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Abstract

The purpose of this paper is to contribute to a unified formainework for complex systems
modeling. To this aim, we define a unified semantics for systeiuding integration operators.
We consider complex systems as functional blackboxes (withrnal states), whose structure
and behaviors can be constructed through a recursive attegrof heterogeneous components.
We first introduce formal definitions of time (allowing to deemiformly with both continuous
and discrete times) and data (allowing to handle heteragendata), and introduce a generic
synchronization mechanism for dataflows. We then define &isyas a mathematical object
characterized by coupled functional and states behavidis.definition is expressive enough to
capture the functional behavior of any real system with satjal transitions. We finally provide
formal operators for integrating systems and show that #reyconsistent with the classical
definitions of those operators on transfer functions whicidet real systems.

Keywords: Complex systems, Systems modeling, Systems semantiden®y/Engineering,
Systems integration, Timed Mealy machine, Hybrid time, Mtandard analysis

1. Introduction

The concept otomplex systemsas led to various definitions in numerous disciplines (bi-
ology, physics, engineering, mathematics, computer seieetc). One speaks for instance of
dynamical, mechanical, Hamiltonian, hybrid, holonomimbedded, concurrent or distributed
systems (cf. [2, 4, 21, 24, 28, 32]). A minimalist fuzzy defimm consistent with (almost) all
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those of the literature is that a ‘system’ is “a set of intemvected parts forming an integrated
whole”, and the adjective ‘complex’ implies that a systens Haroperties that are not easily
understandable from the properties of its parts”. In thehmatatical formalization of “complex
systems”, there are today two major approaches: the firsisorentered on understanding how
very simple, but numerous, elementary components can ¢eagimiplex overall behaviors (e.g.
cellular automatas), the second one (that will also be asit®ntered on giving a precise seman-
tics to the notion of system and to the integration of systentmiild greater overall systems.

When mathematically apprehended, the concept of systeth€isense of this second ap-
proach) is classicaly defined with models coming from:

e control theory and physics, that deal with systems as péutiations (dynamical systems
may also be rewritten in this way), called transfer funcsiaof the form:

vteT, y(t) = F(x.q.t)

whereX, g andy are inputs, states and outputs dataflows, and wiestands for time
(usually considered in these approaches as continuouf3@ek, 12]).

¢ theoretical computer sciences and software engineeritiy systems that can be depicted
by models equivalent to timed Turing machines with input aotput, evolving on dis-
crete times generally considered as a universal predefampeesce of steps (see for in-
stance [19, 5, 16]).

However all these models do not easily allow to handle layexgstems with multiple time

scales. The introduction of a more evolved notion of timehimitTuring-like models involves

many dificulties, mainly the proper definition of sequential trainsis or the synchronization
of different systems exchanging dataflows without synchronizafitheir time scales. Dealing
with evolved definitions of times will generally imply to moduce infinity and infinitesimal

(for instance with non-standard real numbers). There irefbee a great challenge (which we
propose to address in this paper) on being able to unify imee$armal framework mathematical
methods dealing with the design of both continuous and elis@ystems.

The theory of hybrid systems was developed jointly in cdrtreory (see [32, 34]) and in
computer science (see [2, 3, 22]) to address this challeAgeerious issue with this theory is
however that the underlying formalism has some troublirgpprties such as the Zenfect
which corresponds to the fact that an hybrid system can @&ahgtate an infinite number of
times within a finite time (because of the convergence otsesf durations) that one usually
prefers to avoid in a robust modeling approach. Moreovelioés not allow to consider various
time scales of heterogeneous granularity (which will becégrgral point of our approach). Other
interesting and slightly diierent attempts in the same direction can also be found imuaibch
and Trakhtenbrot (see [27, 33]) who tried to reconstructitefemitomata theory on the basis of
a real time framework, or in [35].

In the literature about (complex) systems, the real objedt model are often confused and
both called “system”. We will call aeal systermany object of the real world which transforms
flows of data. We will callsystenthe mathematical object introduced to model real systems.
In this paper, we are interested in modeling the functiomddavior of real systems, and their
integration. Thus, we will model real systems as functidatkboxes (with an internal state),
whose structure and behaviors can be described by the rexirtegration of heterogeneous
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smaller subsystems (thus considering complex systemstasbeneous integrated systems).
We will thus focus on two aspects of the complexity of systems

¢ theheterogeneitpf systems (modeled following continuous or discrete tiamal exchang-
ing data of diferent types, - informational, material or energefic).

¢ theintegrationof systems, i.e. the mechanism to construct a system megudtbm the
composition of smaller systems, whose behaviors may beridedcat a more concrete
level (i.e. a finer grain).

We will assume that the observational behavior of any restesy can be modeled by a functional
machine processing dataflows (for related work on datafldwarks, see [19, 11, 10]) in a way
that can be encoded by timed transitions for changing séagsutputs in instantaneous reaction
to the inputs (comparable with timed Mealy machines [25hwibssibly infinite states). We
show that our formalization makes it possible to model thedlinds of real systems (physical,
software and humaarganizational), which is especially important in Systeemgjineering [6,
23, 30].

This paper is the second of a series on “Modeling of Compleste3ys”. Indeed, we gener-
alize the approach of the first paper [7] (where a unified fraork for continuous and discrete
systems was defined by using non-standard infinitesimal aitd fime steps) by dealing with
time, data, and synchronization axiomatically, and byadtrcing integration operators. The
purpose of this second paper is to give a unified and miniinsdisantics for heterogeneous
integrated systems and their integration. By “unified”, weam that we propose a unified model
of real systems that can describe the functional behavitietdrogeneous systems and that is
closed under integration. By “minimalist” we mean that ooimfalization intends to provide a
small number of concepts and operators to model the belsaanmt the integration of (complex)
real systems. We believe that our work allows to give a relef@mal semantics for concepts
and models typically used in Systems Engineering, where-&@mal modeling is well-spread.
The paper is organized as follows:

e in Section 2 and 3, we introduce unified definitions of timetfbmontinuous and discrete)
and data (with various behaviors) to handle heterogeneompanents and encompass
classical approaches. We also define a generic synchrimmiZzat dataflows,

e in Section 4, we introduce a formal definition of systems asfiedh functional objects
modeling heterogeneous real systems,

e in Section 5, we introduce minimalist operators for intéigig systems (with closure of
the definition of system) and prove that they are consistéhtalassical concepts of inte-
gration formalized on transfer functions.

2. Time

Most of the challenges raised by the unified definition of legjeneous integrated systems
are coming from time. Indeed, real systems are naturallyateaddaccording to various time
scales (modeling discrete or continuous time), and we rhesefore be able to define:

2Data encompasses here all kinds of elements that can bengiethhetween real objects. We distinguish three kinds
of homogeneous systems : hardwphgsical systems (transforming continuous physical patars), software systems
(transforming and managing discrete data), and hyonganizational systems (organized through processes).
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¢ a unified model of time encompassing continuous and distirets to later introduce a
unified definition of heterogeneous systems,

¢ the mixture of various time scales for integrating systems.

