for the masses of organs.
The model simulates more growing fruits than really observed on the measured plant (Figure 3D). The
ratio of well predicted position to the total potential positions for fruits is 89%.

3.1.3. Cyclic Patterns of Fructification in the Calibrated Model

The estimation procedure allows deducing the pattern of the source-sink ratio (Figure 5) from the plant
architecture. This ratio exceeds the threshold parameter twice in the plant growth which induces two
waves of fruit on the stem. When the curve is above the horizontal line (threshold), fruits grow. Otherwise
they abort. This ratio present a cyclic pattern. Indeed, when the ratio is high enough, initiated fruits
can grow which induces an increase in plant demand and then a decrease of the ratio of biomass to

56
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Figure 3. Model calibration on 4 output variables according to the phytomer rank on
the main stem A. Petiole Mass. B. Blade Mass. C. Internode Mass. D. Fruit Mass

demand. This ratio goes behind the threshold so fruits abort again, inducing a decrease in plant demand
and so on... Along the stem, this balance between biomass production and demand results in alternating
succession of fruit and fruit-free phytomers. It also impacts the leaf profile (figure 6). Leaves on the
fruit-bearing phytomers compete with fruits for biomass and hence have smaller leaf area comparing to
leaves growing without fruit competition. Section 2.2 theoretically explains how oscillations are generated
in the dynamic system of plant growth.

3.2. Cecropia trees

Cecropia sciadophylla Mart. is a tropical tree species that has a distribution area covering the Amazonian
basin, the Llanos region in Columbia and Venezuela, and the Guiana shield [2]. Trees of this species have
interesting properties from a modeler’s point of view: in particular, contrary to what is experimentally
feasible for most tree species, exhaustive descriptions of the plant structure and mass partitioning are
accessible. C. sciadophylla trees grow rapidly and continuously: one phytomer is emitted every two
weeks on the main stem. They have a simple architecture made of a relatively low number of phytomers,
although their life span can reach 40 years (for example, an eleven-year-old measured individual of C.
sciadophylla was constituted by approximately 1700 phytomers). The succession of internodes and their
associated lateral production remain visible over years (Figure 7). Each node bears three lateral buds
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Figure 4. Sink strength variations with time step for blades, internodes, petioles and
fruits after estimation from experimental data.

that potentially give rise to a branch (central bud) and two infructescences [37], that are alternatively
activated: synchronous branching periods cyclically alternate with flowering periods [12,37]. The origins
of these periodic patterns is questioned in [16]: it was shown that, among other factors, dynamic trophic
competition during the plant development could be involved.
In this section, we present the equations of the model for C. sciadophylla and its calibration from exper-
imental data.

3.2.1. Model Equations

The plant topology consists in a sequence of phytomers along the trunk, that can potentially bear two
infructescences and one branch. Infructescence positions are fixed from the observations. Branches are
supposed to appear if and only if the ratio of biomass to demand is above a threshold denoted by θ, as
in Equation 2.10. Biomass production is assumed to be proportional to photosynthetic surface area, as
self-shading can be considered as negligible for Cecropia due to quasi-optimal arrangement of leaves [15],
[16]. Hence the production function G is linear as in the case-study of section 2.2.2 (equation 2.11 with
R = 0). In contrast with the case-study 2.2.2, roots and rings compartments have to be considered for
real applications on trees.
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Figure 5. Trend of the ratio of biomass to demand with time

Figure 6. Visualization of the simulated cucumber plant at time steps 9 (a), 20 (b), 31
(c). The final plant is represented in 2D to show the cyclic leaf profile. Dark leaves are
still photosynthetically active, pale leaves are dead.

