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A proportional mean-field feedback for the desynchronization and
inhibition of Kuramoto oscillators

A. Franci, A. Chaillet, W. Pasillas-Lépine, E. Panteley, F. Lamnabhi-Lagarrigue

Abstract— In this paper we summarize recent advances in
the controlled alteration of synchronization in networks of in-
terconnected Kuramoto oscillators. Motivated by neuroscience
applications, and in particular by the deep brain stimulation
treatment for Parkinson’s disease, we show that a scalar
signal, proportional to the mean behaviour of the oscillators
population, may either desynchronize or inhibit the resulting
oscillations.

I. INTRODUCTION

Neuronal oscillations play a central role in brain function-
ing. On the one hand, neuronal synchronous oscillations are
at the basis of fundamental functions like memory, cognition
and movement path generation. On the other hand, a too
strong neuronal synchronization can lead to pathological
states such as Parkinson’s disease (PD).

Parkinsonian patients exhibit an intense oscillatory syn-
chronous activity in some deep brain areas. This synchrony is
tightly correlated to PD physical symptoms [1]. A successful
treatment of PD symptoms is called deep brain stimulation
(DBS), which consists in a permanent electrical stimulation
of deep brain areas through implanted electrodes [2].

Despite its impressive therapeutic results, DBS still suffers
from considerable limitations. DBS relies, in its present form,
on no cerebral measurement but rather permanently injects
a square signal in deep brain structures, regardless of the
neurological activity of the patient (open-loop stimulation).
This has negative consequences in terms of side effects and
energy consumption.

The attempts to develop a closed-loop DBS face several
inherent obstacles. First, due to intrinsic heterogeneities,
uncertainties, dimensions, and non-linearities, the dynamics
ruling the neuronal population’s behaviour is complex. In
addition, due to the size of the electrode with respect to the
neuronal scale, the only measurement one may rely on is the
mean electrical activity of the neuronal population around
the electrode head (local field potential). In the following
we refer to this scalar measurement as mean-field. Thus,
for the same reason, only one input signal is available for
stimulation. From a control perspective, closed-loop DBS
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consists in altering synchronization of a complex large-scale
scale based on single measurement and a single control input.

Another important limitation in the present DBS stands
in the little understanding of its underlying mechanisms:
the debate is still open in the medical community about
the exact functioning of DBS and its relationships with
neuronal synchronization [3]. More precisely, it is not yet
clear whether DBS acts by desynchronizing neuronal cells,
inhibiting their behaviour, or modify the frequency of the
resulting oscillations.

In this paper, we develop a simple scalar control law
and test the two former hypotheses. We show, based on
a simplified model of phase oscillators, that a stimulation
signal taken proportional to the measured mean-field may
induce either desynchronization or oscillation inhibition in
the stimulated neuronal population.

Apart from its simple nature, which ensures mathematical
treatability and easy practical implementation, the propor-
tional feedback approach is particularly tempting for DBS
for energetic concerns. Energy efficiency is a crucial issue
in DBS for side effects reduction and diminution of surgical
operations for battery replacement. Since the population’s
mean electrical activity is small in both the desynchronized
and inhibited states, a proportional feedback approach en-
sures a DBS signal of small amplitude.

The model we rely on is derived from the complex
Landau-Stuart oscillator. After classical simplifications, we
show that this model boils down to a modified version of a
network of Kuramoto oscillators [4]. This model is presented
in Section II. We then formally show that exact phase-locking
is generically impossible under proportional mean-field feed-
back, regardless of the oscillators interconnection topology.
Nonetheless, by establishing some robustness properties of
phase-locking, we explain in Section III why this feature
may not be sufficient for practical DBS concerns. Focusing
then on all-to-all interconnection topologies, we propose
values of the feedback gain to ensure desynchronization
(Section IV) and inhibition (Section V). Some conclusions
and perspectives are provided in Section VI.