Unifying both discrete and continuous times can seem paeddsee [9] for an exhaustive
survey on the subject). To reach this purpose, we proposdéacethe approach developped in
the first paper of the series [7] where discrete and contistimes have been unified homoge-
neously (by using techniques of non-standard analysisZ2615]). We propose a more generic
approach and deal with time axiomatically, that is by exgiresthe minimal properties that
both time references and time scales have to satisfy. Tlasato consider in a same uniform
framework many dterent times: usual ones suchMs&ndR, or more specific ones such as the
non-standard real numbeiR, Harthong-Reeb’s line [17, 18], or the VHDL time (see below)

2.1. Time references
A time reference is a universal time in which all systems hdldefined.

Definition 2.1 (Time reference). A time referenceis an infinite set T together with an internal
law +" : T x T — T and a pointed subséT*, 0") satisfying the following conditions:

e upon T*:
—VabeT*, a+"beT* closure A1)
—VabeT*, a+"b=0"=a=0"Ab=0" initiality (Az)
—VYaeT", 0'+Ta=a neutral to left (\3)
e uponT:
—VabceT,a+"(b+"c)=(a+"b)+'¢c associativity 44)
—VaeT,a+'0"=a neutral to right (As)
—VabceT,a+'b=a+'c=b=c cancelable to leftAg)
—VabeT,3ceT*, (a+' c=b)v(b+'c=a) linearity (A7)

Elements oflf aremomentsvhilst elements off * aredurations(or distances between mo-
ments). Any duration can be considered as a moment, by esida conventional origin.

Example 1. In the previous paper of this series [7], we chose for timenegice the set of non-
standard real numbetR defined as the quotient of real numbRrander the equivalence relation
=c R x RY defined by:

(@n)nz0 = (bn)nz0 &= M({ne Nja, =bp}) =1

wheremis an additive measure that separates between each subsendfits complement, one

and only one of these two sets being always of measure 1, @hdtsat finite subsets are always
of measure 0. The obvious zero elementRfis (O)s0, “R* is its positive part taken here as
durations, and the internal lawis defined as the usual addition Bf, i.e.:

(@n)n=0 + (Bn)n=0 = (@n + bn)n=o0

“R satisfies all the conditions of Definition 2.1 and is a welfiged time reference. Observe
also that‘R has as subset, the set of non-standard integer@and subsequentliN) where
infinite numbers are all numbers having absolute value grélaat anyn € N. O
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The properties given upohandT* are constraints that catch the intuitive view that the time
elapses linearly by adding successively durations betwesn.

Proposition 1 (Total order on a time reference). We can define a total ordes" (later written
< for convenience) on T as follows:

a<"bedceT", b=a+'c
Proof . This is a classical result (in semigroups theory, cf [13]hgf\,, A4, As, Ag andA;. O

Moreover, we can remark thal insures that any element @f greater than an element of
T+ will be in T+, andA;z insures that B is the minimum ofT*, so that the set of durations has
natural properties according #d and can be understood as “positive” element$ of

Some authors, e.g. [20], add commutativity and Archimed®aperties in the definition of a
time reference. Commutativity is intuitive and the Archiiean property excludes Zeno’s para-
dox. However, they are not satisfied by the VHDL time used me@rogramming languages.

Example 2. The VHDL time [8] <V is given by a couple of natural numbers (both sets of mo-
ments and durations are similar): the first number denotsrdal” time, the second number
denotes the step number in the sequence of computationstisttbe performed at the same
time — but still in a causal order. Such steps are caliedtéps” in VHDL (and “micro-steps”

in StateCharts). The idea is that when simulating a ciraliindependent processes must be
simulated sequentially by the simulator. However, the tiea (the time of the hardware) must
not take these steps into account. Thus, two events at momentsd, 1), (a, 2) respectively
will be performed sequentiallye( beforee,) but at a same real time The VHDL addition is
defined by the following rules:

(' £0)= (r,d)+ (r,d) = (r +r,d)
(" =0)=> (r,d)+(',d) = (r.d+d)

wherer, r’, d andd’ are natural numbers arddenotes the usual addition on natural numbers.
Clearly, the internal law+ above is not commutative, nor Archimedean: we may infinitelipw
ad-branch by successively addingimes? O

2.2. Time scales

Time references give the basic expected properties of thef s moments. Now, we want
to define time scales, i.e. sets of moments of a time referthatavill be used to define a system.

Definition 2.2 (Time scale). A time scaleis any subsef of a time reference T such that:

e T has a minimum fhe T
e VteT, Ty = {t' € T|t <t} has a minimum called su€)

e Vte T,whenm <t, the sefl_ = {t' € T |t' <t} has a maximum called pré¢)

3This is not the intended use of VHDL time, however: VHDL cortgiions should perform a finite numberdéteps.
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e the principle of inductiort is true onT.
The set of all time scales on T is noted Ts

A time scale is defined so that it will be possible to make rsigerconstructions on it, and
to locate any moment of the time reference between two mayadrat time scale. A time scale
necessarily has an infinite number of moments. In fact, a sicade is expected to comply with
the Peano axionis excepted that theucc¢ and prec’ are defined for moments af and not
only T.% This is not equivalent: a simple counter-example on timeregfceR* can show it is
possible to havegprec and succproperly defined for moments of the subget {1 — 2—1nfor ne
Nju{l+ 2—1nfor n € N} whereas moment 1 has poecor succin 7. This fundamental property
prevents Zeno'sféect on any time scale. Most of time scales (discrete andmontis) used when
modeling real systems can be defined as unified regular tielessof step- and of minimumm:

I I
m m+ T m+ 2t m+ 3t

Example 3. By using results of non-standard analysis, continuous sicades can then be con-
sidered in a discrete way. Following the approach develapgd] to model continuous time
by non-standard real numbers, a regular time scale cailNbevherer € *R* is the step,

0 € *Nr andVt € *Nr, succ"*(t) = t + 7. This provides a discrete time scale for modeling
classical discrete time (when the step is not infinitesiraat} continuous time (when the step is
infinitesimal). %

Example 4. In the VHDL timeV, the internal law induces a lexicographic orderingdi N.
Thus, letW c V such thatYae N, AN, € N, Y(a,b) € W,b < N, (i.e. there are only a finite
number of steps at each moment of timeW). ThenW is a time scale in the VHDL time. $

Example 5. A time scale on the time referend®" can be any subsek such that: vt t' €
R*, [AN[t;t+ t']]is finite. O

One might also use the new language for representing finfiejte and infinitesimal num-
bers introduced in [31] to deal with time.

We have shown that we can accomodate heterogeneous tintesuwridefinitions. We intro-
duce a fundamental proposition allowing to unifffdient time scales, which is necessary for
systems integration (when the systems involved do not gharsame time scales). Overall, our
definition of time will be suitable for heterogeneous integd systems.

Proposition 2 (Union of time scales).A finite union of time scales (on the same time reference
T) is still a time scale.

Proof. The proof for two time scales is enough. LB, T, be two time scales oil. Let
T = T, U T,. We want to prove thdf is a time scale.