The demand of the plant at time step n > 0 is thus:

Dtemp(n) = pb1 · v(n) +
n
∑

k=2

pbk · b(n− k + 1) · v(n− k + 1) (3.3)

+

Te
∑

d=1

pf (d) ·Nf (n− d+ 1) · v(n− d+ 1) + dr(n)

We remind that Nf (n) is the number of infructescences on a growth unit that appeared at time step n
and that v(n) · b(n) is the total number of buds that will give new branches at time step n + 1. Since
it is assumed that no axis dies and that there is no bud dormancy, the apical phytomer of each branch
(including the main stem) bear two potential buds: the apical one, of rank k, and the lateral one, of rank
1 (k = 1 at the axis basis). The sink pbk of a new phytomer varies with its rank k along an axis to account
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Figure 7. Habit of C. Sciadophylla: (a): young individual, (b): appearance of a young
branch, (c): crown architecture of an adult individual, (d): infructescences on an adult
individual.

for the ontogenetical variations during the establishment phase at branch emergence [16]:

pbk = pb ·min{1, kV b} (3.4)

where pb is the bud sink in the stable phase of branch growth and V b is the slope parameter.
The demand for the ring compartment at time step n, dr(n), is assumed to depend on the total blade
surface S(n), in reference to the widely used pipe model theory [32]:

dr(n) = pr · S(n) (3.5)

where pr is the sink strength of the ring compartment. Once the potential demand Dpb is calculated, the
number of new branches per phytomer at time step n+ 1, corresponding to b(n), is computed according
to equation 2.10 and the effective demand can be calculated as:

D(n) =
n
∑

k=1

pbk · b(n− k + 1) · v(n− k + 1) (3.6)

+

Te
∑

d=1

pf (d) ·Nf (n− d+ 1) · v(n− d+ 1) + pr · S(n)

Note that the first term of the demand includes only the demand of buds that will outgrow: indeed, if
the threshold condition of equation 2.10 was not satisfied, b(n) = 0. We assumed that only lateral buds
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Table 2. Values of estimated functional parameters

Env. Factor E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

7.7 7.5 7.3 5.7 3.3 6.5 6.4 6.3 15.9 10 7.2

Funct. Params pr pf V b µ ev
2.07 2.85 0.016 0.000415 0.000522

can abort and not the apical buds.
After this step of allocation to compartments, intra-compartment biomass allocation to each organ is
computed according to specific allometric rules: bud biomass is shared between blades, petioles and
internodes (it is assumed that their expansion lasts only one time step); ring biomass is spread along
every axes for the diameter increment of each phytomer. Blade mass per unit area e(n) varies with the
Q/D ratio: e(n) = emin + ev ·Q/D(n). We refer to [16] and [17] for details.

3.2.2. Model calibration

In September 2007, 11 individuals were felled and measured, ten at Saint-Elie Road (5o17’ N, 53o04
W) and one at Counami Road (05o24 N, 53o11 W), in French Guiana. All the trees from Saint-Elie
population were sterile and only one had branches. The tree from Counami road was pistillate and had
branches.
For each tree, the target data consisted in a topological description (phytomers and axes positions) and,
for each phytomer, in its internode dry mass, internode fresh length, internode fresh diameter, blade dry
mass, blade (fresh) area, petiole dry mass, and infructescence dry mass. The roots were extracted and
their dry weight measured for the eight youngest individuals. The ages of these trees and the delimitation
of annual growth were estimated following the method presented in [12,37]: they ranged from less than 1 to
8 year-old. The measured trees also exhibit a relatively large variability in their measured characteristics:
height ranged from 8cm to more than 12m and total aerial mass ranged from 2g to around 72kg.
In a first step, the topology was set as observed for each tree. Specific allometries were estimated from
the data to link organ dry mass to their fresh dimensions. As internode length is highly variable with
the environment [12, 37], it was considered as an input and set directly from the measurements. The
minimal value for the blade mass per unit area was emin = 0.00749 g.cm−2. The ratio of underground
to aerial mass was found relatively constant: 0.19 in average (SD 0.059). The sinks of blades, petioles
and internodes were estimated by a linear regression of these organ masses with respect to the phytomer
mass with n=540 data points and their values were 0.7177 (R2=0.99), 0.2080 (R2=0.97) and 0.07423
(R2=0.81) respectively.
The functional parameters of the model were estimated using the data of organ dry mass and dimensions
of the 11 trees, representing in total more than 4000 data points. The results are presented in table
3.2.2. The coefficients of determination are 0.86, 0.75, 0.79, 0.65, 0.54 for internode masses, internode
diameters, blade areas, blade masses and petiole masses respectively. All trees shared the same parameter
values: only the environmental factor EI was specific to each tree and estimated relatively to a reference
value, arbitrarily chosen (equal to 10 for individual 10). The results were found consistent with visual
inspection of the local environment of each tree.