Notation. For a set A ⊂ R and a ∈ R, A≥a denotes
the set {x ∈ A : x ≥ a}. Given a vector x ∈ Rn, |x|
denotes its Euclidean norm, that is |x| :=

√∑n
i=1 x

2
i . For

a set A ⊂ Rn and x ∈ Rn, |x|A = infy∈A |y − x| denotes
the point-to-set distance from x to A. B(x,R) refers to the
closed ball of radius R centered at x in the Euclidean norm,
i.e. B(x,R) := {z ∈ Rn : |x − z| ≤ R}. Tn denotes
the n-Torus. ‖u‖ is the L1 norm of the signal u(·), that



is, if u : R≥0 → Rn denotes a measurable signal, locally
essentially bounded, ‖u‖ := esssupt≥0|u(t)|. A continuous
function α : R≥0 → R≥0 is said to be of class K if it is
increasing and α(0) = 0. It is said to be of class K∞ if it
is of class K and α(s) → ∞ as s → ∞. A function β :
R≥0 ×R≥0 → R≥0 is said to be of class KL if β(·, t) ∈ K
for any fixed t ≥ 0 and β(s, ·) is continuous decreasing and
tends to zero at infinity for any fixed s ≥ 0. The vector
with all unitary components in Rn is denoted by 1n. Given
N ∈ N, the set N 6=N denotes the set {(i, j) ∈ N≤N : i 6= j}.

II. MODEL DERIVATION AND PHASE-LOCKING UNDER
MEAN-FIELD FEEDBACK

A. Kuramoto under mean-field

This note focuses on periodically spiking neurons, that
is neurons generating an infinite regular train of action
potentials. Even though a rich variety of behaviors exist
beside this, periodic neurons are commonly considered for
the analysis of neuronal synchronization. See for instance [5,
Chapter 8] and [6, Chapter 10], and references therein. The
dynamics underlying periodic spiking behavior can be ex-
tremely complicated. Even basic physiological models, such
as the Hodgkin-Huxley model [7], consist of several coupled
nonlinear differential equations. With the aim of establishing
analytical results on networks with an arbitrary number of
neurons controlled via electrical stimulation, we look for a
simpler model still exhibiting some of the peculiarities of its
more detailed counterparts.

Consider the following complex oscillator, known as
Landau-Stuart oscillator, and representing a normal form of
a supercritical Andronov-Hopf bifurcation:

ż = (iω◦ + ρ2 − |z|2)z, z ∈ C, (1)

where ω◦, ρ ∈ R. In its simple form this model captures two
fundamental properties of periodically spiking neurons. First,
it exhibits a stable oscillation of radius |ρ| and frequency ω◦
[8, Theorem 3.4.2], modeling the periodic spiking activity.
Secondly, we can associate its real part to the membrane
voltage, representing the measured output, and its imaginary
part to a recovery variable, embedding the effects of the
other variables of physiological neuron models. A similar
simplification of the neural rhythm has been extensively used
in the synchronization and desynchronization literature. See
for instance [4], [9], [10], [11], [12], [13], [14].

While the coupling between real neurons can rely on dif-
ferent physical mechanisms, we focus here diffusive coupling
between the oscillators, in order to derive a mathematically
treatable model. The same approach has been exploited in
[15], [14], [16], [17]. The model for N ∈ N≥1 coupled
oscillators is then given by

żi = (iωi+ρ2i −|zi|2)zi+

N∑
j=1

κij(zj−zi), ∀i = 1, . . . , N,

where κij , i, j = 1, . . . , N , denotes the coupling gain from
oscillator j to oscillator i. We denote ω := [ωi]i=1,...,N ∈
RN as the vector of natural frequencies.

