
HAL Id: hal-00782859
https://centralesupelec.hal.science/hal-00782859v1

Submitted on 11 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of Complex Systems II: A minimalist and
unified semantics for heterogeneous integrated systems

Marc Aiguier, Boris Golden, Daniel Krob

To cite this version:
Marc Aiguier, Boris Golden, Daniel Krob. Modeling of Complex Systems II: A minimalist and unified
semantics for heterogeneous integrated systems. Applied Mathematics and Computation, 2012, 218
(16), pp.8039-8055. �hal-00782859�

https://centralesupelec.hal.science/hal-00782859v1
https://hal.archives-ouvertes.fr

Modeling of Complex Systems II: A minimalist and unified
semantics for heterogeneous integrated systems

Marc Aiguier

École Centrale Paris
Laboratoire de Mathématiques Appliqués aux Systèmes (MAS)

Grande Voie des Vignes - F-92295 Châtenay-Malabry

marc.aiguier@ecp.fr

Boris Golden1, Daniel Krob

École Polytechnique et CNRS
Laboratoire d’Informatique de l’́Ecole Polytechnique (LIX)

91128 Palaiseau (France)
Phone:+33 (1) 69 33 40 73
Fax: +33 (1) 69 33 40 49

boris.golden@polytechnique.edu
dk@lix.polytechnique.fr

Abstract

The purpose of this paper is to contribute to a unified formal framework for complex systems
modeling. To this aim, we define a unified semantics for systems including integration operators.
We consider complex systems as functional blackboxes (withinternal states), whose structure
and behaviors can be constructed through a recursive integration of heterogeneous components.
We first introduce formal definitions of time (allowing to deal uniformly with both continuous
and discrete times) and data (allowing to handle heterogeneous data), and introduce a generic
synchronization mechanism for dataflows. We then define a system as a mathematical object
characterized by coupled functional and states behaviors.This definition is expressive enough to
capture the functional behavior of any real system with sequential transitions. We finally provide
formal operators for integrating systems and show that theyare consistent with the classical
definitions of those operators on transfer functions which model real systems.

Keywords: Complex systems, Systems modeling, Systems semantics, Systems Engineering,
Systems integration, Timed Mealy machine, Hybrid time, Non-standard analysis

1. Introduction

The concept ofcomplex systemshas led to various definitions in numerous disciplines (bi-
ology, physics, engineering, mathematics, computer science, etc). One speaks for instance of
dynamical, mechanical, Hamiltonian, hybrid, holonomic, embedded, concurrent or distributed
systems (cf. [2, 4, 21, 24, 28, 32]). A minimalist fuzzy definition consistent with (almost) all

1Corresponding author

Preprint submitted to Applied Mathematics and Computation December 25, 2011

those of the literature is that a ‘system’ is “a set of interconnected parts forming an integrated
whole”, and the adjective ‘complex’ implies that a system has “properties that are not easily
understandable from the properties of its parts”. In the mathematical formalization of “complex
systems”, there are today two major approaches: the first oneis centered on understanding how
very simple, but numerous, elementary components can lead to complex overall behaviors (e.g.
cellular automatas), the second one (that will also be ours)is centered on giving a precise seman-
tics to the notion of system and to the integration of systemsto build greater overall systems.

When mathematically apprehended, the concept of system (inthe sense of this second ap-
proach) is classicaly defined with models coming from:

• control theory and physics, that deal with systems as partial functions (dynamical systems
may also be rewritten in this way), called transfer functions, of the form:

∀t ∈ T, y(t) = F(x, q, t)

wherex, q andy are inputs, states and outputs dataflows, and whereT stands for time
(usually considered in these approaches as continuous (see[32, 1, 12]).

• theoretical computer sciences and software engineering, with systems that can be depicted
by models equivalent to timed Turing machines with input andoutput, evolving on dis-
crete times generally considered as a universal predefined sequence of steps (see for in-
stance [19, 5, 16]).

However all these models do not easily allow to handle layered systems with multiple time
scales. The introduction of a more evolved notion of time within Turing-like models involves
many difficulties, mainly the proper definition of sequential transitions or the synchronization
of different systems exchanging dataflows without synchronization of their time scales. Dealing
with evolved definitions of times will generally imply to introduce infinity and infinitesimal
(for instance with non-standard real numbers). There is therefore a great challenge (which we
propose to address in this paper) on being able to unify in a same formal framework mathematical
methods dealing with the design of both continuous and discrete systems.

The theory of hybrid systems was developed jointly in control theory (see [32, 34]) and in
computer science (see [2, 3, 22]) to address this challenge.A serious issue with this theory is
however that the underlying formalism has some troubling properties such as the Zeno effect
which corresponds to the fact that an hybrid system can change of state an infinite number of
times within a finite time (because of the convergence of series of durations) that one usually
prefers to avoid in a robust modeling approach. Moreover, itdoes not allow to consider various
time scales of heterogeneous granularity (which will be thecentral point of our approach). Other
interesting and slightly different attempts in the same direction can also be found in Rabinovitch
and Trakhtenbrot (see [27, 33]) who tried to reconstruct a finite automata theory on the basis of
a real time framework, or in [35].

In the literature about (complex) systems, the real object and its model are often confused and
both called “system”. We will call areal systemany object of the real world which transforms
flows of data. We will callsystemthe mathematical object introduced to model real systems.
In this paper, we are interested in modeling the functional behavior of real systems, and their
integration. Thus, we will model real systems as functionalblackboxes (with an internal state),
whose structure and behaviors can be described by the recursive integration of heterogeneous

2

smaller subsystems (thus considering complex systems as heterogeneous integrated systems).
We will thus focus on two aspects of the complexity of systems:

• theheterogeneityof systems (modeled following continuous or discrete time,and exchang-
ing data of different types, - informational, material or energetic).2

• the integrationof systems, i.e. the mechanism to construct a system resulting from the
composition of smaller systems, whose behaviors may be described at a more concrete
level (i.e. a finer grain).

We will assume that the observational behavior of any real system can be modeled by a functional
machine processing dataflows (for related work on dataflow networks, see [19, 11, 10]) in a way
that can be encoded by timed transitions for changing statesand outputs in instantaneous reaction
to the inputs (comparable with timed Mealy machines [25] with possibly infinite states). We
show that our formalization makes it possible to model the basic kinds of real systems (physical,
software and human/organizational), which is especially important in SystemsEngineering [6,
23, 30].

This paper is the second of a series on “Modeling of Complex Systems”. Indeed, we gener-
alize the approach of the first paper [7] (where a unified framework for continuous and discrete
systems was defined by using non-standard infinitesimal and finite time steps) by dealing with
time, data, and synchronization axiomatically, and by introducing integration operators. The
purpose of this second paper is to give a unified and minimalist semantics for heterogeneous
integrated systems and their integration. By “unified”, we mean that we propose a unified model
of real systems that can describe the functional behavior ofheterogeneous systems and that is
closed under integration. By “minimalist” we mean that our formalization intends to provide a
small number of concepts and operators to model the behaviors and the integration of (complex)
real systems. We believe that our work allows to give a relevant formal semantics for concepts
and models typically used in Systems Engineering, where semi-formal modeling is well-spread.
The paper is organized as follows:

• in Section 2 and 3, we introduce unified definitions of time (both continuous and discrete)
and data (with various behaviors) to handle heterogeneous components and encompass
classical approaches. We also define a generic synchronization for dataflows,

• in Section 4, we introduce a formal definition of systems as unified functional objects
modeling heterogeneous real systems,

• in Section 5, we introduce minimalist operators for integrating systems (with closure of
the definition of system) and prove that they are consistent with classical concepts of inte-
gration formalized on transfer functions.

2. Time

Most of the challenges raised by the unified definition of heterogeneous integrated systems
are coming from time. Indeed, real systems are naturally modeled according to various time
scales (modeling discrete or continuous time), and we must therefore be able to define:

2Data encompasses here all kinds of elements that can be exchanged between real objects. We distinguish three kinds
of homogeneous systems : hardware/physical systems (transforming continuous physical parameters), software systems
(transforming and managing discrete data), and human/organizational systems (organized through processes).