T is a subset off. Note thatT has a minimunmmin(m®™, m'2), and that thesuccand prec
functions can be obviously defined byt € T, sucd (t) = min(sucd(t), sucdz(t)) and when

YForAcT,(m' e A& Vte Asucd (t) e A) = A=T.
51t can be easily checked that the above conditions imply ®eaaioms.
6These specific properties are necessary to prove that tiatessare closed under finite union.
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t > m’, prec’ = maxprec(t), prec’2(t)) ’. So the only problem is to prove that the induction
principle hold orfT'. This can be proved by using a lemmamf € A& Vt € A, succ (t) € Athen

vt € T;, succi(t) e T; fori = 1,2 (this lemma is easily proved using the principle of indoiati
in T; on intervals of successive elementsibfin T). So that finally,T = T, U T, satisfies the
principle of induction. ThusT is a time scale oil. O

3. Data

Another challenge to address to model complex systems isdtezogeneity of data (mod-
eling any element that can be exchanged between real systemiof their synchronization
between dferent time scales. We introduce datasets that will be useatkfining data transmit-
ted by dataflows. The dataflows will be used to describe viasatf systems (inputs, outputs
and states), and we define the synchronization of datafloimgelba time scales.

3.1. Datasets

Definition 3.1 (e-alphabet). A set D is are-alphabetif € € D. For any set B, we can define an
e-alphabet byB = B U {e}.

The elements of aa-alphabet are calledataande is a universal blank symbelaccounting for
the absence of data (as the blank symbol in a Turing machimeg-alphabet can have an infinite
number of data. A system dataset (also called dataset) ésafphabet with the description of
the behavior of the data (when read or written in a “virtualffer):

Definition 3.2 (System dataset) A system datasés a pair D = (D, 8) such that:
e D is ane-alphabet

¢ B, calleddata behavioyis a pair(r,w) withr : D — D and w: D x D — D such thaf:

—r(e)=¢€ (RL)
— r(r(d)) = r(d) (R2)
- r(w(d,d)) =r(d) (R3)
- w(r(d),d)y=d (W1)

— ww(d, d), r(d)) = w(d,d’)  (W2)

B will be useful to synchronize dataflows defined ofietient time scales (see Projection below).
Data behaviors can be understood as the functions allowinegtd and write data in a “virtual”
1-slof buffer defining how this synchronization occurs at each mometine:

e when a biffer is read, what is left (depending on the nature of datanitpaatially vanish)

e when a new data is written (second parameterpfknowing the current content of the
buffer (first parameter of)), what is the new content of the tbar (depending on the nature
of data and the new incoming data, it can be partially or iptabdified).

for convenience of writing, we assume thapifec’i is not well defined for its argument, its valuens .

8These axioms give a relevant semantics and are necessafjre consistent projections of dataflows on time scales.

91-slot means that the Her can contain only one data. This data will be used to competealue of a dataflow at
any moment of a time scale, to be able to synchronize a datafitwany possible time scale.
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In this context, the conditions anandw can be understood as follows:

(R1): reading an empty lfiler (i.e. containing) results in an empty bier

(R2): reading the Witier once or many times results in the same content of tiebu

(R3): reading a bfiier in which a data has just been written results in the sam&nbn
whatever the initial content of the iar was before writing the data

(W1): when the bffer has just been read, the new data erases the previous one

(W2): when the bffer has just been written with a data, it will not be modified ifiagain
written with the result of the reading function on this saraést?

we also have by (R1} (W1): w(e, d) = d (W3). When an empty kier is written with a
new data, the kier contains this new data.

There are two classical examples of data behaviors whenlingdeal systems:

Example 6. [Persistent data behavior]n this case, data cannot be consummed by a reading,
and every writing erases the previous data (this data behaws the only one used in [7]) :

r(d)=d and w(d,d’) = d’
O

Example 7. [Consumable data behavior]n this case, data is consummed by a reading, and
every writing (excepted when it i§ erases the previous data :
d if d=¢

r(d) = e and w(d, d’) = { 4 olse

O

We give a less classical example of data behavior that casdxto represent the ability to
accumulate data received (what can be meaningful when datarédten more frequently than
read). It is important to notice that thefber is still a 1-slot béfer and that all accumulated data
will be consumed entirely by a single readthg

Example 8. [Accumulative data behavior] L&k be a non-empty set aridl = £(A) be the set of
subsets oA. We consider that = 0, so thatD is ane-alphabe¥. In this case, data is consumed
by a reading, and every writing is added (using internal 1& phereV) to the previous data :

r(d) = e andw(d,d) =du d’
O

The same real data can be modeled usifigaint behaviors: for instance, an electric current
might be measured by a number of electrons at each step oéastiale (consumable behavior,
data expressed as a natural number), or by a continuous flelectrons (persistent behavior,
data expressed as a real number in amperes). Thus, a datédbéhaot an intrinsic property of
the real data it models, but a modeling choice.

10This rule will insure that a dataflow projected on a finer tiroals is equivalent to the initial dataflow.

1Modeling another kind of reading shall be modeled byféns in the system itself, this is not the purpose of these
“virtual” buffers dedicated to synchronization of data betweéiemint time scales.

12\e can extend this example to any unital magma of identitnetee.
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3.2. Dataflows

In what follows, D will stand for a dataset of-alphabetD with behaviors p, wp). A
dataflow is a flow defined at the moments of a time scale caryatg of a dataset. It will be
used to define the evolution of states, inputs and outputspsim.

Definition 3.3 (Dataflow). A dataflow over (D,T) is a mapping X T — D.

Definition 3.4 (Sets of dataflows).The set of all dataflows ovef),T) is notedD". The set of

all dataflows ovetD with any possible time scale on time reference T is n@éd= U DL,
TeTT)

The projection of a dataflow on a time scale makes it possitdgnchronize data exchanges
between two dterent time scales, with the rule that a data arrivingatl be read at the first next
moment on the time scale of projection (the computation igf¢linchronization only requires a
1-slot virtual bufer and data behaviors). It will be essential when composiggther systems
using diferent time scales to define the properties of the exchangstaf d

Definition 3.5 (Projection of a dataflow on a time scale) Let X be a dataflow orgd, Tx) and
Tr be atime scale. LéF = Tx U Tp. LetT, = succ'(Tp)*. We define recursively the fper
function b: T — D by

o (P1)ifte Ty \ T5, b(t) = w(b(prec(t)), X(t))
e (P2)ifte T} \ Ty, b(t) = r(b(prec'(t)))

o (P3)ifte Ty NT%, b(t) = X(t)

e (P4)ifte Tp\ (Tx UT,), bt) = b(pred(t)

Theprojection Xr,, of X on Tp is then the dataflow orgd, Tp) defined by setting 2 (t) = b(t)
for every te Tp.

Note: (P1) occurs when a new data is received, and when the data dmnffhr has not been
read at the previous step so does not need to be processatiewitading function. (P2) occurs
when no new data is received, and when the data on tfierthas been read at the previous step
and so needs to be processed in thfdsuvith the reading function. (P3) occurs when a new
data is received, and when the data on th@dshas been read at the previous step, so that the
content of the bfier is the new data, by condition (W1). Finally, (P4) occurewino new data
is received, and when the data on thé&buhas not yet been read, so that nothing changes.

We define equivalent dataflows as dataflows that cannot baglisthed by any projection.