As in practice the neuronal interconnection is poorly
known, we allow κij , i, j = 1, . . . , N , to be arbitrary for the
time being. The presence of a limited number of electrodes
and their large size with respect to the neuronal scale, makes
the mean-field (i.e. the mean neurons membrane voltages)
the only realistic measurement for DBS. In the same way,
the unknown distances from the neurons to the electrodes
and the unknown conductivity of nearby tissues make the
contribution of each neuron to the overall recording both
heterogeneous and unknown. Consequently the only mea-
surement assumed to be available for DBS is the weighted
sum of the neuron membrane voltages. Associating the real
part of (1) to the voltage, the output of our system is therefore

y :=

N∑
j=1

αjRe(zj), (2)

which is referred to as the mean-field of the ensemble, where
α := [αj ]j=1,...,N ∈ RN≥0 describes the influence of each
neuron on the electrode’s recording. Similarly, we define
β := [βj ]j=1,...,N ∈ RN , as the gain of the electrical input
on each neuron. It is assumed to be unknown. The pair (α, β)
thus defines the stimulation-registration setup. The dynamics
of N coupled oscillators under mean-field feedback then
reads, for all i = 1, . . . , N ,

żi = (iωi+ρ
2
i −|zi|2)zi+

N∑
j=1

κij(zj−zi)+βi

N∑
j=1

αjRe(zj).

(3)
Relying on the assumption that the magnitude of each zi
remains equal to a constant ri > 0, which is supported
by a detailed argumentation in [18] and commonly made in
synchronization studies [19], [20], [21], [22], [23], [4], [24],
we have shown in [25] that the dynamics ruling its phase θi
is given by

θ̇i = ωi +

N∑
j=1

(kij + γij) sin(θj − θi)−
N∑
j=1

γij sin(θj + θi),

(4)
for all i = 1, . . . , N , where

k = [kij ]i,j=1,...,N :=

[
κij

rj
ri

]
i,j=1,...,N

∈ RN×N (5)

is referred to as the coupling matrix, and

γ = [γij ]i,j=1,...,N :=

[
βi
2

αjrj
ri

]
i,j=1,...,N

∈ RN×N (6)

defines the feedback gain. We also define the modified
coupling matrix, Γ ∈ RN×N , as

Γ := [Γij ]i,j=1,...,N = [kij + γij ]i,j=1,...,N . (7)

Our study is based on the incremental dynamics of (4),
defined, for all i, j = 1, . . . , N , by

θ̇i− θ̇j = ωi−ωj−
N∑
`=1

(
γi` sin(θj+ θi) + γj` sin(θ`+ θi)

)
+

N∑
`=1

(
Γi` sin(θ`− θi)− Γj` sin(θ`− θj)

)
. (8)



B. Phase-locking and oscillating phase-locking

Roughly speaking, a phase-locked solution can be inter-
preted as a fixed point of the incremental dynamics (8).
We distinguish solutions that exhibit collective oscillations
(pathological case) from non-oscillating ones, corresponding
to neuronal inhibition.

Definition 1 A solution {θ∗i }i=1,...,N of (4) is said to be
phase-locked if it satisfies

θ̇∗j (t)− θ̇∗i (t) = 0, ∀ i, j = 1, . . . , N, ∀t ≥ 0. (9)

A phase-locked solution is oscillating if, in addition, θ̇∗i (t) 6=
0, for almost all t ≥ 0 and all i = 1, . . . , N . If θ̇∗i (t) = 0,
for almost all t ≥ 0, then the oscillator exhibits oscillation
inhibition.

In other words, for oscillating phase-locked solutions,
the discharge rhythm is the same for each neuron, which
corresponds to a synchronous (pathological) activity, while
in the inhibited case the neurons are in a quiescent (non
pathological) state. The above definition of phase-locking
corresponds to that of “Frequency (Huygens) Synchroniza-
tion” [26, Definition 5.1 and Example 5.1], which is the most
widely studied in the analysis of synchronization between
coupled oscillators [27], [28], [29], [19], [20], [21], [22],
[23], [30], [31], [32], [26], [33], [34], [35]. On the other
hand, oscillations inhibition was studied in [9].

