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In this article, a recently proposed subspace approach for diagnosing sudden local changes in large dynamical networks is applied to the detection and localization of link failures in power systems, on the basis of nodal voltage measurements.

I. INTRODUCTION

The future energy distribution networks will be characterized by increased dynamics due in particular to the progressive penetration of unreliable energy production sources into the grid. In order to maintain the grid stability, it is therefore compelling to keep regular observations of the system as a whole and to fast detect and identify possible failures. In this article, we focus on failures in power lines which translate in sudden changes in the electric impedance. To keep track of the current flowing in the line as well as the voltages at the nodal connections, it suffices to track impedance changes. However, while voltage measurements are available at any time, e.g. thanks to phasor measurement units (PMU), transmission line states are only refreshed on an hourly basis [1]. For rather static systems, the authors in [1] developed a phasor-based fault detection and localization technique, which identifies line failures among predetermined angle shift patterns. In the future smart grids, however, it is expected that the dynamics will make it difficult to isolate natural phase distortions from failures, and will require a continuous update of the predetermined failure angle patterns, which is impractical.

This article tackles this problem by first demonstrating that successive voltage observations of a line outage can be mathematically modeled by a spiked sample covariance matrix [2, Chapter 9]. Using a recent random matrix subspace method for local failure diagnosis in large sensor networks [START_REF] Couillet | Local failure detection and diagnosis in large sensor networks[END_REF], we then provide an improved method for detecting and diagnosing link failures. The method is then tested on a benchmark IEEE-bus system.

The remainder of the article is structured as follows. In Section II, we introduce the model of the electrical system. In Section III, we recall relevant results from random matrix theory and introduce the novel failure diagnosis method. Simulation results are then provided in Section IV. Finally, Section V concludes this article.

II. ELECTRICAL NETWORK MODEL

II-A. Normal functioning: Hypothesis

H 0 Consider the voltages V (t) = (V 1 (t), . . . , V N (t)) T ∈ C N
in an N -node interconnected electricity network at time t. The power injection at node k (issued by the energy production unit connected to node k) is denoted I k (t) and satisfies I k (t) = Īk + i k (t) with Īk a known mean value and i k (t) a complex Gaussian fluctuation modeling both the time variations in the node input current flow (due to the stochasticity of renewable energy production) and the uniform distribution of the voltage angles under irregular sampling. We assume the i k (t) independent across k and, for simplicity, identically distributed circularly symmetric CN(0, 1); we denote Ī = ( Ī1 , . . . , ĪN ) T and i(t) = (i 1 (t), . . . , i N (t)) T . 1From Kirchoff's laws, denoting I kj (t) the current flowing from node k to node j, we have for each k and at all time t

I k (t) + m∼k I mk (t) = 0.
Then, with a mk the complex conductance of line (m, k), we have

I mk (t) = a mk (V m (t) -V k (t)) from which V k (t) m∼k a mk - m∼k a mk V m (t) = I k (t).
In vector form, this is

AV (t) = I(t) (1) 
with A ∈ C N ×N defined as A mk = -a mk for m ∼ k and A kk = m∼k a mk . We assume that V = E[V (t)] is known empirically and therefore we know the relation A V = Ī. Subtracting this relation from (1), we obtain

Av(t) = i(t) (2) 
which is the voltage-current relation in normal situation. In practice, only an empirical approximation Ṽ 1 n n i=1 V (i) of V for n successive independent observations is known. In the following, we will consider test statistics based on the sample covariance matrix of the n successive observations of V (t) under the assumption that the system dimensions N and n are large. Under this assumption, it is asymptotically irrelevant whether Ṽ or V is known, since the sample covariance matrices only differ from a rank-1 perturbation matrix with decreasing norm as N, n → ∞. For simplicity of exposition, we assume that V is known, while simulation results will assume that only the estimate Ṽ is known.