3

• a unified model of time encompassing continuous and discretetimes to later introduce a
unified definition of heterogeneous systems,

• the mixture of various time scales for integrating systems.

Unifying both discrete and continuous times can seem paradoxal (see [9] for an exhaustive
survey on the subject). To reach this purpose, we propose to extend the approach developped in
the first paper of the series [7] where discrete and continuous times have been unified homoge-
neously (by using techniques of non-standard analysis [26,29, 15]). We propose a more generic
approach and deal with time axiomatically, that is by expressing the minimal properties that
both time references and time scales have to satisfy. That allows to consider in a same uniform
framework many different times: usual ones such asN andR, or more specific ones such as the
non-standard real numbers∗R, Harthong-Reeb’s line [17, 18], or the VHDL time (see below).

2.1. Time references
A time reference is a universal time in which all systems willbe defined.

Definition 2.1 (Time reference).A time referenceis an infinite set T together with an internal
law +T : T × T → T and a pointed subset(T+, 0T) satisfying the following conditions:

• upon T+:

– ∀a, b ∈ T+, a+T b ∈ T+ closure (∆1)

– ∀a, b ∈ T+, a+T b = 0T =⇒ a = 0T ∧ b = 0T initiality (∆2)

– ∀a ∈ T+, 0T +T a = a neutral to left (∆3)

• upon T:

– ∀a, b, c ∈ T, a+T (b+T c) = (a+T b) +T c associativity (∆4)

– ∀a ∈ T, a+T 0T = a neutral to right (∆5)

– ∀a, b, c ∈ T, a+T b = a+T c =⇒ b = c cancelable to left (∆6)

– ∀a, b ∈ T, ∃c ∈ T+, (a+T c = b) ∨ (b+T c = a) linearity (∆7)

Elements ofT aremomentswhilst elements ofT+ aredurations(or distances between mo-
ments). Any duration can be considered as a moment, by considering a conventional origin.

Example 1. In the previous paper of this series [7], we chose for time reference the set of non-
standard real numbers∗R defined as the quotient of real numbersR under the equivalence relation
≡⊆ RN × RN defined by:

(an)n≥0 ≡ (bn)n≥0⇐⇒ m({n ∈ N|an = bn}) = 1

wherem is an additive measure that separates between each subset ofN and its complement, one
and only one of these two sets being always of measure 1, and such that finite subsets are always
of measure 0. The obvious zero element of∗R is (0)n≥0, ∗R+ is its positive part taken here as
durations, and the internal law+ is defined as the usual addition onR

N, i.e.:

(an)n≥0 + (bn)n≥0 = (an + bn)n≥0

∗
R satisfies all the conditions of Definition 2.1 and is a well-defined time reference. Observe

also that∗R has as subset, the set of non-standard integers∗Z (and subsequently∗N) where
infinite numbers are all numbers having absolute value greater that anyn ∈ N. ♦

4

The properties given uponT andT+ are constraints that catch the intuitive view that the time
elapses linearly by adding successively durations betweenthem.

Proposition 1 (Total order on a time reference).We can define a total order�T (later written
� for convenience) on T as follows:

a �T b⇔ ∃c ∈ T+, b = a+T c

Proof . This is a classical result (in semigroups theory, cf [13]) using∆2, ∆4, ∆5, ∆6 and∆7. �

Moreover, we can remark that∆1 insures that any element ofT greater than an element of
T+ will be in T+, and∆3 insures that 0T is the minimum ofT+, so that the set of durations has
natural properties according to�T and can be understood as “positive” elements ofT.

Some authors, e.g. [20], add commutativity and Archimedeanproperties in the definition of a
time reference. Commutativity is intuitive and the Archimedean property excludes Zeno’s para-
dox. However, they are not satisfied by the VHDL time used in some programming languages.

Example 2. The VHDL time [8]V is given by a couple of natural numbers (both sets of mo-
ments and durations are similar): the first number denotes the “real” time, the second number
denotes the step number in the sequence of computations thatmust be performed at the same
time – but still in a causal order. Such steps are called “δ-steps” in VHDL (and “micro-steps”
in StateCharts). The idea is that when simulating a circuit,all independent processes must be
simulated sequentially by the simulator. However, the realtime (the time of the hardware) must
not take these steps into account. Thus, two eventse1, e2 at moments (a, 1), (a, 2) respectively
will be performed sequentially (e1 beforee2) but at a same real timea. The VHDL addition is
defined by the following rules:

(r ′ , 0) =⇒ (r, d) + (r ′, d′) = (r + r ′, d′)

(r ′ = 0) =⇒ (r, d) + (r ′, d′) = (r, d+ d′)

wherer, r ′, d andd′ are natural numbers and+ denotes the usual addition on natural numbers.
Clearly, the internal law+ above is not commutative, nor Archimedean: we may infinitelyfollow
a δ-branch by successively addingδ-times.3 ♦

2.2. Time scales

Time references give the basic expected properties of the set of all moments. Now, we want
to define time scales, i.e. sets of moments of a time referencethat will be used to define a system.

Definition 2.2 (Time scale).A time scaleis any subsetT of a time reference T such that:

• T has a minimum mT ∈ T

• ∀t ∈ T, Tt+ = {t′ ∈ T | t ≺ t′} has a minimum called succT(t)

• ∀t ∈ T, when mT ≺ t, the setTt− = {t′ ∈ T | t′ ≺ t} has a maximum called predT(t)

3This is not the intended use of VHDL time, however: VHDL computations should perform a finite number ofδ-steps.

5

• the principle of induction4 is true onT.

The set of all time scales on T is noted T s(T).

A time scale is defined so that it will be possible to make recursive constructions on it, and
to locate any moment of the time reference between two moments of a time scale. A time scale
necessarily has an infinite number of moments. In fact, a timescale is expected to comply with
the Peano axioms5, excepted that thesuccT and precT are defined for moments ofT and not
only T.6 This is not equivalent: a simple counter-example on time referenceR+ can show it is
possible to haveprecandsuccproperly defined for moments of the subsetT = {1 − 1

2n for n ∈
N} ∪ {1+ 1

2n for n ∈ N} whereas moment 1 has noprecor succin T . This fundamental property
prevents Zeno’s effect on any time scale. Most of time scales (discrete and continuous) used when
modeling real systems can be defined as unified regular time scales of stepτ and of minimumm:

m m+ τ m+ 2τ m+ 3τ ...

Example 3. By using results of non-standard analysis, continuous timescales can then be con-
sidered in a discrete way. Following the approach developedin [7] to model continuous time
by non-standard real numbers, a regular time scale can be∗Nτ whereτ ∈ ∗R+ is the step,
0 ∈ ∗Nτ and∀t ∈ ∗Nτ, succ

∗
Nτ(t) = t + τ. This provides a discrete time scale for modeling

classical discrete time (when the step is not infinitesimal)and continuous time (when the step is
infinitesimal). ♦

Example 4. In the VHDL timeV, the internal law induces a lexicographic ordering onN × N.
Thus, letW ⊂ V such that:∀a ∈ N, ∃Na ∈ N, ∀(a, b) ∈ W, b ≤ Na (i.e. there are only a finite
number of steps at each moment of time inW). ThenW is a time scale in the VHDL time. ♦

Example 5. A time scale on the time referenceR+ can be any subsetA such that:∀t, t′ ∈
R+, |A∩ [t; t + t′]| is finite. ♦

One might also use the new language for representing finite, infinite and infinitesimal num-
bers introduced in [31] to deal with time.

We have shown that we can accomodate heterogeneous times with our definitions. We intro-
duce a fundamental proposition allowing to unify different time scales, which is necessary for
systems integration (when the systems involved do not sharethe same time scales). Overall, our
definition of time will be suitable for heterogeneous integrated systems.

Proposition 2 (Union of time scales).A finite union of time scales (on the same time reference
T) is still a time scale.

Proof . The proof for two time scales is enough. LetT1,T2 be two time scales onT. Let
T = T1 ∪ T2. We want to prove thatT is a time scale.
T is a subset ofT. Note thatT has a minimummin

(

mT1,mT2
)

, and that thesuccand prec
functions can be obviously defined by:∀t ∈ T, succT(t) = min

(

succT1(t), succT2(t)
)

and when

4For A ⊂ T,
(

mT ∈ A & ∀t ∈ A, succT(t) ∈ A
)

⇒ A = T.
5It can be easily checked that the above conditions imply Peano axioms.
6These specific properties are necessary to prove that time scales are closed under finite union.