C. Existence of oscillating phase-locking

The following result, originally presented and proven in
[25], states that, for a generic neuronal interconnection,
the use of a proportional mean-field feedback prevents the
oscillators to all evolve at the exact same frequency.

Theorem 1 For almost all natural frequencies ω ∈ RN , for
almost all interconnection matrices k ∈ RN×N , and for
almost all feedback gains γ ∈ RN×N , system (4) admits
no oscillating phase-locked solution.

Generically, under mean-field feedback, only two sit-
uations may thus occur: either no phase-locking or no
oscillations (inhibition). This result therefore constitutes a
promising feature of mean-field feedback DBS.

On the one hand, the strength of Theorem 1 stands in
the generality of its assumptions: it holds for generic in-
terconnections between neurons, including negative weights
(inhibitory synapses), and does not require any knowledge
neither on the contribution αj of each neuron on the overall
measurement nor on the intensity βj of the stimulation
on each neuron. On the other hand, the disappearance of
the phase-locked states does not prevent a pathological
behavior. Indeed, while Theorem 1 states that the perfectly
synchronized behavior is not compatible with mean-field
feedback, it does not exclude the possibility of some kind
of “practical” phase-locking, such as solutions whose mean
behavior is near to that of a phase-locked one, but with small
oscillations around it. For instance, they may correspond to

phase differences which, while not remaining constant, stay
bounded at all time. From a medical point of view, such a
behavior for the neurons in the STN would anyway lead to
tremor. We formally characterize it in the next section.

III. PHASE-LOCKING ROBUSTNESS AND NECESSARY
CONDITIONS FOR DESYNCHRONIZATION

Theorem 1 ensures the disappearance of the perfectly
phase-locked states under generic proportional mean-field
feedback. However, for small feedback gains, the numerical
observations reported in Figure 1 highlights the persistence
of “nearly” phase-locked states. Even though not phase-
locked, these solutions are not yet desynchronized either.
In particular, they correspond to a population of neurons
that fire in an approximatively synchronous, and thus still
pathological, manner.

Fig. 1. Practical phase-locking in Equation (3). Each plot corresponds the
evolution of a phase θi(t).

The evidence of this “practical” phase-locking imposes to
compute necessary conditions on the feedback gain which
would assure effective desynchronization. This leads us to a
robustness analysis of phase-locked solutions in an oscilla-
tors population with respect to general time-varying inputs,
thus including mean-field feedback as a special case.

The robustness analysis of synchronization in a finite-
dimensional Kuramoto network has been the object of both
analytical and numerical studies. In particular, [36] proposes
a complete numerical analysis of robustness to time-varying
natural frequencies, time-varying interconnection topologies,
and non-sinusoidal coupling. It suggests that phase-locking
exhibits some robustness to all these types of perturbations.
To the best of our knowledge, analytical studies on the
robustness of phase-locking in the finite Kuramoto model
have been addressed only for constant natural frequencies
[21], [29], [34]. The Lyapunov approach proposed in [22]
for an all-to-all coupling suggests that an analytical study of
phase-locking robustness can be deepened.

We start by slightly generalizing system (4) to take into



account general time-varying inputs:

θ̇i(t) = $i(t) +

N∑
j=1

kij sin(θj(t)− θi(t)), (10)

for all t ≥ 0 and all i = 1, . . . , N , where $i :
R → R denotes the input of the i-th oscillator, and k =
[kij ]i,j=1,...,N ∈ RN×N≥0 is the coupling matrix. We stress
that, in this section, only nonnegative interconnection gains
are considered; negative gains are assumed minoritary and
are treated as perturbations.