Definition 3.6 (Equivalent dataflows). The dataflows X and Y aegjuivalent(noted X~ Y) if,
and only if:
for any time scalél on T, Xt = Yr

BCorresponding to moments such that a data has been readpaetimus moment and shall be marked as “read”.
14By convention b(prect(m')) = €, which makes it simpler to define the rules of projection withmaking a special
case wher = m'.
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Definition 3.7 (Equivalent dataflows as far as).The dataflows X and Y aexgjuivalent as far
astp € T (noted X~, Y) if, and only if:

foranytime scalf on T, forallt <tyin T, Xr(t) = Yr(t)
We now introduce two propositions insuring the relevancthefprojection of dataflows.

Proposition 3 (Equivalence of the projection on a finer time sale). Let X be a dataflow on
(D, Tx) and letTp be a time scale such th&y ¢ Tp. Then, we have:

X ~ Xr,

Proof . The proof uses the properties of the data behaviors andithapie of induction on time
scales to show that!T € THT), Xy = (Xg,)r, and thusX ~ X, (by definition of~). LetT be
a time scale. We note = Xr, and want to prove thatr = Pr.

Let by be the bifer (defined for moments dfx U T) used for defining the projection of
on'T andbp be the bitfer (defined for moments &fp U T) used for defining the projection &f
onT. We will prove by induction of" that: Vt € T, bx(t) = bp(t).

(a) First, we want to prove that the equality is true for motadreforem™. Letty € T with
to < m™ (we will suppose without loss of generafijthatm” < mr).

o Xp(mP) = € by (PO)+ (P4) to initialize the bffer.
o for P:

— if mf < m'™, thenP(m") = € by (P0) and (P4)

— else: we have't € Tp |t < m™, P(t) = X7, (t) = € by (P0) and (P4) sincen™ < m™.
As W(e, €) = € by (W3) andr(e) = € by (R1), the bier till m" in the projection o
onT is alway equal ta& and we havér(m') = e.

o finally, Xp(mT) = Pp(mT).
e we can extend the proof by induction to atgye T with to < m'* sinceVt € Tp such that
t<m™, P(t) = .

(b) For the case whette= m™, we haveby(t) = bp(t) = X(m'), which will allow to initiate the
induction.

(c) Then, we want to prove that the induction hypothesis @anded orT. Letty € T with tp >
m™™x such thaby(to) = bp(to) andt; = succ (tp). We want to prove thaty(t;) = bp(t;). LetA =
Jto; t1] N Tp 18 andB =]to; t1] NTx (we haveB C AsinceTyx C Tp). Lett, = prec™(succ(tp))*’.
Three cases are to be considered:

e (1.1)ifB=0andA=0
— for bx(t1): by (P2) we havéx(t1) = r(bx(to))

15We may add if necessary a smaller initial momeriTto
16This notation is intended to capture the element§freater thaty and less than or equal tp.
17, is the latest moment afx before or aty. It exists sinceg > mx.
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— for bp(t1): by (P2) we havéop(t;) = r(bp(to)) = r(bx(to))
— and Sd:)x(t]_) = bp(tl).

e (1.2)if B=0andA # 0, two subscases shall be considered

— (1.2.1) ifty = to, then

« for by(t1): by (P2) we havéx(t;) = r(bx(to)). According to the situation: by
(P3) bx(to) = X(to) = wW(e, X(to)) or by (P1)bx(to) = W(..., X(tp)). Anyway,
bx(to) = w( ..., X(to)), and by (R3) we havbx(t1) = r(X(to)).

x for bp(ty): Yt € A, P(t) = r(X(tp)), using (P2) and (R2) in the definition Bfas
the projection ofX on Tp. So, by (P1) we havep(m?) = P(n*) = r(X(to)). As
w(r(d"),d) = d by (W1), we have applying (P1) for dlle A, bp(t) = r(X(to)).

If t; ¢ A, we apply (P4) and gebp(t;) = r(X(to)), and the result is the same if
te A
x and sabx(t1) = bp(ty).
— (1.2.2) ifty < to, then

= for by(t1): by (P2) we havédy(t;) = r(bx(to)). But bx(to) can be, by (P2) and
(P4), expressed recursively bg(ty) = r(bx(tx)). Whatever the situation, as in
(1.2.1) we can writdox(tx) = W(..., X(tx)) and so by (R3) we havex(ty) =
r(bx(tx)) = r(X(tJ)-

x for bp(t): the proof is exactly the same as in (1.2.1).

* and Sd)x(tl) = bp(t]_).

e (1.3)if B # 0 thenA # 0. We show as in (1.2) thdix(m®) = bp(m?), and we conclude
recursively thabx(t;) = bp(t1) using (W2).

(d) Finally, by induction, we havét € T, by(t) = bp(t) (begining the induction at= m®, the
anteriort being handled by the first case (a) ).

Hence,Xr = Pr = (Xg,)r for any time scalél. ThusX ~ Xp, (by definition of ~) which
proves our result. O

Proposition 4 (Equivalence of projections on nested time sdes). Let X be a dataflow and let
Ta C Tg be two nested time scales. Then, we have:

(XTB)TA = XTA

Proof . This technical proof is very similar to the previous one. O

4. Systems

We introduce the definition of a system as a timed Mealy magtdnd show that it can be
represented by a transfer function.

11



4.1. Formal definition of a system

We define a system as a mathematical object (figuring a fumadtiolack box with an in-
ternal stat&), characterized by coupled functional and states behayiefining step by step
transitions for changing state and output in instantanesatgion to the input received).
Definition 4.1 (System). A systenis a 7-tuplef = (Ts, Input, Output S, go, 7, Q) where

e Tgis atime scale called the time scale of the system,

Input= (In, ) and Output= (Out, O) are datasets, called input and output datasets,

S is a non-empty-alphabet'®, called thee-alphabet of states,

Oo is an element of S, called initial state,
e F:Ilnx S xTs— Outis a function called functional behavior,
e Q:InxSxTs— S is afunction called states behavior.
(Input, Outpu) is called the signature of.

Our definition of system can be understood as a timed Mealyhimaci.e. a Mealy machine
[25] where we have introduced tirtfe and where the set of states is not supposed to be finite
(what is a fundamental flference from the point of view of computability).

Ts represents the moments of “life” of the system, i.e. the maswehere state and output
can change in the behavior of the system, and where inpuait (tee system will necessarly
read its input at each moment of its time scale, the virtu#Holeing only used to synchronize
the received dataflow with the time scale of the syi@nThe state of a system is all information
“inside” the system, allowing to define its instantaneousavéor according to inputs and time.

F and @ compute respectively the output and the current state ostesy from its last
defined state, its current input (the input can therefore laavinstantaneous influence on output
and state) and the moment of time considered. Introducing th the transition functions is
necessary so that the system has information about time ke mansitions only at moments
on its time scale. Defining the system just as a sequentia@vi@hon its time scale (which is
only onepossible time scale in the time reference) without knowtedfjtime would make it
difficult to compose meaningfully this system with another sydtaving a sequential behavior
on another time scale, so that the composition can still pesssed as a systéfn

The introduction of time defines, from the point of view of qauability, a recursive hierar-
chy of systems following a recursive hierarchy of time ssae a given time reference. We will
develop this point in future work.