6

t ≻ mT, precT = max
(

precT1(t), precT2(t)
) 7. So the only problem is to prove that the induction

principle hold onT. This can be proved by using a lemma: ifmT ∈ A & ∀t ∈ A, succT(t) ∈ A then
∀t ∈ Ti , succTi (t) ∈ Ti for i = 1, 2 (this lemma is easily proved using the principle of induction
in Ti on intervals of successive elements ofTi in T). So that finally,T = T1 ∪ T2 satisfies the
principle of induction. Thus,T is a time scale onT. �

3. Data

Another challenge to address to model complex systems is theheterogeneity of data (mod-
eling any element that can be exchanged between real systems) and of their synchronization
between different time scales. We introduce datasets that will be used for defining data transmit-
ted by dataflows. The dataflows will be used to describe variables of systems (inputs, outputs
and states), and we define the synchronization of dataflows between time scales.

3.1. Datasets

Definition 3.1 (ǫ-alphabet). A set D is anǫ-alphabetif ǫ ∈ D. For any set B, we can define an
ǫ-alphabet byB = B∪ {ǫ}.

The elements of anǫ-alphabet are calleddataandǫ is a universal blank symbolǫ accounting for
the absence of data (as the blank symbol in a Turing machine).An ǫ-alphabet can have an infinite
number of data. A system dataset (also called dataset) is anǫ-alphabet with the description of
the behavior of the data (when read or written in a “virtual” buffer):

Definition 3.2 (System dataset).A system datasetis a pairD = (D,B) such that:

• D is anǫ-alphabet

• B, calleddata behavior, is a pair(r,w) with r : D→ D and w: D × D→ D such that8:

− r(ǫ) = ǫ (R1)
− r
(

r(d)
)

= r(d) (R2)
− r
(

w(d, d′)
)

= r(d′) (R3)
− w
(

r(d′), d
)

= d (W1)
− w
(

w(d, d′), r(d′)
)

= w(d, d′) (W2)

B will be useful to synchronize dataflows defined on different time scales (see Projection below).
Data behaviors can be understood as the functions allowing to read and write data in a “virtual”
1-slot9 buffer defining how this synchronization occurs at each moment oftime:

• when a buffer is read, what is left (depending on the nature of data, it can partially vanish)

• when a new data is written (second parameter ofw), knowing the current content of the
buffer (first parameter ofw), what is the new content of the buffer (depending on the nature
of data and the new incoming data, it can be partially or totally modified).

7for convenience of writing, we assume that ifprecTi is not well defined for its argument, its value ismT.
8These axioms give a relevant semantics and are necessary to define consistent projections of dataflows on time scales.
91-slot means that the buffer can contain only one data. This data will be used to computethe value of a dataflow at

any moment of a time scale, to be able to synchronize a dataflowwith any possible time scale.

7

In this context, the conditions onr andw can be understood as follows:

• (R1): reading an empty buffer (i.e. containingǫ) results in an empty buffer

• (R2): reading the buffer once or many times results in the same content of the buffer

• (R3): reading a buffer in which a data has just been written results in the same content
whatever the initial content of the buffer was before writing the data

• (W1): when the buffer has just been read, the new data erases the previous one

• (W2): when the buffer has just been written with a data, it will not be modified if it is again
written with the result of the reading function on this same data10

• we also have by (R1)+ (W1): w(ǫ, d) = d (W3). When an empty buffer is written with a
new data, the buffer contains this new data.

There are two classical examples of data behaviors when modeling real systems:

Example 6. [Persistent data behavior]In this case, data cannot be consummed by a reading,
and every writing erases the previous data (this data behavior was the only one used in [7]) :

r(d) = d and w(d, d′) = d′

♦

Example 7. [Consumable data behavior]In this case, data is consummed by a reading, and
every writing (excepted when it isǫ) erases the previous data :

r(d) = ǫ and w(d, d′) =

{

d if d′ = ǫ
d′ else

♦

We give a less classical example of data behavior that can be used to represent the ability to
accumulate data received (what can be meaningful when data are written more frequently than
read). It is important to notice that the buffer is still a 1-slot buffer and that all accumulated data
will be consumed entirely by a single reading11.

Example 8. [Accumulative data behavior] LetA be a non-empty set andD = P(A) be the set of
subsets ofA. We consider thatǫ = ∅, so thatD is anǫ-alphabet12. In this case, data is consumed
by a reading, and every writing is added (using internal law of D, here∪) to the previous data :

r(d) = ǫ and w(d, d′) = d∪ d′

♦

The same real data can be modeled using different behaviors: for instance, an electric current
might be measured by a number of electrons at each step of a time scale (consumable behavior,
data expressed as a natural number), or by a continuous flow ofelectrons (persistent behavior,
data expressed as a real number in amperes). Thus, a data behavior is not an intrinsic property of
the real data it models, but a modeling choice.

10This rule will insure that a dataflow projected on a finer time scale is equivalent to the initial dataflow.
11Modeling another kind of reading shall be modeled by buffers in the system itself, this is not the purpose of these

“virtual” buffers dedicated to synchronization of data between different time scales.
12We can extend this example to any unital magma of identity elementǫ.

8

3.2. Dataflows

In what follows,D will stand for a dataset ofǫ-alphabetD with behaviors (rD,wD). A
dataflow is a flow defined at the moments of a time scale carryingdata of a dataset. It will be
used to define the evolution of states, inputs and outputs of asystem.

Definition 3.3 (Dataflow). A dataflow over (D,T) is a mapping X: T→ D.

Definition 3.4 (Sets of dataflows).The set of all dataflows over (D,T) is notedDT. The set of
all dataflows overD with any possible time scale on time reference T is notedDT =

⋃

T∈T s(T)

DT.

The projection of a dataflow on a time scale makes it possible to synchronize data exchanges
between two different time scales, with the rule that a data arriving att will be read at the first next
moment on the time scale of projection (the computation of this synchronization only requires a
1-slot virtual buffer and data behaviors). It will be essential when composing together systems
using different time scales to define the properties of the exchange of data.

Definition 3.5 (Projection of a dataflow on a time scale).Let X be a dataflow on (D, TX) and
TP be a time scale. LetT = TX ∪ TP. Let T′P = succT(TP)13. We define recursively the buffer
function b: T→ D by 14:

• (P1) if t ∈ TX \ T
′
P, b(t) = w

(

b(precT(t)),X(t)
)

• (P2) if t ∈ T′P \ TX, b(t) = r
(

b(precT(t))
)

• (P3) if t ∈ TX ∩ T′P, b(t) = X(t)

• (P4) if t ∈ TP \ (TX ∪ T′P), b(t) = b(precT(t))

TheprojectionXTP of X on TP is then the dataflow on (D, TP) defined by setting XTP(t) = b(t)
for every t∈ TP.

Note: (P1) occurs when a new data is received, and when the data on the buffer has not been
read at the previous step so does not need to be processed withthe reading function. (P2) occurs
when no new data is received, and when the data on the buffer has been read at the previous step
and so needs to be processed in the buffer with the reading function. (P3) occurs when a new
data is received, and when the data on the buffer has been read at the previous step, so that the
content of the buffer is the new data, by condition (W1). Finally, (P4) occurs when no new data
is received, and when the data on the buffer has not yet been read, so that nothing changes.

We define equivalent dataflows as dataflows that cannot be distinguished by any projection.

Definition 3.6 (Equivalent dataflows). The dataflows X and Y areequivalent(noted X∼ Y) if,
and only if:

for any time scaleT on T, XT = YT

13Corresponding to moments such that a data has been read at theprevious moment and shall be marked as “read”.
14By convention,b

(

precT(mT)
)

= ǫ, which makes it simpler to define the rules of projection without making a special
case whent = mT.

9

Definition 3.7 (Equivalent dataflows as far as).The dataflows X and Y areequivalent as far
ast0 ∈ T (noted X∼t0 Y) if, and only if:

for any time scaleT on T, for all t � t0 in T, XT(t) = YT(t)

We now introduce two propositions insuring the relevancy ofthe projection of dataflows.