Beyond the effect of the mean-field feedback, the system
(10) encompasses the heterogeneity between the oscillators,
the presence of exogenous disturbances and the uncertain-
ties in the interconnection topology (time-varying coupling,
negative interconnection gains, etc.). To see this clearly, let
ωi denote the (constant) natural frequency of the agent i, let
pi represent its additive external perturbations, and let εij
denote the uncertainty on each coupling gain kij . We assume
that pi, εij : R≥0 → R are bounded piecewise continuous
functions for each i, j = 1, . . . , N . Then the effects of all
these disturbances, including mean-field feedback, can be
analyzed in a unified manner by (10) by letting, for all t ≥ 0
and all i = 1, . . . , N ,

$i(t) = ωi + pi(t) +

N∑
j=1

εij(t) sin(θj(t)− θi(t)) (11)

+

N∑
j=1

[
γij sin(θj(t)− θi(t))− γij sin(θj(t) + θi(t))

]
,

which is well defined due to the forward completeness of
(10)1. We define the common drift ω of (10) as

ω(t) =
1

N

N∑
j=1

$j(t), ∀t ≥ 0 (12)

and the grounded input as ω̃ := [ω̃i]i=1,...,N , where

ω̃i(t) := $i(t)− ω(t), ∀i = 1, . . . , N, ∀t ≥ 0. (13)

Noticing that $i −$j = ω̃i − ω̃j , the evolution equation of
the incremental dynamics ruled by (10) then reads

θ̇i(t)− θ̇j(t) = ω̃i(t)− ω̃j(t) +

N∑
h=1

kih sin(θh(t)− θi(t))

−
N∑
h=1

kjh sin(θh(t)− θj(t)), (14)

for all i, j = 1, . . . , N and all t ≥ 0. We use θ̃ to denote the
incremental variable

θ̃ := [θi − θj ]i,j=1,...,N,i6=j ∈ T(N−1)2 . (15)

A general robustness analysis of (14) has been conducted
in [37], [25]. Roughly speaking, it states that phase-locking

1The forward completeness of (10) follows by the fact that (10) is a
Lipschitz continuous periodic dynamics, and thus bounded and globally
Lipschitz.

is robust (namely, locally input-to-state stable) to sufficiently
small exogenous inputs, including mean-field feedback. In
the case of all-to-all case, explicit bounds on the amplitude
of the tolerated inputs and on the region of attraction can be
provided. This is summarized by the following result.

Proposition 1 Consider the system (10) with the all-to-all
interconnection topology, i.e. kij = k0 > 0 for all i, j =
1, . . . , N . Then, for all ε ∈

[
0, π2

]
, and all ω̃ satisfying

‖ω̃‖ ≤ δεω :=
k0
√
N

π2

(π
2
− ε
)
, (16)

the following facts hold:

1) the set Dε :=
{
θ̃ ∈ T(N−1)2 : |θ̃|∞ ≤ π

2 − ε
}

is for-
ward invariant for the system (14);

2) for all θ̃0 ∈ D0, the set Dε is attractive, and the solution
of (14) satisfies

|θ̃(t)| ≤ π

2
|θ̃0|e−

k0
π2 t +

π2

k0
‖ω̃‖, ∀t ≥ 0.

Proposition 1 establishes the exponential input-to-state sta-
bility (ISS, [38]) of the synchronized state in the all-to-all
Kuramoto model with respect to time-varying inputs whose
amplitudes are smaller than k0

√
N

2π . It holds for any initial
condition lying in D0, that is when all the initial phase
differences lie in

[
−π2 ,

π
2

]
. Moreover, if the inputs amplitude

is bounded by δεω , for some 0 ≤ ε ≤ π
2 , then the set Dε is

forward invariant and all the solutions starting in D0 actually
converge to Dε.

Proposition 1 partially extends the main results of [29],
[34] to time-varying inputs. On the one hand, it allows to
consider sets of initial conditions larger than those of [29],
and bounds the convergence rate by a strictly positive value,
independently of the region of attraction. On the other hand
the required coupling strength is comparable to the one given
in [29], but more conservative than the lower bound in [34].
Finally for small regions of attraction, the bound on the
convergence rate obtained in Proposition 1 is not as good
as the one of [29], [34]. Details can be found in [25].