It is clear that A is of rank at most (N -1) since all rows sum to zero. We may therefore project A on a subspace orthogonal to 11 T to ensure that the resulting matrix is invertible. Denote

U A ∈ C N ×(N -1) a unitary matrix such that A = U A Λ A U * A with Λ A ∈ C (N -1)×(N -1
) diagonal with positive entries. From (1), we then have

U * A Av(t) = Λ A U * A v(t) = U * A i(t)
, Gaussian with zero mean and variance I N -1 . Therefore,

E[U * A Av(t)v(t) * A * U A ] = Λ A E[U * A v(t)v(t) * U A ]Λ A = I N -1 from which E[v (t)v (t) * ] = Λ -2 A where v (t) = U A v(t)
is a vector of independent components characterizing the network voltages.

II-B. Failure scenario: Hypothesis H (i,j)

Consider now the case of a partial or complete failure of line (i, j), which in our model translates as a sudden change in the value of a ij . The objective is to derive the new distribution of v (t) = U * A v(t) under this condition. Note that A now becomes a matrix B (depending on i, j) defined by

B = A + āij e i e * j + ā * ij e j e * i -āij e i e * i -ā * ij e j e * j (3) 
A + C ij
where a ij -āij is the new value of the parameter a ij after failure (ā ij = a ij in case of complete failure of line (i, j)), and the vector e i ∈ C N is defined as e i (i) = 1 and e i (j) = 0 for j = i. The matrix C ij is therefore at most a rank-2 perturbation of A, whose image lies in the space Span(e i , e j ).

In case of failure of line (i, j), we now have Bv(t) = i(t) ∼ CN(0, I N ), where V is now evaluated on the basis of observations under failure of line (i, j). Since B also has its image in the subspace orthogonal to 11 T , for any projector U U * to this subspace, we can write Bv(t) = BU U * v(t), so in particular for U = U A . We therefore have

U * A BU A v (t) ∼ CN(0, I N -1 ) with v (t) = U A v(t)
and therefore

E[v (t)v (t) * ] = (U * A BU A ) -2 .
We now observe that, between the non-failure and the failure scenarios, the covariance matrices E[v (t)v (t) * ] only differ by a rank-2 perturbation matrix.

The following section captures this behaviour and translates the failure detection and localization problems into the detection of a rank-2 perturbation matrix of the identity population covariance matrix, based on noisy sample observations.

II-C. Measurements

Let us now assume that, instead of the voltage v(t) (or v (t)), we have noisy observations

y(t) = v(t) + σw(t) y (t) = v (t) + σw (t)
where σ > 0 and w(t) ∈ C N , w (t) ∈ C N -1 are complex standard white Gaussian noise vectors.

From B = A + C ij , we have

(U * A BU A ) -1 = (U * A [A + C ij ]U A ) -1 = Λ -1 2 A (I N -1 + Λ -1 2 A U * A C ij U A Λ -1 2 A ) -1 Λ -1 2
A . We remind that C ij ∈ C N ×N has non-zero entries only in coordinates (i, i), (i, j), (j, i) and (j, j). Isolating the submatrix Cij ∈ C 2×2 extracted from C ij for these coordinates, denoting U * A,ij the matrix formed from the columns i and j of U * A , an application of Woodbury's identity gives

(U * A BU A ) -1 = Λ -1 2 A (I N -1 -Λ -1 2 A U * A,ij × [ C-1 ij + U A,ij Λ -1 A U * A,ij ] -1 U A,ij Λ -1 2 A )Λ -1 2 A .

This is clearly a rank-2 perturbation of Λ -1

A with image lying in the image of Λ -1 A U * A,ij . Taking the square of (U * A BU A ) -1 leads to the conclusion that

(U * A BU A ) -2 is a rank-2 perturbation of Λ -2
A with image lying in the image of Λ -1 A U * A,ij . We then denote