Proposition 3 (Equivalence of the projection on a finer time scale). Let X be a dataflow on
(D, TX) and letTP be a time scale such thatTX ⊆ TP. Then, we have:

X ∼ XTP

Proof . The proof uses the properties of the data behaviors and the principle of induction on time
scales to show that:∀T ∈ T s(T), XT = (XTP)T, and thusX ∼ XTP (by definition of∼). Let T be
a time scale. We noteP = XTP and want to prove thatXT = PT.

Let bX be the buffer (defined for moments ofTX ∪ T) used for defining the projection ofX
onT andbP be the buffer (defined for moments ofTP ∪ T) used for defining the projection ofP
onT. We will prove by induction onT that:∀t ∈ T, bX(t) = bP(t).

(a) First, we want to prove that the equality is true for moments beforemTX . Let t0 ∈ T with
t0 ≺ mTX (we will suppose without loss of generality15 thatmT ≺ mTX).

• XT(mT) = ǫ by (P0)+ (P4) to initialize the buffer.

• for P:

– if mT ≺ mTP, thenPT(mT) = ǫ by (P0) and (P4)

– else: we have∀t ∈ TP | t ≺ mTX , P(t) = XTP(t) = ǫ by (P0) and (P4) sincemT ≺ mTX .
As w(ǫ, ǫ) = ǫ by (W3) andr(ǫ) = ǫ by (R1), the buffer till mT in the projection ofP
onT is alway equal toǫ and we havePT(mT) = ǫ.

• finally, XT(mT) = PT(mT).

• we can extend the proof by induction to anyt0 ∈ T with t0 ≺ mTX since∀t ∈ TP such that
t ≺ mTX , P(t) = ǫ.

(b) For the case wheret = mTX , we havebX(t) = bP(t) = X(mTX), which will allow to initiate the
induction.

(c) Then, we want to prove that the induction hypothesis can be used onT. Let t0 ∈ T with t0 �
mTX such thatbX(t0) = bP(t0) andt1 = succT(t0). We want to prove thatbX(t1) = bP(t1). Let A =
]t0; t1]∩TP

16 andB =]t0; t1]∩TX (we haveB ⊆ A sinceTX ⊆ TP). Let tx = precTX
(

succTX(t0)
)17.

Three cases are to be considered:

• (1.1) if B = ∅ andA = ∅

– for bX(t1): by (P2) we havebX(t1) = r
(

bX(t0)
)

15We may add if necessary a smaller initial moment toT.
16This notation is intended to capture the elements ofTP greater thant0 and less than or equal tot1.
17tx is the latest moment ofTX before or att0. It exists sincet0 � mTX .

10

– for bP(t1): by (P2) we havebP(t1) = r
(

bP(t0)
)

= r
(

bX(t0)
)

– and sobX(t1) = bP(t1).

• (1.2) if B = ∅ andA , ∅, two subscases shall be considered

– (1.2.1) if tx = t0, then

∗ for bX(t1): by (P2) we havebX(t1) = r
(

bX(t0)
)

. According to the situation: by
(P3) bX(t0) = X(t0) = w

(

ǫ,X(t0)
)

or by (P1)bX(t0) = w
(

. . . ,X(t0)
)

. Anyway,
bX(t0) = w

(

. . . ,X(t0)
)

, and by (R3) we havebX(t1) = r
(

X(t0)
)

.

∗ for bP(t1): ∀t ∈ A, P(t) = r
(

X(t0)
)

, using (P2) and (R2) in the definition ofP as
the projection ofX on TP. So, by (P1) we havebP(mA) = P(mA) = r

(

X(t0)
)

. As
w
(

r(d′), d
)

= d by (W1), we have applying (P1) for allt ∈ A, bP(t) = r
(

X(t0)
)

.
If t1 < A, we apply (P4) and get:bP(t1) = r

(

X(t0)
)

, and the result is the same if
t ∈ A.

∗ and sobX(t1) = bP(t1).

– (1.2.2) if tx ≺ t0, then

∗ for bX(t1): by (P2) we havebX(t1) = r
(

bX(t0)
)

. But bX(t0) can be, by (P2) and
(P4), expressed recursively asbX(t0) = r

(

bX(tX)
)

. Whatever the situation, as in
(1.2.1) we can writebX(tx) = w

(

. . . ,X(tx)
)

and so by (R3) we havebX(t0) =
r
(

bX(tX)
)

= r
(

X(tx)
)

.

∗ for bP(t1): the proof is exactly the same as in (1.2.1).

∗ and sobX(t1) = bP(t1).

• (1.3) if B , ∅ thenA , ∅. We show as in (1.2) thatbX(mB) = bP(mB), and we conclude
recursively thatbX(t1) = bP(t1) using (W2).

(d) Finally, by induction, we have∀t ∈ T, bX(t) = bP(t) (begining the induction att = mTX , the
anteriort being handled by the first case (a)).

Hence,XT = PT = (XTP)T for any time scaleT. ThusX ∼ XTP (by definition of∼) which
proves our result. �

Proposition 4 (Equivalence of projections on nested time scales). Let X be a dataflow and let
TA ⊆ TB be two nested time scales. Then, we have:

(XTB)TA = XTA

Proof . This technical proof is very similar to the previous one. �

4. Systems

We introduce the definition of a system as a timed Mealy machine, and show that it can be
represented by a transfer function.

11

4.1. Formal definition of a system
We define a system as a mathematical object (figuring a functional black box with an in-

ternal state18), characterized by coupled functional and states behaviors (defining step by step
transitions for changing state and output in instantaneousreaction to the input received).

Definition 4.1 (System).A systemis a 7-tuple∫ = (Ts, Input,Output,S, q0,F ,Q) where

• Ts is a time scale called the time scale of the system,

• Input= (In,I) and Output= (Out,O) are datasets, called input and output datasets,

• S is a non-emptyǫ-alphabet19, called theǫ-alphabet of states,

• q0 is an element of S , called initial state,

• F : In × S × Ts→ Out is a function called functional behavior,

• Q : In × S × Ts→ S is a function called states behavior.

(Input,Output) is called the signature of∫ .

Our definition of system can be understood as a timed Mealy machine, i.e. a Mealy machine
[25] where we have introduced time20, and where the set of states is not supposed to be finite
(what is a fundamental difference from the point of view of computability).

Ts represents the moments of “life” of the system, i.e. the moments where state and output
can change in the behavior of the system, and where input is read (the system will necessarly
read its input at each moment of its time scale, the virtual buffer being only used to synchronize
the received dataflow with the time scale of the system21). The state of a system is all information
“inside” the system, allowing to define its instantaneous behavior according to inputs and time.
F andQ compute respectively the output and the current state of a system, from its last

defined state, its current input (the input can therefore have an instantaneous influence on output
and state) and the moment of time considered. Introducing time in the transition functions is
necessary so that the system has information about time to make transitions only at moments
on its time scale. Defining the system just as a sequential behavior on its time scale (which is
only onepossible time scale in the time reference) without knowledge of time would make it
difficult to compose meaningfully this system with another system having a sequential behavior
on another time scale, so that the composition can still be expressed as a system22.

The introduction of time defines, from the point of view of computability, a recursive hierar-
chy of systems following a recursive hierarchy of time scales on a given time reference. We will
develop this point in future work.

We then define the dynamic execution of a system allowing to transform (step by step) an in-
put dataflow into an output dataflow, while defining a state dataflow.

18The properties of this internal state are decisive to study computability (but out of the scope of this paper).
19DefiningS as anǫ-alphabet (therefore containingǫ) and not just as a set will make it possible to define a dataflow

of states, what will later be convenient.
20The introduction of time is a fundamental difference as it makes it possible to use hybrid times (and corresponding

heterogeneous systems) and to define synchronizations between different systems.
21Buffers of the system can be defined inside the system itself.
22Defining the product of 2 systems with different time scales as a system requires to define them on a shared time

scale, what perturbates the initial time scale of each system and makes it impossible to define a step by step behavior of
the resulting system without knowledge of time (or without introducing tricky states to “count” the number of moments).