Since proportional mean-field feedback can be included
in the perturbation (11) , Proposition 1 provides a necessary
condition, in terms of the mean-field feedback amplitude,
for actual desynchronization of the neuronal population. The
next section is devoted to providing sufficient conditions.

IV. DESYNCHRONIZATION

In this section, we explore the possibility of eliminat-
ing the pathological neuronal synchronization by effectively
desynchronizing the population activity.

While desynchronization owns quite an intuitive meaning,
its formal definition is not straightforward. One way of
guaranteeing sufficient disorder in a network of oscillators is
to induce chaos in the incremental dynamics of their outputs
(i.e. the dynamics ruling the phase differences of each pair of
oscillators). This is the approach followed by chaotification
techniques, cf. e.g. [39], [40]. However, chaos may be too
strong a requirement in some particular applications and most



anti-control techniques may require too much knowledge on
the oscillators state to be practically implemented in a DBS
device.

On the other hand, simply guaranteeing that phases are not
synchronized is not enough in most practical applications.
To see this, consider a pair of oscillators whose phases
difference, although not constant, remains at all times in
a small neighborhood of a given value (cf. Figure 1). In
this case, all classical definitions of synchronization are
violated as the oscillators are neither phase synchronized
[41], nor phase-locked [25] or frequency-synchronized [42],
as their phases difference is not constant. Nevertheless, for
practical concerns, such a system cannot be considered as
desynchronized since the phases difference remains “almost
constant” at all times. In fact, such a situation would rather
correspond to “approximative synchronization” as defined
in [42]. In a nutshell, desynchronization is not simply the
negation of synchronization.

In [43], two different notions of desynchronization were
given for general networks of phase oscillators. The first
one, called strong desynchronization, requires that the in-
stantaneous frequency difference |θ̇i(t) − θj(t)| be lower
bounded away from zero for each pairs of oscillators, which
imposes that phases drift away form one another at all
times. Nonetheless, this requirement may happen to be too
harsh a constraint in practice. The permanent phase drift
imposed by strong desynchronization impedes the instanta-
neous frequencies to be equal even on short time intervals.
Intuitively, such a frequency similarity would not affect the
overall desynchronization if it happens sufficiently rarely.
Hence, we relax that definition by replacing the point-
wise requirement by the less restrictive constraint that the
difference of frequencies be bounded from below in average,
uniformly over some moving window of length T .

Definition 2 A pair (i, j) ∈ N 6=N of oscillators is said to be
practically desynchronized for (10) if there exists Ωij , Tij >
0 such that, for all θ0 ∈ TN and t0 ∈ R,

1

Tij

∣∣∣∣∣
∫ t+Tij

t

(
θ̇i(τ ; t0, θ0)− θ̇j(τ ; t0, θ0)

)
dτ

∣∣∣∣∣ ≥ Ωij , (17)

for all t ∈ R. Given m ∈
{

1, . . . , N(N−1)
2

}
, the network

of coupled phase oscillators (10) is said to be m-practically
desynchronized if it contains m distinct pairs of practically
desynchronized oscillators. If m = N(N−1)

2 then (10) is said
to be completely practically desynchronized.

While Theorem 1 established that, for almost all inter-
connection topology and almost all value of the feedback
gain, phase-locking is impossible under mean-field feedback,
the next theorem states that practical desynchronization can
actually be achieved. In other words, we give a sufficient
condition to ensure that a given pair of oscillators is practi-
cally desynchronized.

Theorem 2 Suppose that there exists (i, j) ∈ N 6=N , such that

|ωi − ωj | >
N∑
h=1

|γih + γjh|
(
πν

2ω∗
+

ν2

6ω2
∗

)
+ |εih + εjh| ,

where

ν := 2 max
h=1,...,N

(
|ω̃h|+

N∑
h′=1

|γhh′ + εhh′ |

)

ω∗ :=
1

N

N∑
h=1

ωh

ω̃h := ωh − ω∗, ∀h = 1, . . . , N

εhh′ := khh′ + γhh′ , ∀h, h′ = 1, . . . , N, .

