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ABSTRACT
In this article, a recently proposed subspace approach for di-
agnosing sudden local changes in large dynamical networks
is applied to the detection and localization of link failures in
power systems, on the basis of nodal voltage measurements.

I. INTRODUCTION
The future energy distribution networks will be character-

ized by increased dynamics due in particular to the progres-
sive penetration of unreliable energy production sources into
the grid. In order to maintain the grid stability, it is therefore
compelling to keep regular observations of the system as
a whole and to fast detect and identify possible failures.
In this article, we focus on failures in power lines which
translate in sudden changes in the electric impedance. To
keep track of the current flowing in the line as well as
the voltages at the nodal connections, it suffices to track
impedance changes. However, while voltage measurements
are available at any time, e.g. thanks to phasor measurement
units (PMU), transmission line states are only refreshed
on an hourly basis [1]. For rather static systems, the au-
thors in [1] developed a phasor-based fault detection and
localization technique, which identifies line failures among
predetermined angle shift patterns. In the future smart grids,
however, it is expected that the dynamics will make it
difficult to isolate natural phase distortions from failures,
and will require a continuous update of the predetermined
failure angle patterns, which is impractical.

This article tackles this problem by first demonstrating
that successive voltage observations of a line outage can be
mathematically modeled by a spiked sample covariance ma-
trix [2, Chapter 9]. Using a recent random matrix subspace
method for local failure diagnosis in large sensor networks
[3], we then provide an improved method for detecting and
diagnosing link failures. The method is then tested on a
benchmark IEEE-bus system.

The remainder of the article is structured as follows. In
Section II, we introduce the model of the electrical system.
In Section III, we recall relevant results from random matrix
theory and introduce the novel failure diagnosis method.
Simulation results are then provided in Section IV. Finally,
Section V concludes this article.

II. ELECTRICAL NETWORK MODEL
II-A. Normal functioning: Hypothesis H0

Consider the voltages V (t) = (V1(t), . . . , VN (t))T ∈ CN
in an N -node interconnected electricity network at time
t. The power injection at node k (issued by the energy
production unit connected to node k) is denoted Ik(t) and
satisfies Ik(t) = Īk+ ik(t) with Īk a known mean value and
ik(t) a complex Gaussian fluctuation modeling both the time
variations in the node input current flow (due to the stochas-
ticity of renewable energy production) and the uniform dis-
tribution of the voltage angles under irregular sampling. We
assume the ik(t) independent across k and, for simplicity,
identically distributed circularly symmetric CN(0, 1); we
denote Ī = (Ī1, . . . , ĪN )T and i(t) = (i1(t), . . . , iN (t))T.1

From Kirchoff’s laws, denoting Ikj(t) the current flowing
from node k to node j, we have for each k and at all time t

Ik(t) +
∑
m∼k

Imk(t) = 0.

Then, with amk the complex conductance of line (m, k), we
have Imk(t) = amk(Vm(t)− Vk(t)) from which

Vk(t)

(∑
m∼k

amk

)
−
∑
m∼k

amkVm(t) = Ik(t).

In vector form, this is

AV (t) = I(t) (1)

with A ∈ CN×N defined as Amk = −amk for m ∼ k and
Akk =

∑
m∼k amk.

We assume that V̄ = E[V (t)] is known empirically and
therefore we know the relation AV̄ = Ī . Subtracting this
relation from (1), we obtain

Av(t) = i(t) (2)

which is the voltage-current relation in normal situation. In
practice, only an empirical approximation Ṽ , 1

n

∑n
i=1 V (i)

of V̄ for n successive independent observations is known.
In the following, we will consider test statistics based on the

1A more realistic model assumes E[|ik(t)|2] different for each k. We
keep E[|ik(t)|2] = 1 for readability of the derivations here.



sample covariance matrix of the n successive observations
of V (t) under the assumption that the system dimensions N
and n are large. Under this assumption, it is asymptotically
irrelevant whether Ṽ or V̄ is known, since the sample
covariance matrices only differ from a rank-1 perturbation
matrix with decreasing norm as N,n → ∞. For simplicity
of exposition, we assume that V̄ is known, while simulation
results will assume that only the estimate Ṽ is known.