(U * A BU A ) -2 = Λ -2 A + C ij for C ij ∈ C (N -1)×(N -1) a rank-2 matrix. Hence E[y(t)y(t) * ] = Λ -2 A + C ij + σ 2 I N -1 . Now, calling R A = E[y(t)y(t) * ] = (U * A AU A ) -2 + σ 2 U * A U A = Λ -2 A + σ 2 I N -1 , we have E[R -1 2 A y (t)y * (t)R -1 2 A ] = I N -1 + R -1 2 A C ij R -1 2 A which is a rank-2 perturbation of I N -1 with image lying in the image of R -1 2 A Λ -1 A U * A,ij .
From now on, we will consider

x(t) = R -1 2
A y (t) as the vector of interest for the analysis, and consider the following state hypotheses:

x(t) ∼ CN(0, I N -1 )
, (H 0 ) x(t) ∼ CN(0, I N -1 + P (i,j) ) , (H (i,j) )

where

P (i,j) R -1 2 A C ij R -1 2 A .
The key observation is that a local failure, observed through the measurements of v(t), translates into a small perturbation in the covariance matrix of x(t). If we observe infinitely many realizations of x(t), then the hypothetical failures are characterized by the properties of the eigenspace associated with the two eigenvalues of the sample covariance matrix non equal to one. However, for fast detection, the number of observations of x(t) must be small. The objective of the present article is then to provide line outage diagnostic algorithms based on finitely many observations of x(t).

III. SUBSPACE FAILURE DIAGNOSTIC METHOD

Let us now consider here the hypothesis test (4) for generic matrices

P (i,j) = r k=1 ω ij,k u ij,k u * ij,k of rank r N with ω ij,1 > . . . > ω ij,r and u * ij,k u ij,k = δ k k .
In contrast to the static scenario of [1], where single observations are sufficient to identify sudden changes in voltage phases, the natural fluctuations of v(t) demand several observations x(1), . . . , x(n) of x(t) to provide an efficient test statistic. Denoting X = [x(1), . . . , x(n)] ∈ C N ×n , we wish to infer from X the most likely hypothesis among H 0 and the hypotheses H (i,j) . However, for fast detection, it is also necessary for n not to be too large compared to N , making traditional n N tests impractical. In this work, we instead propose a subspace method based on the results of [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF] on the asymptotic fluctuations of the largest eigenvalues of the spiked sample covariance matrix 1 n XX * under hypothesis H 0 , as well as the recent work [START_REF] Couillet | Local failure detection and diagnosis in large sensor networks[END_REF] on the asymptotic joint fluctuations of eigenvalues and eigenvector projections under hypothesis H (i,j) , as N, n → ∞ and N/n → c > 0. Similar to P (i,j) , we write

1 n XX * = N k=1 λ k ûk û * k with λ 1 > . . . > λ N and û * k ûk = δ k k .
We first recall the important results below. For simplicity, we only focus on the properties of the largest eigenvalues, which are most relevant in the context of electrical line outages.

III-A. Eigen-structure fluctuation

Under hypothesis H 0 , it is known that, as N, n → ∞, N/n → c > 0, the empirical eigenvalue distribution of 

λ 1 N 2 3 λ 1 -(1 + √ c) 2 (1 + √ c) 4 3 c 1 2
.

where c N N/n. Then, λ 1 ⇒ T 2 , as N, n → ∞, N/n → c, with T 2 the complex Tracy-Widom law [START_REF] Tracy | On orthogonal and symplectic matrix ensembles[END_REF].

In contrast, under H (i,j) , two situations arise:

• if ω ij,1 < √ c, then λ 1 a.s.
-→ (1 + √ c)2 and λ 1 ⇒ T 2 , with λ 1 defined in Theorem 1 [START_REF] Baik | Phase transition of the largest eigenvalue for non-null complex sample covariance matrices[END_REF].

• if ω ij,k > √ c for some k, then λ k a.s. -→ ρ ij,k 1 + ω ij,k + c(1 + ω ij,k )ω -1 ij,k |û * k u ij,k | 2 a.s. -→ ξ ij,k (1 -cω -2 ij,k )(1 + cω -1 ij,k
) -1 the quantities above having the following fluctuations:

Theorem 2: Discarding the indexes ij for notational convenience, if ω k > √ c, then √ N |u * k ûk | 2 -ξ k λ k -ρ k ⇒ N (0, C k )
where

C k =   c 2 (1+ω k ) 2 (c+ω k ) 2 (ω 2 k -c) c(1+ω k ) 2 (c+ω k ) 2 + 1 (1+ω k ) 3 c 2 (ω k +c) 2 ω k (1+ω k ) 3 c 2 (ω k +c) 2 ω k c(1+ω k ) 2 (ω 2 k -c) ω 2 k   . Also, √ N v * ûk a.s. -→ 0, for v ∈ Span(u ⊥ k ). Under hypothesis H (ij) , C k will be denoted C ij,k .