Then the pair of oscillators (i, j) is practically desynchro-
nized for (4).

Theorem 2, proved in [43], states that, if the natural fre-
quencies discrepancy is large enough, then practical desyn-
chronization occurs. It is worth stressing that, from a control
perspective, this result gives a hint on how to select the
feedback gain in order to efficiently achieve desynchroniza-
tion. Nonetheless, the gains γij are not tunable at will since
only a scalar stimulation input is available (cf. Equation
(6)). The main requirement of Theorem 2 thus depends on
structural properties of the oscillators population and may
not be always achievable.

However, in the case when the coupling is given by the
all-to-all topology, and each oscillator contributes in the
same way at the measured mean-field and receives the input
with same intensity, the interconnection and feedback gains
become kij = k0 and γij = γ0, for all i, j = 1, . . . , N . For
all i = 1, . . . , N , the dynamics (4) then reduces to

θ̇i = ωi + (k0 + γ0)

N∑
j=1

sin(θj − θi)− γ
N∑
j=1

sin(θj + θi).

The diffusive coupling term can be eliminated by choosing
γ0 = −k0, and (4) boils down to

θ̇i = ωi + k0

N∑
j=1

sin(θj + θi), ∀i = 1, . . . , N. (18)

In this particular situation, the following corollary provides
a structural condition for practical desynchronzability by
proportional mean-field feedback.See [43] for its proof.

Corollary 1 Suppose that there exists (i, j) ∈ N 6=N , such that

|ωi − ωj | > 2Nk0

(
πν

2ω∗
+

ν2

6ω2
∗

)
, (19)

where ω∗ and ω̃h, h = 1, . . . , N , are as in Theorem 2 and

ν := 2 max
h=1,...,N

(|ω̃h|+Nk0) .

Then the pair of oscillators (i, j) is practically desynchro-
nized for (18).

We stress that the inequality (19) is always satisfied
provided that ωi 6= ωj and ω̄ is sufficiently large or the
coupling gain k0 is small enough.



V. NEURONAL INHIBITION

While the previous section aimed at exploiting mean-
field feedback to desynchronize the neuronal population,
we now investigate the possibility to inhibit the neuronal
oscillations. In other words, our aim here is to use the DBS
signal to inactivate the neurons, i.e. to imped pathological
bursting and spiking. Such an approach basically results as
a functional lesion of the STN. This hypothesis is supported
by the fact that, before the invention of DBS, the surgical
PD treatment consisted in an ablation of the cerebral zone
under concern, which can be seen as a radical neuronal
inhibition. The aim of this section is thus to provide some
insights on how the collective oscillation of a network of
nonlinear oscillators, modeling a neuronal population, can
be inhibited by proportional feedback when only its mean-
field is measured.

Oscillation inhibition corresponds to the existence of (al-
most globally) attractive fixed points for the phase dynamics
(4). We focus here on the all-to-all dynamics and pick the
feedback gain γ0 as −k0. As seen in the previous section the
dynamics (4) then boils down to (18). We start by identifying
the fixed points of (18) and we study their nature in the
fictitious case of zero natural frequencies. Stability properties
in the case of non-zero natural frequencies are derived as a
second step, by relying on robustness arguments.

A. The case of zero natural frequencies
When the natural frequencies of the oscillators are all zero,

i.e. ωi = 0 for all i = 1, . . . , N , (18) reduces to

θ̇i = k0

N∑
j=1

sin(θi + θj), ∀i = 1, . . . , N . (20)

We note that (20) can be equivalently written as the gradient
system

θ̇i = −∂W
∂θi

(θ), ∀i = 1, . . . , N ,

where the function W is given, for all θ ∈ RN , by

W (θ) := −k0
N∑

i,j=1

sin2

(
θi + θj

2

)
. (21)

It can be seen that the global minima of W are the elements
of the set

Wm :=
{
θ ∈ RN : θ =

(π
2

mod π
)
1N

}
. (22)

The gradient dynamics nature of (20) is extensively used in
[44] to establish the following result.