It is clear that A is of rank at most (N − 1) since
all rows sum to zero. We may therefore project A on a
subspace orthogonal to 11T to ensure that the resulting
matrix is invertible. Denote UA ∈ CN×(N−1) a unitary
matrix such that A = UAΛAU

∗
A with ΛA ∈ C(N−1)×(N−1)

diagonal with positive entries. From (1), we then have
U∗AAv(t) = ΛAU

∗
Av(t) = U∗Ai(t), Gaussian with zero mean

and variance IN−1. Therefore,

E[U∗AAv(t)v(t)∗A∗UA] = ΛAE[U∗Av(t)v(t)∗UA]ΛA = IN−1

from which
E[v′(t)v′(t)∗] = Λ−2

A

where v′(t) = UAv(t) is a vector of independent components
characterizing the network voltages.

II-B. Failure scenario: Hypothesis H(i,j)

Consider now the case of a partial or complete failure
of line (i, j), which in our model translates as a sudden
change in the value of aij . The objective is to derive the
new distribution of v′(t) = U∗Av(t) under this condition.
Note that A now becomes a matrix B (depending on i, j)
defined by

B = A+ āijeie
∗
j + ā∗ijeje

∗
i − āijeie∗i − ā∗ijeje∗j (3)

, A+ Cij

where aij − āij is the new value of the parameter aij
after failure (āij = aij in case of complete failure of line
(i, j)), and the vector ei ∈ CN is defined as ei(i) = 1 and
ei(j) = 0 for j 6= i. The matrix Cij is therefore at most
a rank-2 perturbation of A, whose image lies in the space
Span(ei, ej).

In case of failure of line (i, j), we now have Bv(t) =
i(t) ∼ CN(0, IN ), where V̄ is now evaluated on the basis of
observations under failure of line (i, j). Since B also has its
image in the subspace orthogonal to 11T, for any projector
UU∗ to this subspace, we can write Bv(t) = BUU∗v(t),
so in particular for U = UA. We therefore have

U∗ABUAv
′(t) ∼ CN(0, IN−1)

with v′(t) = UAv(t) and therefore

E[v′(t)v′(t)∗] = (U∗ABUA)−2.

We now observe that, between the non-failure and the
failure scenarios, the covariance matrices E[v′(t)v′(t)∗] only
differ by a rank-2 perturbation matrix.

The following section captures this behaviour and trans-
lates the failure detection and localization problems into
the detection of a rank-2 perturbation matrix of the iden-
tity population covariance matrix, based on noisy sample
observations.

II-C. Measurements
Let us now assume that, instead of the voltage v(t) (or

v′(t)), we have noisy observations

y(t) = v(t) + σw(t)

y′(t) = v′(t) + σw′(t)

where σ > 0 and w(t) ∈ CN , w′(t) ∈ CN−1 are complex
standard white Gaussian noise vectors.

From B = A+ Cij , we have

(U∗ABUA)−1 = (U∗A[A+ Cij ]UA)−1

= Λ
− 1

2

A (IN−1 + Λ
− 1

2

A U∗ACijUAΛ
− 1

2

A )−1Λ
− 1

2

A .

We remind that Cij ∈ CN×N has non-zero entries only in
coordinates (i, i), (i, j), (j, i) and (j, j). Isolating the subma-
trix C̄ij ∈ C2×2 extracted from Cij for these coordinates,
denoting U∗A,ij the matrix formed from the columns i and j
of U∗A, an application of Woodbury’s identity gives

(U∗ABUA)−1 = Λ
− 1

2

A (IN−1 − Λ
− 1

2

A U∗A,ij

× [C̄−1
ij + UA,ijΛ

−1
A U∗A,ij ]

−1UA,ijΛ
− 1

2

A )Λ
− 1

2

A .

This is clearly a rank-2 perturbation of Λ−1
A with image

lying in the image of Λ−1
A U∗A,ij . Taking the square of

(U∗ABUA)−1 leads to the conclusion that (U∗ABUA)−2 is
a rank-2 perturbation of Λ−2

A with image lying in the image
of Λ−1

A U∗A,ij . We then denote

(U∗ABUA)−2 = Λ−2
A + C ′ij

for C ′ij ∈ C(N−1)×(N−1) a rank-2 matrix. Hence

E[y(t)y(t)∗] = Λ−2
A + C ′ij + σ2IN−1.