We then define the dynamic execution of a system allowingaostiorm (step by step) an in-
put dataflow into an output dataflow, while defining a stateafiiaiv.

18The properties of this internal state are decisive to stuayputability (but out of the scope of this paper).

19pefining S as ane-alphabet (therefore containing and not just as a set will make it possible to define a dataflow
of states, what will later be convenient.

20The introduction of time is a fundamentalfigirence as it makes it possible to use hybrid times (and @anetng
heterogeneous systems) and to define synchronizationgdetiferent systems.

21Buffers of the system can be defined inside the system itself.

22Defining the product of 2 systems withfigirent time scales as a system requires to define them on alstmee
scale, what perturbates the initial time scale of each sysied makes it impossible to define a step by step behavior of
the resulting system without knowledge of time (or withmitaducing tricky states to “count” the number of moments).
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Definition 4.2 (Execution of a system).Let [ be a system. Let X In" be an input datafloi®
for [ andX = Xr,. Theexecution of/ on the input dataflowX is the 3-tupl€X, Q, Y) where

e Qe STsis recursively defined 3/

- Q(m') = Q(X(m"), go, ")

— VteTs, Q(sucds(t)) = Q(X(sucds(t)), Q(t), sucds(t)) 2
e Y e Out’s is defined by:

- Y(m"s) = F(X(m"), go, m"=)

— VteTs, Y(sucds(t)) = F(X(succs(t)), Q(t), sucds(t))

X, Q and Y are respectively input, state and output dataflows.

4.2. Transfer functions

Functional behaviors (between inputs and outputs) of systee given by “causal” functions
transforming dataflows, i.e. functions whose behavior iggeinistic and only depending on
data received in the past (not in the future).

Definition 4.3 (Transfer function). Let Input and Output be two datasets andTgtbe a time
scale. A function F: Input’ — Outpuf’s is a (causal)transfer function on time scal€T's of
signature(Input, Outpu) if, and only if:

VX, Y e Input’, Vte T, (Xr, ~ Yr,) = (F(X) ~ F(Y))

—
S
X)) — Transfer function F Y(t)
S
T —*
Ts

Figure 1: A transfer function

A transfer function is a classical and “universal” repreéaéon (see [32, 12]) of any func-
tional behavior (i.e. an object that receives and sendswigtan time). We will show that every
system induces a transfer function, and later that integrajperators defined on systems corre-
sponds to integration operators on transfer functions.

Equivalent transfer functions are transfer functions Wtdannot be distinguished.

23The system cannot restrict the possible dataflowtngnitit will receive, what is a safer modeling principle.

24The e-alphabet of stateS is associated with a persistent behavior, since the statespétem at any moment of the
time reference can be obtained by considering its last dbfteate.

25Defining the current state as the state after the state ticansilows to model meaningful real states behaviors with
an instantaneous influence of the input on the state.
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Definition 4.4 (Equivalence of transfer functions).Let F; and F, be two transfer functions
sharing the same signature; and F, are equivalent(noted R ~ F,) if, and only if:

VX e Input’, F1(X) ~ F2(X)

A unique transfer function can be associated with any systirdescribes the functional
behavior of this system.

Theorem 1 (Transfer function of a system).Let [ be a system. There exists a unigfiérans-
fer function F, calledthe transfer function of / and such that: for all input dataflow X df
F(X) is the output dataflow in the executionfof

Proof . LetF : InT — Out’s be the function defined by setting for evexye InT, F;(X) as
the unique output dataflow e Out’s corresponding to the input dataflowin the execution of
J. LetX,Y € InT be two input dataflows for the systefn If X ~t, Y for sometp € T, then
by definition we haveXy (t) = Yr(t) for everyt < tp in Ts. The execution of a system for an
input dataflow only depends on the projection of this dataffevthe time scale of the system.
By definition of the execution of a system, the output of tlyistam at only depends on inputs
received untik (included), and s& (X) ~y, F((Y). Thus,F is a transfer function. O

A system can then be represented as in Figure 2 (where the s¢hiares on the left account
for the “virtual” buffers projecting the input dataflow on the time scBleof the system).

Time shift inside

. m—
Transitions
functions
. m—
Q()
Transfer function: F Y(t)

Figure 2: A system

4.3. Examples of systems

Example 9. [Nondeterministic systemsMe have defined systems a deterministic objects. It
will however be useful to simulate nondeterministic bebaviwithin our model. Nondetermin-
istic behaviors can be modeled in a system as follows: orfeedafiputS can be used as an oracle
(or a dataflow ofevent$, i.e. an input giving information to the system to make igsitions
(functional and states).

26Unique on time scal&s, and up to equivalence on all time scales.
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It can simulate classical nondeterminism of Mealy mach(adgre functional and states be-
haviors have their value in nonempty subsets of the targasdts of their deterministic version)
by indicating at each step which element to chose withinghlsset (so that the nondeterminis-
tic behavior is simulated by a dataflow of events within a datristic system). This flow can
also be understood as the formalization of the imperfeatimterspecification of any determin-
istic modet”. It is therefore possible to take into account this impeifecby considering that
transitions can be influenced by specific events carried @pthacle.

This kind of “events dataflow” typically corresponds to thveets used in States diagrams in
modeling languages like SysML (where an event as “the watgkis full” will in fact correspond
to expressing in a deterministic way a nondeterministioetleat cannot be computed from the
current input or state of the system). O

We now give examples of modeling of the three kinds of reaiesys (physical, software and
human) in our framework.

Example 10. [Software systemR software system can be modeled as a Turing machine with
input and output, whose transitions are made following @ titale. In our model, the state of a
system contains the memory of the Turing machine, its ldgiede, and its RW-head'’s position.
We consider a classical Turing machine with input and outpet Q""" be the finite, non-
empty set of logical states of the Turing maching,o be the initial logical stateX be the
e-alphabet of internal tape symbols, andOut be the sets of input and output, afid QT!" x
T xIn - Q"' x T x Outx {-1, 0, 1} the transition function (separated into 4 projectionssz,
03, 04 respectively orQryr, X, Outand{-1, 0, 1}).
We define the systeth= (T, Input, Output S, go, 7, Q) simulating this Turing machine by:

e Ty is any time scale isomorphic 1 (on any time reference)

Input= (In, I) wherel is a behavior orin

Output= (Out, @) whereQ is a behavior oi©ut

S:EZXQTurXZZS

0o = (€, rur0, 0)

F (X, (tape grur, i), t) = 53(K) wherek = gty tapdi], x€ Q™" x = x In
Q(x, (tape grur, i), 1) = (tapdi « 62(K)], 61(K), i + 6a(k)) 2°

This system will compute exactly the same outputs as thialihitned Turing machine with
input and output. Thus, our model contains Turing-like nisdé software systems. %

2"Note that this imperfectignnderspectification can be on purpose, to define a simplerayd his point will be fur-
ther discussed when introducing “abstraction” in Sectioin5ractice, the possibility to model deterministic bebas
of a real system is often restricted by the limited grain afaiption of the real system state observed.