Proposition 2 Given any k0 > 0, the set Wm defined
in (22) is almost globally asymptotically stable for the
dynamics (20).

Proposition 2, whose proof can be found in [44], states
that, when neglecting the natural frequencies of the oscilla-
tors, the choice γ0 = −k0 of the mean-field feedback gain
yields oscillation inhibition for almost all initial conditions,
that is the oscillators phases converge almost globally toward
an asymptotically stable configuration.

B. In presence of small natural frequencies

1) Odd number of oscillators:

The following theorem, proved in [44], states that the exis-
tence of an almost globally asymptotically stable is preserved
in presence of sufficiently small natural frequencies, when
the number of oscillators is odd.

Theorem 3 Let N ∈ N≥3 be odd. Then there exists δ > 0
and a class K∞ function ρ such that, if the vector of natural
frequencies ω ∈ RN satisfies |ω| ≤ δ, then there exists a set
of isolated points Wω

m, such that

|θ|Wm
≤ ρ(|ω|), ∀θ ∈ Wω

m,

where Wm is defined in (22). Moreover, this set Wω
m is

almost globally attractive for (18), that is, for almost all
θ0 ∈ RN , it holds that

lim
t→∞

|θ(t, θ0)|Wω
m

= 0.

Theorem 3 thus formally establishes the possibility to in-
hibit oscillations in presence of non-zero natural frequencies,
at least when the number of oscillators is odd. Note that it
guarantees, for almost all θ0 ∈ RN , that the solution of (18)
satisfies

|ω| ≤ δ ⇒ lim sup
t→∞

|θ(t, θ0)|Wm
≤ ρ(|ω|),

meaning that the fixed points to which θ converge is arbi-
trarily near from the original attractive setWm provided that
the natural frequencies are sufficiently small.

A similar oscillation inhibition result is contained in [24].
In that reference the authors consider a chain of phase
oscillators, and a class of coupling functions that contains
the sinusoidal additive coupling considered here as a special
case. The result is the existence of a unique stable inhibited
solution in the chain of oscillators, provided that the natural
frequencies are sufficiently small. Theorem 3 complements
this analysis, by restricting to a particular coupling function
and considering a different interconnection topology.

2) Even number of oscillators:

In the case of an odd number of oscillators, the set of non-
isolated fixed point of the unperturbed system (20) defines a
normally hyperbolic invariant manifold. This observation is
instrumental in the robustness analysis conducted to establish
Theorem 3 (see [44] for details). This feature no longer holds
in case of an even number of oscillators. At this stage, we
can only conjecture the following.

Conjecture 1 The result of Theorem 3 holds also in the case
when N is even.

VI. CONCLUSION

Motivated by the objective of developing a closed-loop
approach for deep brain stimulation, we have introduced a
phase model that captures the rhythmic neuronal oscillation



of the considered population and allows to analyze its syn-
chronization properties. We have shown that a proportional
mean-field feedback can bring a pathologically synchronous
neuronal population to either a desynchronized state or to a
silent inhibited state. More precisely, we have characterized
the pathological states in terms of oscillating phase-locked
solutions. The existence of such states has been shown to
be generically incompatible with any nonzero proportional
mean-field feedback, thus supporting the proposed control
strategy. Nonetheless, the robustness analysis we have con-
ducted shows that the pathological states can persist as
practically phase-locked solutions and provides necessary
conditions for desynchronization via mean-field feedback.
Under some simplifying assumptions, we have described
how the presence of mean-field feedback can actually achieve
neuronal inhibition. We have also derived sufficient condi-
tions to achieve effective desynchronization via proportional
mean-field feedback. Future works will aim at extending this
analysis to finer neuronal models.
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