12

Definition 4.2 (Execution of a system).Let ∫ be a system. Let X∈ InT be an input dataflow23

for ∫ andX̃ = XTs. Theexecution of∫ on the input dataflowX is the 3-tuple(X,Q,Y) where

• Q ∈ STs is recursively defined by24:

– Q(mTs) = Q
(

X̃(mTs), q0,mTs
)

– ∀t ∈ Ts, Q
(

succTs(t)
)

= Q
(

X̃(succTs(t)),Q(t), succTs(t)
) 25

• Y ∈ OutTs is defined by:

– Y(mTs) = F
(

X̃(mTs), q0,mTs
)

– ∀t ∈ Ts, Y
(

succTs(t)
)

= F
(

X̃(succTs(t)),Q(t), succTs(t)
)

X, Q and Y are respectively input, state and output dataflows.

4.2. Transfer functions

Functional behaviors (between inputs and outputs) of systems are given by “causal” functions
transforming dataflows, i.e. functions whose behavior is deterministic and only depending on
data received in the past (not in the future).

Definition 4.3 (Transfer function). Let Input and Output be two datasets and letTs be a time
scale. A function F: InputT → OutputTs is a (causal)transfer function on time scaleTs of
signature(Input,Output) if, and only if:

∀X,Y ∈ InputT , ∀t ∈ T,
(

XTs ∼t YTs

)

⇒
(

F(X) ∼t F(Y)
)

!"#$% &"#$'()*+,-(%,.*/#01*%2

' '+

Figure 1: A transfer function

A transfer function is a classical and “universal” representation (see [32, 12]) of any func-
tional behavior (i.e. an object that receives and sends datawithin time). We will show that every
system induces a transfer function, and later that integration operators defined on systems corre-
sponds to integration operators on transfer functions.

Equivalent transfer functions are transfer functions which cannot be distinguished.

23The system cannot restrict the possible dataflows onInput it will receive, what is a safer modeling principle.
24Theǫ-alphabet of statesS is associated with a persistent behavior, since the state ofa system at any moment of the

time reference can be obtained by considering its last defined state.
25Defining the current state as the state after the state transition allows to model meaningful real states behaviors with

an instantaneous influence of the input on the state.

13

Definition 4.4 (Equivalence of transfer functions). Let F1 and F2 be two transfer functions
sharing the same signature. F1 and F2 areequivalent(noted F1 ∼ F2) if, and only if:

∀X ∈ InputT , F1(X) ∼ F2(X)

A unique transfer function can be associated with any system. It describes the functional
behavior of this system.

Theorem 1 (Transfer function of a system).Let ∫ be a system. There exists a unique26 trans-
fer function F∫ , called the transfer function of∫ and such that: for all input dataflow X of∫ ,
F∫ (X) is the output dataflow in the execution of∫ .

Proof . Let F∫ : InT → OutTs be the function defined by setting for everyX ∈ InT , F∫ (X) as
the unique output dataflowY ∈ OutTs corresponding to the input dataflowX in the execution of
∫ . Let X,Y ∈ InT be two input dataflows for the system∫ . If X ∼t0 Y for somet0 ∈ T, then
by definition we haveXTs(t) = YTs(t) for everyt � t0 in Ts. The execution of a system for an
input dataflow only depends on the projection of this dataflowon the time scale of the system.
By definition of the execution of a system, the output of this system att only depends on inputs
received untilt (included), and soF∫ (X) ∼t0 F∫ (Y). Thus,F∫ is a transfer function. �

A system can then be represented as in Figure 2 (where the white squares on the left account
for the “virtual” buffers projecting the input dataflow on the time scaleTs of the system).

!"#$% &"#$'()*+,-(%,.*/#01*2%3

'()*+0#01*+

,.*/#01*+

4"#$

'

'+
!"#$%&'"()%"*&"+$

!"#$%
5

Figure 2: A system

4.3. Examples of systems

Example 9. [Nondeterministic systems]We have defined systems a deterministic objects. It
will however be useful to simulate nondeterministic behaviors within our model. Nondetermin-
istic behaviors can be modeled in a system as follows: one of the inputE can be used as an oracle
(or a dataflow ofevents), i.e. an input giving information to the system to make its transitions
(functional and states).

26Unique on time scaleTs, and up to equivalence on all time scales.

14

It can simulate classical nondeterminism of Mealy machines(where functional and states be-
haviors have their value in nonempty subsets of the target datasets of their deterministic version)
by indicating at each step which element to chose within thissubset (so that the nondeterminis-
tic behavior is simulated by a dataflow of events within a deterministic system). This flow can
also be understood as the formalization of the imperfection/underspecification of any determin-
istic model27. It is therefore possible to take into account this imperfection by considering that
transitions can be influenced by specific events carried by the oracle.

This kind of “events dataflow” typically corresponds to the events used in States diagrams in
modeling languages like SysML (where an event as “the water tank is full” will in fact correspond
to expressing in a deterministic way a nondeterministic event that cannot be computed from the
current input or state of the system). ♦

We now give examples of modeling of the three kinds of real systems (physical, software and
human) in our framework.

Example 10. [Software system]A software system can be modeled as a Turing machine with
input and output, whose transitions are made following a time scale. In our model, the state of a
system contains the memory of the Turing machine, its logical state, and its RW-head’s position.

We consider a classical Turing machine with input and output. Let QTur be the finite, non-
empty set of logical states of the Turing machine,qTur0 be the initial logical state,Σ be the
ǫ-alphabet of internal tape symbols,In andOut be the sets of input and output, andδ : QTur ×
Σ × In→ QTur × Σ ×Out× {−1, 0, 1} the transition function (separated into 4 projectionsδ1, δ2,
δ3, δ4 respectively onQTur, Σ, Out and{−1, 0, 1}).

We define the system∫ = (Ts, Input,Output,S, q0,F ,Q) simulating this Turing machine by:

• Ts is any time scale isomorphic toN (on any time reference)

• Input= (In, I) whereI is a behavior onIn

• Output= (Out,O) whereO is a behavior onOut

• S = ΣZ × QTur × Z 28

• q0 = (ǫ, qTur0, 0)

• F
(

x, (tape, qTur, i), t
)

= δ3(k) wherek = qTur, tape[i], x ∈ QTur × Σ × In

• Q
(

x, (tape, qTur, i), t
)

=
(

tape
[

i ← δ2(k)
]

, δ1(k), i + δ4(k)
) 29

This system will compute exactly the same outputs as the initial timed Turing machine with
input and output. Thus, our model contains Turing-like models of software systems. ♦

27Note that this imperfection/underspectification can be on purpose, to define a simpler system. This point will be fur-
ther discussed when introducing “abstraction” in Section 5. In practice, the possibility to model deterministic behaviors
of a real system is often restricted by the limited grain of description of the real system state observed.

28In ΣZ, ǫ is the sequence (ǫ)Z.
29Wheretape

[

i ← x
]

means replacing in the sequencetapethe ith symbol withx.

15

Example 11. [Human system]A basic example of a human system may be an individual, John,
in the context of its work. In our modeling, John has two states (“normal” or “tired”). He can
receive requests (by phone) from its colleagues (he must answer them by “Yes” or “No”) and can
also receive energy (when eating for example, what makes himnormal if he was tired). Lastly,
John can become tired after receiving too many requests fromits colleagues. John is a very
helpful guy always ready to help people, but when he is tired,he only helps urgent requests.

In the scope of our story, John can be modeled as the followingnondeterministic system30:

• we chooseTs = N (each unit of time being a second)31

• Input = (In,I) with In = {Urgent request,Request, ǫ} × {Energy, ǫ} × {Too many, ǫ}
andI being the consumable behavior associated toIn. Too manyis an event to model
nondeterministic behaviors of the system at this abstraction level

• Output= (Out,O) with Out= {Yes,No, ǫ} andO being the consumable behavior

• S = {Tired,Normal, ǫ} andq0 = Normal

• F
(

(x1, x2, e), q, t
)

Yes if x1 = Request& q = Normalor x1 = Urgent request
No if x1 = Request& q = Tired
ǫ else (i.e.x1 = ǫ)

• Q
(

(x1, x2, e), q, t
)

{

Tired if e= Too manyor q = Tired & x2 , Energy
Normal else

♦

Example 12. [Physical system]It has been proved that any Hamiltonian system can be modeled
within the framework introduced in [7]. As our definition of system generalizes the work of this
first paper32, we will recall a simplified example of a Water Tank given in [7], which is a well-
known example of the hybrid systems and control theory literature.