Now, calling RA = E[y(t)y(t)∗] = (U∗AAUA)−2 +
σ2U∗AUA = Λ−2

A + σ2IN−1, we have

E[R
− 1

2

A y′(t)y′∗(t)R
− 1

2

A ] = IN−1 +R
− 1

2

A C ′ijR
− 1

2

A

which is a rank-2 perturbation of IN−1 with image lying in
the image of R−

1
2

A Λ−1
A U∗A,ij . From now on, we will consider

x(t) = R
− 1

2

A y′(t)

as the vector of interest for the analysis, and consider the
following state hypotheses:{

x(t) ∼ CN(0, IN−1) , (H0)
x(t) ∼ CN(0, IN−1 + P(i,j)) , (H(i,j))

(4)

where P(i,j) , R
− 1

2

A C ′ijR
− 1

2

A .
The key observation is that a local failure, observed

through the measurements of v(t), translates into a small



perturbation in the covariance matrix of x(t). If we observe
infinitely many realizations of x(t), then the hypothetical
failures are characterized by the properties of the eigenspace
associated with the two eigenvalues of the sample covariance
matrix non equal to one. However, for fast detection, the
number of observations of x(t) must be small. The objective
of the present article is then to provide line outage diagnostic
algorithms based on finitely many observations of x(t).

III. SUBSPACE FAILURE DIAGNOSTIC METHOD

Let us now consider here the hypothesis test (4) for
generic matrices

P(i,j) =

r∑
k=1

ωij,kuij,ku
∗
ij,k

of rank r � N with ωij,1 > . . . > ωij,r and u∗ij,kuij,k′ =

δk
′

k . In contrast to the static scenario of [1], where single
observations are sufficient to identify sudden changes in volt-
age phases, the natural fluctuations of v(t) demand several
observations x(1), . . . , x(n) of x(t) to provide an efficient
test statistic. Denoting X = [x(1), . . . , x(n)] ∈ CN×n, we
wish to infer from X the most likely hypothesis among H0

and the hypotheses H(i,j). However, for fast detection, it
is also necessary for n not to be too large compared to
N , making traditional n � N tests impractical. In this
work, we instead propose a subspace method based on the
results of [4] on the asymptotic fluctuations of the largest
eigenvalues of the spiked sample covariance matrix 1

nXX
∗

under hypothesis H0, as well as the recent work [3] on the
asymptotic joint fluctuations of eigenvalues and eigenvector
projections under hypothesis H(i,j), as N,n → ∞ and
N/n→ c > 0. Similar to P(i,j), we write

1

n
XX∗ =

N∑
k=1

λkûkû
∗
k

with λ1 > . . . > λN and û∗kûk′ = δk
′

k .
We first recall the important results below. For simplicity,

we only focus on the properties of the largest eigenvalues,
which are most relevant in the context of electrical line
outages.

III-A. Eigen-structure fluctuation

Under hypothesis H0, it is known that, as N,n → ∞,
N/n → c > 0, the empirical eigenvalue distribution
of 1

nXX
∗ converges weakly and almost surely to the

Marc̆enko-Pastur law with support [(1−
√
c)2, (1+

√
c)2] and

that the extreme left and right eigenvalues converge almost
surely to the edges of the support [2]. Moreover the largest
eigenvalue of 1

NXX
∗ admits the following fluctuations:

Theorem 1: Denote

λ′1 , N
2
3
λ1 − (1 +

√
c)2

(1 +
√
c)

4
3 c

1
2

.

where cN , N/n. Then, λ′1 ⇒ T2, as N,n→∞, N/n→ c,
with T2 the complex Tracy-Widom law [5].