III-B. Hypothesis testing

In the line outage detection context, the above results state that failures can be detected with high probability for large N, n if ω ij,1 > √ c N with c N N/n, and an hypothesis rejection test can be designed based on the fluctuations of λ 1 under H 0 . 2 Besides, once a failure is successfully detected, the fluctuations of the λ k and ûk , with k such that ω ij,k > √ c for all ij, allow to design an appropriate hypothesis selection test among all H (ij) . This is detailed in the following.

Given a maximally acceptable false alarm rate η (that is, the maximum probability for natural voltage fluctuations to be interpreted as failures), we have the following straightforward rejection test:

λ 1 H0 ≶ H0 (T 2 ) -1 (1 -η) with λ 1 = N 2 3 λ1-(1+ √ c) 2 (1+ √ c) 4 3 c 1 2
, where H0 is the hypothesis of a system failure of any nature. Note that this test assumes large N, n and is therefore best suited for large systems.

Given the false alarm rate η, we may also evaluate the probability of acceptance of a failure of type H (ij) , i.e.

P λ 1 > N -2 3 T -1 2 (1 -η)(1 + √ c N ) 4 3 √ c N + (1 + √ c N ) 2
with c N N/n, which for large N, n is approximately

1 -Φ(b η ij ) (5) 
where b η ij is defined as

b η ij = N -2 3 T -1 2 (1 -η)(1 + √ c) 4 3 √ c + (1 + √ c) 2 -ρ ij,1 N -1 2 ω -1 ij,1 √ c(1 + ω ij,1 )(ω 2 ij,1 -c) 1 2
and Φ is the Gaussian distribution function.

If a positive decision in favor of H 0 is taken, then, from Theorem 2, a natural test for deciding on the most likely hypothesis H (ij) consists in selecting the index:

arg max (ij)∈S - |u * ij,1 û1 | 2 -ξ ij,1 λ 1 -ρ ij,1 T C -1 ij |u * ij,1 û1 | 2 -ξ ij,1 λ 1 -ρ ij,1 -log det C ij,1 (6) 
where S is the set of line indexes (i, j) such that ω ij,1 > √ c, and C ij,k is defined in Theorem 2.

IV. SIMULATIONS

In this section, we provide simulation results for the line outage diagnosis framework developed in Section IV applied to the IEEE-30 bus system. We consider a complete failure of line [START_REF] Couillet | Local failure detection and diagnosis in large sensor networks[END_REF][START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF], i.e. āij = a ij , which is in our framework one of the most difficult to identify since some other line failures show similar largest eigenvalues. The most difficult failure to detect altogether is a failure on line (21, 22), which requires n to be rather large compared to N for detectability. We consider that the observation noise has variance σ 2 = -20 dB.

In Figure 1, we show the theoretical and computed curves of the probability of correct detection of a complete failure on line [START_REF] Couillet | Local failure detection and diagnosis in large sensor networks[END_REF][START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF] for different target false alarm rates. In this scenario, a slight mismatch between the theory and the experiment appears, essentially due to the system size N = 30 which is not sufficient for large dimensional statistics to be accurate, especially in the tails of the underlying distributions, so in particular for small false alarm rates. In Figure 2, we depict the line failure detection and diagnosis performance under 10% false alarm rate, based on [START_REF] Baik | Phase transition of the largest eigenvalue for non-null complex sample covariance matrices[END_REF], which shows accurate performance of the localization test for not too large n.

V. CONCLUSION

In this article, we applied a subspace method for line outage detection and localization in dynamical electricity networks based on frequent voltage measurements. This allows for a statistical treatment of failure diagnostics in fast varying electrical networks, therefore generalizing previous static methods.
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