We work in the time reference∗R of nonstandard real numbers. Let us fix first some regular
continuous time scaleT with infinitesimal time stepτ. We consider a water tank where water
arrives at a variable ratewi(t) ≥ 0 (with t ∈ T) through one single pipe. The water leaves
through another (output) pipe at ratewo(t) (with t ∈ T) controlled by a valve whose position is
given byv(t) ∈ [0, 1] (with t ∈ T), 0 and 1 modelling respectively here the fact that the valveis
closed or open. The water tank can be modeled as a system, taking on input the current values
of the incoming water flowwi(t) and the positionv(t) of the valve and sending on its output the
corresponding output water flowwo(t) and water levell(t) according to the following equations:

wo(0) = C V0, wo(t + τ) = C v(t) for everyt ∈ T∗,

l(0) = L0, l(t + τ) = l(t) + (wi(t) − wo(t)) τ for everyt ∈ T∗ .

30The nondeterminism allows to express in this high-level modeling the fact that John will become tired when having
received “too many” requests (what cannot be expressed precisely at this abstraction level).

31The choice of the time scale will be especially important when composing this system with other systems having
their own time scales. The hidden assumption here is that John cannot receive more than one phone request each second.

32It is out of the scope of this paper to prove it, however the proof is not difficult as one can notice that non-standard
time scales defined in [7] are still time scales in our new model, and that transitions defined in [7] can be rewritten as
transitions in our model.

16

The input and output spaces of the system are thusInT = [0,C] × [0, 1] andOutT = [0,C] ×
[L1, L2]. This illustrates the modeling of a simple physical systemin our framework. Modeling
of more complex physical systems can be found in [7]. ♦

5. Integration operators

We propose three elementary operators allowing to model systems integration, i.e. to build
greater systems from a set of elementary systems by recursive application of composition oper-
ators and abstraction operator.

5.1. Systems composition

Composition consists in aggregating systems together in anoverall greater system where
some inputs and outputs of the various systems have been interconnected. Composition requires
to have a definition of the synchronization of dataflows between the different time scales of the
systems considered. We assume that the transmission of databetween systems is instantaneous.

Figure 3: Composition of systems

We define two operators for systems composition: theproduct (allowing to define a new
overall system from a set of systems, without interconnecting them) and thefeedback(allowing
to define a new system by interconnecting an input and an output of the same system). Dividing
composition into two steps allows to distinguish between the aggregation of systems, and the
interconnections within the new overall system, and makes it easier to prove theorems.

5.1.1. Extension
We first introduce a “technical” operator calledextensionthat will facilitate the definition

of the product by allowing to define on a shared time scale a finite33 number of systems. The
extension concentrates all technical difficulties (which are resulting from the introduction of
time) in defining the composition of systems.

Definition 5.1 (Extension of a transfer function). Let F be a transfer function of time scaleTs

on signature(Input,Output). Theextension ofF to T (such thatTs ⊆ T) is the equivalent
transfer function F′ of time scaleT on signature(Input,Output) defined by:

∀X ∈ InputT , F′(X) = F(X)T

33Since it is not possible, in a generic time reference, to define a time scale from an infinite union of time scales.

17

The instantaneous behaviors transition functions of a system make it possible to extend the
transition functions of a system to any moment of time, by theintroduction of virtual extension
buffers for input and output in the state (so that the new state is augmented with a data of input
and a data of output, memorizing respectively the data to be received and emitted).

Definition 5.2 (Instantaneous behaviors transition functions). Let∫ = (Ts, Input,Output,S, q0,F ,Q)
be a system. We note wi the writing function for Input and ri , ro the reading functions for Input
and Output. Writing x′ = wi(bi , x) 34, we define theinstantaneous behaviors transition func-
tionsof a system:

F̃ : In × (S × In ×Out) × T −→ Out
(

x, (q, bi, bo), t
)

7−→

{

F
(

x′, q, t
)

if t ∈ Ts

ro(bo) else

and

Q̃ : In × (S × In ×Out) × T −→ Out
(

x, (q, bi, bo), t
)

7−→

{
(

Q(x′, q, t), r i(x′),F (x′, q, t)
)

if t ∈ Ts
(

q, x′, ro(bo)
)

else

The new transition functions̃F andQ̃ are defined for every moment of the time referenceT
and work with extended states containing virtual extensionbuffers allowing to synchronize inputs
and outputs with the time scale of the system. These new transition functions can be restricted to
any time scaleT, notedF̃T andQ̃T.
The extension of a system consists in defining it on a finer timescale (making it possible to define
a finite number of systems on a shared time scale, i.e. the union of their time scales).

Definition 5.3 (Extension of a system).Let T be a time scale such thatTs ⊆ T. Theextension
of ∫ to T is the new system:

∫T =
(

T, Input,Output,S× In ×Out 35, (q0, ǫ, ǫ), F̃T, Q̃T

)

Theorem 2 (Equivalence of a system by extension).Let ∫ be a system and∫T be its extension
to a finer time scale. Then∫ and∫T have equivalent transfer functions:

F∫ ∼ F∫T

Moreover, the state dataflows in their execution are equivalent when projected on the initial
ǫ-alphabet of states S .

Proof . Let X be an input dataflow for∫ and∫T. ∫ will work on the projected dataflowXTs and
∫T will work on the projected dataflowXT. But F̃T andQ̃T are defined to simulate the following
behavior during their execution: they project the dataflowXT on the time scaleTs, then compute
the transitions for the system∫ and finally project the output dataflow of time scaleTs on the
finer time scaleT. Thus,∫T will in fact computeF∫T (X) =

(

F∫
(

(XT)Ts

))

T
, which by Propositions

4 is in factF∫ (XTs)T. But asTs ⊆ T, by Proposition 3,F∫ (XTs)T ∼ F∫ (XTs), which leads us to
the desired result sinceF∫ (XTs) = F∫ (X).

The proof for the equivalence of the state dataflows (projected on the initialǫ-alphabet of
statesS) is straightforward asS is associated with a persistent behavior. �

34x′ corresponds to the data waiting on the input.
35(ǫ, ǫ, ǫ) is considered as the blank symbolǫ.

18

5.1.2. Product
We now define the product of transfer functions and of systems, and show that they are

mutually consistent. We first define the associative product⊗ of datasets.

Definition 5.4 (Product of datasets).LetD1 =
(

D1, (r1,w1)
)

andD2 =
(

D2, (r2,w2)
)

be two
datasets.D1 ⊗D2 =

(

D, (r,w)
)

is a new dataset calledproduct ofD1 andD2 and defined by36

• D = D1 × D2
37

• r
(

(d1, d2)
)

=
(

r1(d1), r2(d2)
)

• w
(

(d1, d2), (d′1, d
′
2)
)

=
(

w(d1, d′1),w(d2, d′2)
)

The associative product of datasets allows to define an associative product of dataflows.

Definition 5.5 (Product of dataflows). Let X be a dataflow on (DX, TX) and Y be a dataflow
on (DY, TY). TheproductX⊗Y of X andY is the dataflow on (DX ⊗DY, TX ∪TY) defined by :

∀t ∈ TX ∪ TY, X ⊗ Y(t) =
(

XTX∪TY(t),YTX∪TY(t)
)

We define the projection of a dataflow on a dataset, allowing toconsider only a part of the
aggregated datasets of the dataflow.

Definition 5.6 (Projection of a dataflow on a dataset).LetD = D1 ⊗ D2 be a dataset. Let
X ∈ DT be a dataflow of time scaleTX. Theprojection ofX onDi (i = 1, 2) is the dataflow XDi

on (Di ,TX) defined by :

∀t ∈ TX, XDi (t) = di where X(t) = (d1, d2) ∈ D1 ⊗ D2.

We can now define the product of transfer functions.