28In 3Z, ¢ is the sequence:)y.

2%Wheretapdi « x] means replacing in the sequeriapethei™ symbol withx.
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Example 11. [Human systemA basic example of a human system may be an individual, John,
in the context of its work. In our modeling, John has two stgteormal” or “tired”). He can
receive requests (by phone) from its colleagues (he musteariiem by “Yes” or “No”) and can
also receive energy (when eating for example, what makesibimal if he was tired). Lastly,
John can become tired after receiving too many requests ifiogolleagues. John is a very
helpful guy always ready to help people, but when he is tinedynly helps urgent requests.

In the scope of our story, John can be modeled as the follomamgleterministic systetft

e we choos€Ts = N (each unit of time being a secordl)

Input = (In, I) with In = {UrgentrequestRequest} x {Energye} x {T oamany e}
and 7 being the consumable behavior associatethtoT oamanyis an event to model
nondeterministic behaviors of the system at this abstradével

Output= (Out, 0) with Out = {YesNo, ¢} andO being the consumable behavior

S = {Tired, Normal €} andgp = Normal

Yes if x; = Reques& q= Normalor x; = Urgentrequest
F((x1, %2,€),09,t)s No if x; = Reques& q= Tired
€ else (i.exy =€)

Tired if e=Toamanyorq= Tired& X, # Energy
Normal else

Q((X1, X2, €), 0, 1) {

O

Example 12. [Physical systemlt has been proved that any Hamiltonian system can be modeled
within the framework introduced in [7]. As our definition ofstem generalizes the work of this
first pape??, we will recall a simplified example of a Water Tank given if, [@hich is a well-
known example of the hybrid systems and control theorydttee.

We work in the time referenc& of nonstandard real numbers. Let us fix first some regular
continuous time scal& with infinitesimal time stepr. We consider a water tank where water
arrives at a variable rate;(t) > O (with t € T) through one single pipe. The water leaves
through another (output) pipe at ratg(t) (with t € T) controlled by a valve whose position is
given byv(t) € [0, 1] (with t € T), 0 and 1 modelling respectively here the fact that the viave
closed or open. The water tank can be modeled as a systemg @kiinput the current values
of the incoming water flowvi(t) and the positior(t) of the valve and sending on its output the
corresponding output water flow,(t) and water level(t) according to the following equations:

Wo(0) = C Vo, Wo(t+ 1) =C\t) foreveryt e T*,
1(0) = Lo, I(t+7)=1(t) + (Wi(t) — wo(t)) = for everyt € T*.

30The nondeterminism allows to express in this high-level efiod the fact that John will become tired when having
received “too many” requests (what cannot be expressedsphgat this abstraction level).

31The choice of the time scale will be especially important wiemposing this system with other systems having
their own time scales. The hidden assumption here is that dafinot receive more than one phone request each second.

321t is out of the scope of this paper to prove it, however thevpi® not dificult as one can notice that non-standard
time scales defined in [7] are still time scales in our new raaled that transitions defined in [7] can be rewritten as
transitions in our model.
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The input and output spaces of the system are thys= [0, C] x [0, 1] andOut; = [0, C] x
[L1, L2]. This illustrates the modeling of a simple physical sysiarour framework. Modeling
of more complex physical systems can be found in [7]. %

5. Integration operators

We propose three elementary operators allowing to modé&tsyssintegration, i.e. to build
greater systems from a set of elementary systems by reewapplication of composition oper-
ators and abstraction operator.

5.1. Systems composition

Composition consists in aggregating systems together iavamall greater system where
some inputs and outputs of the various systems have beeodnteected. Composition requires
to have a definition of the synchronization of dataflows betwne diferent time scales of the
systems considered. We assume that the transmission dielataen systems is instantaneous.

Figure 3: Composition of systems

We define two operators for systems composition: ghaduct (allowing to define a new
overall system from a set of systems, without interconngdtiem) and théeedbackallowing
to define a new system by interconnecting an input and an batpiobe same system). Dividing
composition into two steps allows to distinguish between dlggregation of systems, and the
interconnections within the new overall system, and matkessier to prove theorems.

5.1.1. Extension

We first introduce a “technical” operator calledtensiorthat will facilitate the definition
of the product by allowing to define on a shared time scale gefinumber of systems. The
extension concentrates all technicaffidulties (which are resulting from the introduction of
time) in defining the composition of systems.

Definition 5.1 (Extension of a transfer function). Let F be a transfer function of time scalg
on signature(Input, Outpu). Theextension ofF to T (such thatTs C T) is the equivalent
transfer function FF of time scal€l on signaturglnput, Outpu) defined by:

VX € Input’, F/(X) = F(X)r

33Since it is not possible, in a generic time reference, to deditime scale from an infinite union of time scales.
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The instantaneous behaviors transition functions of aegyshake it possible to extend the
transition functions of a system to any moment of time, byitiieduction of virtual extension
buffers for input and output in the state (so that the new stategmanted with a data of input
and a data of output, memorizing respectively the data tebeived and emitted).

Definition 5.2 (Instantaneous behaviors transition functons). Let/ = (T, Input, Output S, go, ¥, Q)
be a system. We note the writing function for Input andir r, the reading functions for Input

and Output. Writing %= wi(l;, X) 34, we define thénstantaneous behaviors transition func-

tions of a system:

“f‘:lnx(lenxOut)xT — Out
( (@51 o). {75 fes™
and
Q:Inx(SxInxOu)xT —> out
x@bby o | @EADHETEGD) T ET,

The new transition functiong andQ are defined for every moment of the time referefice
and work with extended states containing virtual extenbigfers allowing to synchronize inputs
and outputs with the time scale of the system. These newiti@n&inctions can be restricted to
any time scaldT, noted#r andQr.

The extension of a system consists in defining it on a finer sicade (making it possible to define
a finite number of systems on a shared time scale, i.e. thawfitneir time scales).

Definition 5.3 (Extension of a system)Let T be a time scale such th&; C T. Theextension
of [ to T is the new system:

Jr = (T, Input, Output S x In x Out3, (qo, €, €), 1. Qr)

Theorem 2 (Equivalence of a system by extension).et / be a system ang be its extension
to a finer time scale. Thehand f; have equivalent transfer functions:

Fr~Fg

Moreover, the state dataflows in their execution are egeiveivhen projected on the initial
e-alphabet of states S .

Proof . Let X be an input dataflow fof and . J will work on the projected dataflowr, and
Jr will work on the projected dataflovr. Butﬁy anquy are defined to simulate the following
behavior during their execution: they project the dataffawon the time scal&'s, then compute
the transitions for the systethand finally project the output dataflow of time scélgon the
finer time scaléT. Thus,fr will in fact computeF (X) = (F ((Xr)r,))r, which by Propositions
4 is in factF ;(Xr,)r. But asTs € T, by Proposition 3F ;(Xr)r ~ F(Xr,), which leads us to
the desired result sinde;(Xr,) = F(X).

The proof for the equivalence of the state dataflows (prefecin the initiale-alphabet of
statesS) is straightforward a$ is associated with a persistent behavior. O

34y’ corresponds to the data waiting on the input.
35(¢, €, €) is considered as the blank symlzol
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5.1.2. Product
We now define the product of transfer functions and of systeand show that they are
mutually consistent. We first define the associative progduaftdatasets.