In contrast, under H(i,j), two situations arise:

• if ωij,1 <
√
c, then λ1

a.s.−→ (1 +
√
c)2 and λ′1 ⇒ T2,

with λ′1 defined in Theorem 1 [6].
• if ωij,k >

√
c for some k, then

λk
a.s.−→ ρij,k , 1 + ωij,k + c(1 + ωij,k)ω−1

ij,k

|û∗kuij,k|2
a.s.−→ ξij,k , (1− cω−2

ij,k)(1 + cω−1
ij,k)−1

the quantities above having the following fluctuations:
Theorem 2: Discarding the indexes ij for notational
convenience, if ωk >

√
c, then

√
N

(
|u∗kûk|2 − ξk
λk − ρk

)
⇒ N (0, Ck)

where

Ck =

 c2(1+ωk)2

(c+ωk)2(ω2
k−c)

[
c(1+ωk)2

(c+ωk)2 + 1
]

(1+ωk)3c2

(ωk+c)2ωk

(1+ωk)3c2

(ωk+c)2ωk

c(1+ωk)2(ω2
k−c)

ω2
k

 .
Also,

√
Nv∗ûk

a.s.−→ 0, for v ∈ Span(u⊥k ).
Under hypothesis H(ij), Ck will be denoted Cij,k.

III-B. Hypothesis testing
In the line outage detection context, the above results state

that failures can be detected with high probability for large
N,n if ωij,1 >

√
cN with cN , N/n, and an hypothesis

rejection test can be designed based on the fluctuations
of λ1 under H0.2 Besides, once a failure is successfully
detected, the fluctuations of the λk and ûk, with k such
that ωij,k >

√
c for all ij, allow to design an appropriate

hypothesis selection test among all H(ij). This is detailed in
the following.

Given a maximally acceptable false alarm rate η (that is,
the maximum probability for natural voltage fluctuations to
be interpreted as failures), we have the following straight-
forward rejection test:

λ′1
H0

≶
H̄0

(T2)−1(1− η)

with λ′1 = N
2
3
λ1−(1+

√
c)2

(1+
√
c)

4
3 c

1
2

, where H̄0 is the hypothesis of

a system failure of any nature. Note that this test assumes
large N,n and is therefore best suited for large systems.

Given the false alarm rate η, we may also evaluate the
probability of acceptance of a failure of type H(ij), i.e.

P
(
λ1 > N−

2
3T−1

2 (1− η)(1 +
√
cN )

4
3
√
cN + (1 +

√
cN )2

)
with cN , N/n, which for large N,n is approximately

1− Φ(bηij) (5)

2The smallest eigenvalue ωij,r is very close to one in the outage line
perturbation matrices, so that λN is not a relevant parameter for failure
detection.



where bηij is defined as

bηij =
N−

2
3T−1

2 (1− η)(1 +
√
c)

4
3
√
c+ (1 +

√
c)2 − ρij,1

N−
1
2ω−1

ij,1

√
c(1 + ωij,1)(ω2

ij,1 − c)
1
2

and Φ is the Gaussian distribution function.
If a positive decision in favor of H0 is taken, then, from

Theorem 2, a natural test for deciding on the most likely
hypothesis H(ij) consists in selecting the index:

arg max
(ij)∈S

−
(
|u∗ij,1û1|2 − ξij,1

λ1 − ρij,1

)T

C−1
ij

(
|u∗ij,1û1|2 − ξij,1

λ1 − ρij,1

)
− log detCij,1 (6)

where S is the set of line indexes (i, j) such that ωij,1 >
√
c,

and Cij,k is defined in Theorem 2.

IV. SIMULATIONS
In this section, we provide simulation results for the line

outage diagnosis framework developed in Section IV applied
to the IEEE-30 bus system. We consider a complete failure
of line (3, 4), i.e. āij = aij , which is in our framework
one of the most difficult to identify since some other line
failures show similar largest eigenvalues. The most difficult
failure to detect altogether is a failure on line (21, 22), which
requires n to be rather large compared to N for detectability.
We consider that the observation noise has variance σ2 =
−20 dB.

In Figure 1, we show the theoretical and computed curves
of the probability of correct detection of a complete failure
on line (3, 4) for different target false alarm rates. In this
scenario, a slight mismatch between the theory and the
experiment appears, essentially due to the system size N =
30 which is not sufficient for large dimensional statistics
to be accurate, especially in the tails of the underlying
distributions, so in particular for small false alarm rates. In
Figure 2, we depict the line failure detection and diagnosis
performance under 10% false alarm rate, based on (6), which
shows accurate performance of the localization test for not
too large n.

V. CONCLUSION
In this article, we applied a subspace method for line

outage detection and localization in dynamical electricity
networks based on frequent voltage measurements. This
allows for a statistical treatment of failure diagnostics in fast
varying electrical networks, therefore generalizing previous
static methods.
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