Definition 5.7 (Product of transfer functions). Let F1 : Input1T → Output1T1 and F2 : Input2T →
Output2T2 be two transfer functions. Theproduct of F1 and F2 is the function F1 ⊗ F2 :
(Input1 ⊗ Input2)T → (Output1 ⊗Output2)T1∪T2 defined by:

∀X ∈ (Input1 ⊗ Input2)T
, F1 ⊗ F2(X) = F1(XInput1) ⊗ F2(XInput2)

This product defines a transfer function and is associative:

Proposition 5 (Closure and associativity for the product oftransfer functions). F1⊗ F2 is a
transfer function and⊗ on transfer functions is associative.

Proof . LetD = D1 ⊗ · · · ⊗ Dn be a dataset. LetX,Y ∈ DT be two dataflows. Then:∀t ∈ T :
(

X ∼t Y
)

⇔
(

∀i, XDi ∼t YDi

)

. The proof can be easily obtained from this property. �

We finally define the product ofn systems (sharing the same time scale) as the new system
resulting from the aggregation of those systems (called “subsystems” of the new system)38.

36It is easy to show that the new reading and writing functions comply with the axioms of a data behavior.
37(ǫ, ǫ) is considered as the blank symbolǫ.
38Defining the product ofn systems (and not just 2) is to give a semantics to the notion ofsubsystem.

19

Definition 5.8 (Product of systems).Let (∫i)i = (Ts, Inputi,Outputi ,Si , q0i ,Fi ,Qi)i be n sys-
tems of time scaleTs. Theproduct ∫1 ⊗ · · · ⊗ ∫n is the system

(

Ts, Input,Output,S, q0,F ,Q
)

where:

• Input= Input1 ⊗ · · · ⊗ Inputn and Output= Output1 ⊗ · · · ⊗Outputn

• S = S1 × · · · × Sn and q0 = (q01, . . . , q0n)

• F
(

(x1, . . . , xn), (q1, . . . , qn), t
)

=
(

F1(x1, q1, t), . . . ,Fn(x1, q1, t)
)

• Q
(

(x1, . . . , xn), (q1, . . . , qn), t
)

=
(

Q1(x1, q1, t), . . . ,Qn(x1, q1, t)
)

The product can be generalized to systems with different time scales with the extension.

!""#$%

&

&'

!"#$%&'"()%"*&"+$

(""#$%)""#$%

Figure 4: Product of systems

Theorem 3 (Consistency of the product of systems).The transfer function of the product of n
systems(∫i) is equivalent to the product of their transfer functions:

F∫1⊗···⊗∫n ∼ F∫1 ⊗ · · · ⊗ F∫n

Proof . If then systems share the same time scale, the proof is straightforward by definition of the
product of systems (and the equivalence is in fact an equality). If not: we consider the extension
of the n systems to the union of their time scales. By Theorem 2, the corresponding transfer
functions are equivalent, and finally the equivalence stated in this Theorem is straightforward.�

5.1.3. Feedback
The feedback consists in defining a new system by connecting one of the output to one of

the input of an existing system, sharing the same dataset39. However, it is not always possible to
feedback an output on an input of same dataset: to define recursively the feedback of a system
and express it as a new system with transition functions, it is necessary to establish the non-
instantaneous influence of the input on the output concerned.

We first introduce broader and natural definitions of the feedback on transfer functions as
fixed point of dataflows, and show later that it captures the feedback on systems.

39Sharing only the sameǫ-alphabet is not enough since having different data behaviors would make different resulting
feedbacked systems according to the extension considered for the initial system.

20

Definition 5.9 (Feedback of a transfer function). Let F be a transfer function of time scaleT

on signature(D ⊗ A,D ⊗ B). F is feedbackable on D if, and only if:∀X ∈ AT , ∃! YX ∈
DTs, F

(

YX ⊗ X
)

D = YX. In this case, thefeedback ofF on D is the new transfer function f b(F,D)

of time scaleTs on signature(A, B) defined by:

∀X ∈ AT
, f b(F,D)(X) = F

(

YX ⊗ X
)

B

Proposition 6 (Equivalence of feedback on a finer time scale). Let F be a transfer function
and FT be an extension of F to a finer time scaleT. Then, f b(F,D) exists if, and only if f b(FT ,D)

exists, and in this case we have:
f b(F,D) ∼ f b(FT ,D)

Proof . As F ∼ FT and as the feedbacked input and output share the same data behaviors,YX for
F will work for FT by considering

(

YX
)

T
, and conversely. �

We now define the feedback of a system by induction, so that it is a constructive definition.

Definition 5.10 (Feedback of a system).Let ∫ =
(

Ts, (D × In,I), (D ×Out,O),S, q0,F ,Q
)

be
a system such that there is no instantaneous influence of dataset D from the input to the output,
i.e. ∀t ∈ Ts,∀x ∈ In, ∀d ∈ D, F

(

(d, x), q, t
)

D = F
(

(ǫ, x), q, t
)

D. Thefeedback ofD in ∫ is the
system∫FB(D) =

(

Ts, (In,I′), (Out,O′),S, q0,F
′,Q′
)

with:

• I′ is the restriction ofI to In, andO′ is the restriction ofO to Out

• F ′(x ∈ In, q ∈ S, t) = F
(

(dx,q,t, x), q, t
)

Out

• Q′(x ∈ In, q ∈ S, t) = Q
(

(dx,q,t, x), q, t
)

where dx,q,t stands forF
(

(ǫ, x), q, t
)

D.

!"#$% &"#$

'

'(

Figure 5: Feedback of a system

A good practice (well-spread in Systems Engineering) when modeling real systems is to
always feedback a system with an interface (to model properties of the link).

Theorem 4 (Consistency of the feedback on systems).The transfer function of the feedback of
a system (when it exists) is the feedback of the transfer function of this system:

F∫FB(D)
= f b(F∫ ,D)

Proof . We easily show by induction that the feedbacked dataflow constructed in the definition
of a feedbacked system is a fixed point for the initial transfer function. �

21

5.2. Abstraction& concretization

The abstraction allows to define from a system a more abstractsystem, so that it can be
integrated in more global ones. Abstraction allows to consider the right systemic level to describe
a system, according to modeling needs, and is thus a fundamental tool to deal with the complexity
of systems by hiding unnecessary low-level details relatedto the behavior of the system. It
helps people to better understand a system and makes easier the formal analysis by working on
abstraction of systems (see [14] for abstract interpretation which is a well-known example of
abstraction).

The abstraction can be understood as a zoom out from the pointof view of datasets (consider-
ing higher level datas for inputs, outputs and states, and eventually merging different dataflows),
time (considering intervals of time instead of moments) andoverall behavior. For instance, a
computer may be considered as an electronic device with electrical signals every microsecond.
However, we generally abstract this electronic device intoa more abstract device able to process
complex data as emails, with a time step being typically the hundredth of second (this simplified
example will be modeled below).

The abstraction of a dataflow consists in defining a new dataflow on a more abstract dataset
and on a more abstract time scale (typically with a larger step).

Definition 5.11 (Abstraction/concretization of dataflows). Anabstractionof dataflows is a sur-
jective function A: Dc

Tc → Da
Ta which is causal:

∀X,Y ∈ Dc
Tc , ∀t ∈ T,

(

X ∼t Y
)

⇒
(

A(X) ∼t A(Y)
)

The associatedconcretizationis the function C: Da
Ta → P

(

Dc
Tc
)

defined by C(X) = A−1({X}).

We remark that an abstraction/concretization of dataflows is in fact a partition of the concrete
dataflows whose elements are indexed by the abstract dataflows.

Example 13. We can take the example of a computer whose LAN connection is described by
an input dataflow of bits on a regular time scale of step 10−6 sec, i.e. Dc = {0, 1, ǫ} and
Tc = τN with τ = 0.001. We can abstract this dataflow to an abstract dataflow onDa =

{email, f ile, picture, video, html, ǫ} on time scaleTa = τ
′N with τ′ = 0.01. ♦

The abstraction of a transfer function is a new transfer function working on abstract dataflows,
with nondeterministic behaviors modeled by events dataflows (explained below in Example 14).