Definition 5.4 (Product of datasets).Let D; = (D1, (r1,wy)) and D, = (Dg, (r2, W2)) be two
datasetsD; ® D, = (D, (r,w)) is a new dataset callegroduct of D; and D, and defined by®

e D=D;xD,¥

e r((dy, d2)) = (r1(d), r2(c2))

o W((dy, dp), (dy, d))) = (W(ds, dy), w(dy, d))

The associative product of datasets allows to define aniasiseqroduct of dataflows.

Definition 5.5 (Product of dataflows). Let X be a dataflow onfdx, Tx) and Y be a dataflow
on (Dv, Ty). TheproductX® Y of X andY is the dataflow onfx ® Dy, Tx U Ty) defined by :

Vte Tx U Ty, X®Y(t) = X,y (), Yreur, (1)

We define the projection of a dataflow on a dataset, allowingptwsider only a part of the
aggregated datasets of the dataflow.

Definition 5.6 (Projection of a dataflow on a dataset).Let D = D; ® D, be a dataset. Let
X € DT be a dataflow of time scalBx. Theprojection of X on D; (i = 1, 2) is the dataflow %,
on (Dj, Tx) defined by :

Yt e Tx, Xgp,(t) = d where Xt) = (di,dz) € D1 ® D».
We can now define the product of transfer functions.

Definition 5.7 (Product of transfer functions). Let Fy : Input,” — Outpug™ and R : Input’ —
Outpub™ be two transfer functions. Theroduct of F; and F» is the function F ® F5 :
(Inputy ® Inpuk)™ — (Output ® Outpub)™*“"2 defined by:

¥X e (Inputl ® Inputz)T, Fi1® FZ(X) = Fl(XInputl) ® FZ(XInputz)
This product defines a transfer function and is associative:

Proposition 5 (Closure and associativity for the product oftransfer functions). F1®F; is a
transfer function ane on transfer functions is associative.

Proof. LetD = D, ® --- ® D, be a dataset. Let,Y € D' be two dataflows. Thert e T :
(X~ Y) © (¥i, Xp, ~t Yp,). The proof can be easily obtained from this property. O

We finally define the product af systems (sharing the same time scale) as the new system
resulting from the aggregation of those systems (calledsgstems” of the new systeff)

38t is easy to show that the new reading and writing functiomsoly with the axioms of a data behavior.
37(¢, €) is considered as the blank symlzol
38Defining the product ofi systems (and not just 2) is to give a semantics to the notisnilogystem.
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Definition 5.8 (Product of systems).Let (f)i = (Ts, Input, Output, Si, qo;, 77, Q)i be n sys-
tems of time scal@s. Theproductf; ® --- ® [, is the systen{Ts, Input, Output S, go, ¥, Q)
where:

e Input=Inpuy ® - -- ® Input, and Output= Output ® - - - ® Output,
e S=S;x---xSpand ¢ = (doy, - --»op,)

o F((Xe,- -y %), (G, -, Gn), 1) = (Fr(Xe, Qo 1), - . ., Fn(Xa, Ga, 1))

* Q((X1, .- Xn), (0, - -+, ), 1) = (Qu(X1, G, 1), - . ., Qn(X1, O, 1))

The product can be generalized to systems wiffetént time scales with the extension.

Time shift inside

Figure 4: Product of systems

Theorem 3 (Consistency of the product of systems)The transfer function of the product of n
systemgf) is equivalent to the product of their transfer functions:

Froef ~Fp® -®F;

Proof . If the nsystems share the same time scale, the proofis straiglatfditvy definition of the
product of systems (and the equivalence is in fact an eglalitnot: we consider the extension
of the n systems to the union of their time scales. By Theorem 2, tleesponding transfer
functions are equivalent, and finally the equivalence dtit¢his Theorem is straightforwardl

5.1.3. Feedback

The feedback consists in defining a new system by connectiegpbthe output to one of
the input of an existing system, sharing the same d&fasédwever, it is not always possible to
feedback an output on an input of same dataset: to definesieelyrthe feedback of a system
and express it as a new system with transition functions itecessary to establish the non-
instantaneous influence of the input on the output concerned

We first introduce broader and natural definitions of the et on transfer functions as
fixed point of dataflows, and show later that it captures tleelfiack on systems.

39sharing only the samealphabet is not enough since havingelient data behaviors would makéfdient resulting
feedbacked systems according to the extension consideréaefinitial system.
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Definition 5.9 (Feedback of a transfer function). Let F be a transfer function of time scdle
on signature(D ® A,D ® B). F is feedbackable on D if, and only ifYX € AT, 3! Yx €

DTs, F(Yx ® X)p = Yx. In this case, théeedback ofF on D is the new transfer function {p)

of time scal€T's on signaturg A, B) defined by:

VX e AT, fbEpy(X) = F(Yx ® X)g

Proposition 6 (Equivalence of feedback on a finer time scale)let F be a transfer function
and Fr be an extension of F to a finer time scdle Then, flp-p) exists if, and only if flz, p)
exists, and in this case we have:

fbrp) ~ T p)

Proof . As F ~ Fr and as the feedbacked input and output share the same datadrslYy for
F will work for Fr by consideringYx), and conversely. O

We now define the feedback of a system by induction, so thaittionstructive definition.

Definition 5.10 (Feedback of a system)Let | = (Ts, (D x In, I), (D x Out, 0), S, o, ¥, Q) be
a system such that there is no instantaneous influence o$etafafrom the input to the output,
i.e. Yt € Ts,¥x € In, ¥d € D, £((d,X),q,t); = F((e, X), 0. t)5. Thefeedback ofD in [is the
systemkgp) = (Ts, (In, I’), (Out, '), S, go, ¥, Q') with:

e I’ isthe restriction off to In, and(’ is the restriction o to Out
e F/(xeln,ge S t) = F((dege X, A Doy
e Q@(xelIn,geS,t) = Q((dxgt X), a, 1)

where ¢ g stands forF ((e, x), g, t)p.

Ts

X(t) Y

Figure 5: Feedback of a system

A good practice (well-spread in Systems Engineering) whexleting real systems is to
always feedback a system with an interface (to model prigseof the link).

Theorem 4 (Consistency of the feedback on systems]he transfer function of the feedback of
a system (when it exists) is the feedback of the transfetifumof this system:

FfFB(D) = fb(F!’D)

Proof . We easily show by induction that the feedbacked dataflowtcocited in the definition
of a feedbacked system is a fixed point for the initial tran&faction. O
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5.2. Abstractiort- concretization

The abstraction allows to define from a system a more abstystém, so that it can be
integrated in more global ones. Abstraction allows to adesihe right systemic level to describe
a system, according to modeling needs, and is thus a fundaht@wi to deal with the complexity
of systems by hiding unnecessary low-level details relatethe behavior of the system. It
helps people to better understand a system and makes desfermal analysis by working on
abstraction of systems (see [14] for abstract interpa@tatthich is a well-known example of
abstraction).