3.2.3. Alternate Patterns of Branching

After this step of estimation of functional parameters, the values of the simulated ratio of biomass supply
to potential demand at each time step can be obtained for each plant. Analyzing its variations with respect
to the time of branch appearance provides a rough estimation of the threshold value: θ = 9.975 was found
(Figure 9, for tree 10). Figure 10 shows some 3D views of the simulated trees (without infructescences).
The first branch appears at time step 150, which is consistent with botanical observations. The intervals
between appearance of the following successive cohorts of branches are: 48, 45, 31, 24, 45, 31, 25, 44. For
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Figure 8. Graphs of simulated and observed values for internode masses (a), petiole
masses (b), blade masses (c) and blade areas (d) along the main stems of the 11 individ-
uals

C. sciadophylla, it has been observed that branches always appear at given periods of the year (once or
twice a year), and since 25 phytomers are emitted each year, cohorts of branches are separated by 25 or
a multiple of 25 phytomers without branches [37]. In the simulation, the number of branches per cohort
regularly increases, which is unrealistic. A possible reason might be that no senescence phenomenon
was included in the model, since the target trees were all young. Several alternative approaches could
be considered to generate a more realistic long-term pattern: for instance, introducing the maintenance
cost of organs, constraints for conduction of water and nutriments along the tree axes, or constraints for
biomechanical stability.

4. Conclusion

The aim of this article was to present a generic dynamic model of plant growth in which the feedback
control of functioning on structural development is at the origin of rhythm emergence in fructification and
branching processes. Theoretical analyses were performed on two case studies concerning respectively
these two phenomena. More complex versions of this model were applied to real situations on Cucumber
plants and Cecropia trees. Alternating patterns were indeed observed in the measured plants. However
each calibration has been made on a limited number of individuals. In particular, the threshold value for
branch appearance in C. sciadophylla was estimated on an individual with one flush of branches only:
this would deserve deeper investigations on other individuals with a succession of cohorts of branches.
More experimental calibration should be carried out to increase the model reliability and decrease the
uncertainty on parameter values.
The model is mainly based on a key variable, namely the ratio of available biomass to plant demand
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Figure 9. Variations of the Ratio of Biomass Supply to Potential Demand and Threshold
for Branch Appearance

Figure 10. 3D view of Cecropia at 100, 200, and 250 time steps.

(Q/D), that triggers some development events by threshold effects. In terms of model design, this
seemingly simple approach can generate interesting emerging patterns. This is a satisfying strategy since
it naturally introduces some feedbacks effects, thus resulting in a system with auto-regulation properties.
It can therefore be successfully applied to mimick the behaviour of real plants.
However, this does not of course prove that this is the biological truth. In particular, although the trade-
off between the different growth compartment of the plant always exists, there might be other non-trophic
regulations, such as hormonal control [34]. Fruit abortion or abscission is related to hormone balance,
and the latter is influenced by the formation of seeds. Although the hormone theory and the assimilate
theory look contrasting, Marcelis et al. [21] suggest that assimilate availability may be the trigger for a
change of the hormonal balance which leads to abscission. Some other phenomena remain not considered
in the model in spite of their influence on the plant growth and biomass partitioning: dominance between
fruits [30], energetic cost of the structure, light effects. Regarding the branching process, our analyses
suggest that the threshold on the trophic state might not be sufficient to explain the alternate branching:
it has been observed that young trees with fast growth did not have branches, although their vigour state
was comparable to that of older branched trees. It is hypothesized that ontogenetic factors could be
involved in the regulation of branching and interact with several environmental factors: light intensity
and quality, nutrient status of the soil for example. Models are developed for a better understanding of
the relative effects of these different factors [6] and some of them could be integrated in the GreenLab
mathematical framework.
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After the full validation of this deterministic model, a stochastic version can be implemented in order
to reproduce the variability between plants that may be due to local constraints: micro-climate, pests
or any other accidental damages. A simple stochastic version has been applied on pepper plants [19],
where the fact that the Q/D ratio exceeds a threshold is a necessary, but not sufficient, condition for
fruit growth.
After a deeper validation, such a model can be a tool for virtual experiment. Pruning strategy can be
simulated in the model to determine the best management practices in order to maximize the yield or
get a more balanced production. Indeed, if the pruning is too heavy, the plant will not be able to grow
enough fruits. But if it is too light, fruits will grow more randomly which might be less optimized.
Another perspective for this work is to pursue the mathematical study and determine the condition for
rhythm generation for more complex dynamic systems. An analytical solution for the periodicity could
be optimized according to the plant parameters, and this would be helpful for plant growers.

Appendix: Study of the sequence with a constant demand

The sequence we intend to study is given by equation 2.9 that we recall her:

αn+1 =















































A
1− e

−B

n
∑

d=1

dαd

(pe + pa)(n+ 1) + pf
∑n+1

d=1 δ(αn+1−d)
ifn < Te,

A
1− e

−B

Te
∑

d=1

dαn−Te+d

Dv + pf
∑Te

d=1 δ(αn+1−d)
ifn ≥ Te,

(.1)

This sequence is bounded and ranges between 0 and A = Eµ.
While the demand remains constant (i.e no fruit or a fruit on each phytomer), the recurrence equations
are:

n < Te
pa+pe

A
(n+ 1)αn+1 = 1− e−Bnαn(1− pa+pe

Eµ
nαn)

n ≥ Te,
D
A
αn+1 = 1− (1− D

A
αn)e

−BTeαneB
∑n−1

d=n−Te
αd

n ≥ Te,
D
A
(αn+1 − αn) = (1− D

A
αn)(1− e−BTeαneB

∑n−1

d=n−Te
αd)

(.2)

Let note b = B Te(Te+1)
2 and D = Dv if there is no fruit on the plant or D = Dv +Df if there is a fruit

growing on each phytomer.

Hence, for n ≥ Te, as ∀n, αn <
A

D
, we have:

αn+1 > αn ⇔
n−1
∑

d=n−Te

αd < Teαn (.3)

Proposition .1. If
Ab

D
< 1, the sequence (αn) is decreasing.

This point can be demonstrated in a recurrent way. We note (Hn) the hypothesis.

(Hn) : ∀d < n α1 ≤ . . . ≤ αd ≤ . . . αn

We have the relationship:
Ab

D
< 1 ⇒ ∀x,

A

D
(1− e−bx) < x (.4)

We use it to show that
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A. Mathieu, V. Letort, P.H. Cournède, B.G. Zhang, P. Heuret, P. de Reffye Oscillations in Plant model

– (H2) : α1 ≤ α2

Indeed, α2 = A
D
(1− e−Bα1) and

AB

D
<

Ab

D
< 1

– (Hn), for n < Te

B
∑n

d=1 dαd ≤ Bαn

∑n
d=1 d ≤ bαn, hence αn+1 <

A

D
(1− e−bαn) and αn+1 < αn with the relationship

.4.
– (Hn), for n ≥ Te

The proof is similar to the previous one.

As the sequence is positive and decreasing, it is convergent. It is possible to demonstrate in a recurrent

way that ∀n, αn < βn, where (βn) is the sequence defined by βn+1 = f(βn), with f : x →
A

D
(1− e−bx).

If
Ab

D
< 1 using the function f , we demonstrate that the sequence β converges to 0 and so does the

sequence α.
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