The abstraction can be understood as a zoom out from thegfaiiew of datasets (consider-
ing higher level datas for inputs, outputs and states, aadtaally merging dterent dataflows),
time (considering intervals of time instead of moments) awdrall behavior. For instance, a
computer may be considered as an electronic device withriel@csignals every microsecond.
However, we generally abstract this electronic device énaore abstract device able to process
complex data as emails, with a time step being typically tnednedth of second (this simplified
example will be modeled below).

The abstraction of a dataflow consists in defining a new datajloa more abstract dataset
and on a more abstract time scale (typically with a larggr)ste

Definition 5.11 (Abstraction/concretization of dataflows). Anabstractionof dataflows is a sur-
jective function A D.™ — D, which is causal:

VX, Y € Do, Vi e T, (X~ Y) = (AXX) ~¢ AXY))
The associatedoncretizationis the function C. D;™ — P(D.") defined by ©X) = A-1({X}).

We remark that an abstracti@oncretization of dataflows is in fact a partition of the cate
dataflows whose elements are indexed by the abstract dasaflow

Example 13. We can take the example of a computer whose LAN connectiorssribed by
an input dataflow of bits on a regular time scale of step®li€kec, i.e. D. = {0,1,¢} and
T. = 7N with r = 0.001. We can abstract this dataflow to an abstract dataflowpor=
{emalil file, picture videq html ¢} on time scalél, = 7N with 7/ = 0.01. O

The abstraction of a transfer function is a new transfertionavorking on abstract dataflows,
with nondeterministic behaviors modeled by events datafi@xplained below in Example 14).

Definition 5.12 (Abstraction of a transfer function). Let F : Input” — Outputf’s be a trans-
fer function. Let A: Input’s — Input,™= be an abstraction for input dataflows and, A
Outpufs - Output,"™ an abstraction for output dataflows. Thestraction ofF for input and
output abstractiongA;, Ay) with eventsE is the new transfer function

Fa: (Input® E)" — Outpup™

defined by:
VX € Input’, IE € ™, Fa(A(Xr,) ® E) = Ao(F(X))
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Thus, the following diagram commutes (we dismiss events)her

InputTs LN Outpuf’s

A |

Input, — Output™
We now define the abstraction of a system.

Definition 5.13 (Abstraction of a system).Let | = (Ts, Input,Output S, go, 7, Q) be a sys-
tem. J” = (Ta, INput, ® &, Output, Sa, Gao, Fa» Qa) is an abstraction of for input and output
abstractiongA;, Ao) if, and only if: JA; : STs — S,, for all execution(X, Q, Y) of [, 3E € &™,
(Al(Xr,) ® E, Aq(Q), Ao(Y)) is an execution of .

Conversely/” is a concretization of the systefm

Indeed, an abstraction consists in abstracting inputesstand outputs dataflows in the exe-
cution of a system, and to define on these abstract dataflow aystem that will have abstract
behaviors corresponding to the initial behaviors of théahsystem. A good abstraction will be
based on dataflows abstraction which will define consistansitions in the abstract system for
states and outputs. However, nondeterministic behavinegléled by events datafloi) will
generally appear in the abstract system. Itis a consequénegrouping states and ingatitput
data in more abstraetalphabets, making it impossible to express the abstrawiers as de-
terministic transitions on thosealphabets (for instance, one abstract data may correspond
several concrete data sometimes resulting in several mekaof the concrete system, and the
same may occur for the states). The abstraction of a detistinisystem may thus resultin non-
deterministic behaviors, what does not mean that the retésymodeled is nondeterministic.

Example 14. [Nondeterministic behaviors of abstraction of systems]dMesider a glass whose
state is described by an integer between 0 and 100 modekngpolidity of the glass (0 means
broken). This glass can receive physical forces which lotgesolidity till it is broken. At
this level, the glass is described as a deterministic systEwe consider an abstraction of this
model, we may consider the glass has being broken or not {ates3 and receiving a shock (i.e.
a sequence of physical forces) or nothing. When the glasdymoken yet, receives a shock, it
will sometimes become broken, and sometimes remain noebralepending of the previously
received shocks. Therefore, at this level of abstractlmmglass has nondeterministic behaviors
(since a shock may break it, with parameters that cannot plaieed at this abstraction level).
O

Theorem 5 (Consistency of the abstraction of a system)T'he transfer function of the abstrac-
tion of a system is the abstraction of the transfer functibthiz system.

Proof . The proof of this Theorem is straightforward regarding teérdtion of the abstraction
of a system, which is defined as abstracting the transfetifumof the initial system. O

5.3. Systems integration

The integrationof systems in our framework consists in composing togetHeri@ set of
systems, with product (P) and feedback (F), then applyiegatbstraction (A) to describe the
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resulting system at a more abstract level, and repeatirgpthieps recursively till reaching the
target overall system. We believe that the recursitegrationof real systems (as done in Sys-
tems Engineering) can be modelled consistently as thesoreling integration of systems in
our framework, using only /#/A. We thus introduce a modeling postulate:

Postulate 1 (Real integration can be modeled with f£/A). Any real systerd” resulting from
the “real” integration of elementary real syster(1$’ ) can be consistently modeled as a sysfem
resulting from recursive applications of operatoy&R on the elementary syste(if3 (modeling
the elementary real systerng)).

One can remark that we only provided operators to integnatems together. In reality,
systems design involves mixing both bottom-up and top-dapproaches. However, the same
operators still hold, as the top-down approach can be irgtafed as finding the right subsystems
that, integrated together, are equivalent to the highel keystem.

6. Conclusion

We have introduced a minimalist and unified semantics foerogeneous integrated sys-
tems. This semantics allows us to capture two very impoamperties of complex systems:
heterogeneitybeing able to deal with various types of systems through tiilme & data) and
recursive integratiorftaking into account the integrative dimension of comphgstems that are
build recursively with multiple levels of components).

This work is the theoretical part of a broader project ainghbuilding an applied science for
systems design, extending the models & methods existingdfiware design. Within the last
two years, we have applied our framework to many real inéhistases from various industries
(aeronautics, defence, banking, nuclear engineeringnaative) to assess the generality and the
effectiveness of our approach. We will publish in further papechitecting methods derivated
from this theoretical work to be applied to real life sitweis, with associated concrete industrial
experimentations.

On the semantics itself, we have identified several topigspbrtance for our future work:

e our semantics can be presented in a more abstract way, ircope ®f category theory
using a coalgebraic approach (this work will be publishey geon)

e in the present work, systems have been defined on static tialessonly, regardless of
events occuring during the system’s life. It might be meghihto extend this definition
of systems to dynamic time scales constructed during theutxa of the system

¢ the most complicated integration operator, abstraction should be refined by fierent
operators performing specialized kind of abstractions ystesns, consistently with the
reality of the specialized and meaningful abstraction®antered in Systems Engineer-
ing. Another associated improvement to our model would hiefine a nondeterministic
model of systems, which is necessary to define more spec#tcaation operators

« finally, these models are intended to help designing systé@imsrefore, we are willing to
provide a formal framework to describe a design procesgumin semantics, providing a
formalization of design approaches mixing top-down anddsotup approaches to explore
the recursive structure of integrated systems being dedign
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