Definition 5.12 (Abstraction of a transfer function). Let F : InputT → OutputTs be a trans-
fer function. Let Ai : InputTs → InputaTa be an abstraction for input dataflows and Ao :
OutputTs → OutputaTa an abstraction for output dataflows. Theabstraction ofF for input and
output abstractions(Ai ,Ao) with eventsE is the new transfer function

Fa : (Inputa ⊗ E)T → Outputa
Ta

defined by:
∀X ∈ InputT , ∃E ∈ ETa, Fa

(

Ai(XTs) ⊗ E
)

= Ao
(

F(X)
)

22

Thus, the following diagram commutes (we dismiss events here):

InputTs
F

−−−−−−→ OutputTs

Ai

y

y

Ao

InputaTa −−−−−−→
Fa

OutputaTa

We now define the abstraction of a system.

Definition 5.13 (Abstraction of a system).Let ∫ =
(

Ts, Input,Output,S, q0,F ,Q
)

be a sys-
tem. ∫ ′ =

(

Ta, Inputa ⊗ E,Outputa,Sa, qa0,Fa,Qa
)

is an abstraction of∫ for input and output
abstractions(Ai ,Ao) if, and only if:∃Aq : STs → Sa

Ta, for all execution(X,Q,Y) of ∫ , ∃E ∈ ETa,
(

Ai(XTs) ⊗ E,Aq(Q),Ao(Y)
)

is an execution of∫ ′.
Conversely,∫ ′ is a concretization of the system∫ .

Indeed, an abstraction consists in abstracting inputs, states and outputs dataflows in the exe-
cution of a system, and to define on these abstract dataflow a new system that will have abstract
behaviors corresponding to the initial behaviors of the initial system. A good abstraction will be
based on dataflows abstraction which will define consistent transitions in the abstract system for
states and outputs. However, nondeterministic behaviors (modeled by events dataflowE) will
generally appear in the abstract system. It is a consequenceof regrouping states and input/output
data in more abstractǫ-alphabets, making it impossible to express the abstract behaviors as de-
terministic transitions on thoseǫ-alphabets (for instance, one abstract data may correspondto
several concrete data sometimes resulting in several behaviors of the concrete system, and the
same may occur for the states). The abstraction of a deterministic system may thus result in non-
deterministic behaviors, what does not mean that the real system modeled is nondeterministic.

Example 14. [Nondeterministic behaviors of abstraction of systems] Weconsider a glass whose
state is described by an integer between 0 and 100 modeling the solidity of the glass (0 means
broken). This glass can receive physical forces which lowerits solidity till it is broken. At
this level, the glass is described as a deterministic system. If we consider an abstraction of this
model, we may consider the glass has being broken or not (two states) and receiving a shock (i.e.
a sequence of physical forces) or nothing. When the glass, not broken yet, receives a shock, it
will sometimes become broken, and sometimes remain not broken, depending of the previously
received shocks. Therefore, at this level of abstraction, the glass has nondeterministic behaviors
(since a shock may break it, with parameters that cannot be explained at this abstraction level).
♦

Theorem 5 (Consistency of the abstraction of a system).The transfer function of the abstrac-
tion of a system is the abstraction of the transfer function of this system.

Proof . The proof of this Theorem is straightforward regarding the definition of the abstraction
of a system, which is defined as abstracting the transfer function of the initial system. �

5.3. Systems integration

The integrationof systems in our framework consists in composing together afinite set of
systems, with product (P) and feedback (F), then applying the abstraction (A) to describe the

23

resulting system at a more abstract level, and repeating those steps recursively till reaching the
target overall system. We believe that the recursiveintegrationof real systems (as done in Sys-
tems Engineering) can be modelled consistently as the corresponding integration of systems in
our framework, using only P/F/A. We thus introduce a modeling postulate:

Postulate 1 (Real integration can be modeled with P/F/A). Any real system∫ r resulting from
the “real” integration of elementary real systems(∫ r

i) can be consistently modeled as a system∫
resulting from recursive applications of operators P/F/A on the elementary systems(∫i) (modeling
the elementary real systems(∫ r

i)).

One can remark that we only provided operators to integrate systems together. In reality,
systems design involves mixing both bottom-up and top-downapproaches. However, the same
operators still hold, as the top-down approach can be interpretated as finding the right subsystems
that, integrated together, are equivalent to the higher level system.

6. Conclusion

We have introduced a minimalist and unified semantics for heterogeneous integrated sys-
tems. This semantics allows us to capture two very importantproperties of complex systems:
heterogeneity(being able to deal with various types of systems through rich time & data) and
recursive integration(taking into account the integrative dimension of complex systems that are
build recursively with multiple levels of components).

This work is the theoretical part of a broader project aimingat building an applied science for
systems design, extending the models & methods existing forsoftware design. Within the last
two years, we have applied our framework to many real industrial cases from various industries
(aeronautics, defence, banking, nuclear engineering, automotive) to assess the generality and the
effectiveness of our approach. We will publish in further papers architecting methods derivated
from this theoretical work to be applied to real life situations, with associated concrete industrial
experimentations.

On the semantics itself, we have identified several topics ofimportance for our future work:

• our semantics can be presented in a more abstract way, in the scope of category theory
using a coalgebraic approach (this work will be published very soon)

• in the present work, systems have been defined on static time scales only, regardless of
events occuring during the system’s life. It might be meaningful to extend this definition
of systems to dynamic time scales constructed during the execution of the system

• the most complicated integration operator, i.e.abstraction, should be refined by different
operators performing specialized kind of abstractions on systems, consistently with the
reality of the specialized and meaningful abstractions encountered in Systems Engineer-
ing. Another associated improvement to our model would be todefine a nondeterministic
model of systems, which is necessary to define more specific abstraction operators

• finally, these models are intended to help designing systems. Therefore, we are willing to
provide a formal framework to describe a design process using our semantics, providing a
formalization of design approaches mixing top-down and bottom-up approaches to explore
the recursive structure of integrated systems being designed.

24

References

[1] E. Alesken, R. Belcher, Systems Engineering, Prentice Hall, 1992.
[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger,P.H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine,

The algorithmic analysis of hybrid systems, Theor. Comp. Sci. 138 (1995) 3–34.
[3] R. Alur, C. Courcoubetis, T. Henzinger, P.H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic

analysis of hybrid systems, in: International Conference on Analysis and Optimization of Systems—Discrete-Event
Systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, 1994, pp. 331–351.

[4] J. Bacon, J.V.D. Linden, Concurrent Systems: An Integrated Approach to Operating Systems, Distributed Systems
and Database, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[5] G. Berry, The foundations of Esterel, MIT Press, 2000.
[6] B.S. Blanchard, W.J. Fabrycky, Systems engineering andanalysis, Prentice Hall, 1998.
[7] S. Bliudze, D. Krob, Modelling of complex systems: Systems as dataow machines, Fundamenta Informaticae 91

(2009) 1–24.
[8] I.S. Board, IEEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1993), IEEE, 1994.
[9] O. Bournez, M.L. Campagnolo, New computational paradigms. changing conceptions of what is computable, New

Computational Paradigms. Changing Conceptions of What is Computable, Springer-Verlag, 2008, pp. 383–423.
[10] M. Broy, G. Stefănescu, The algebra of stream processing functions, Theor. Comput. Sci. 258 (2001) 99–129.
[11] M. Broy, K. Stølen, Specification and development of interactive systems: focus on streams, interfaces, and refine-

ment, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.
[12] D. Cha, J. Rosenberg, C. Dym, Fundamentals of Modeling and Analysing Engineering Systems, Cambridge Uni-

versity Press, 2000.
[13] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, Math. Surveys 7, Amer. Math. Soc., R.I., 1961.
[14] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction

or approximation of fixpoints, in: Conference Record of the Fourth Annual ACM Symposium on Principles of
Programming Languages.

[15] F. Diener, G. Reeb, Analyse Non Standard, Hermann, 1989.
[16] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data flow programming language lustre, in:

Proceedings of the IEEE, volume 79.
[17] J. Harthong, éléments pour une théorie du continu, Astérisque 109/110 (1983) 235–244.
[18] J. Harthong, une théorie du continu, in: H. Barreau, J.Harthong (Eds.), La mathématique non standard,Éditions

du CNRS, 1989, pp. 307–329.
[19] G. Kahn, The semantics of a simple language for parallelprogramming, in: J.L. Rosenfeld (Ed.), Information

processing, North Holland, Amsterdam, Stockholm, Sweden,1974, pp. 471–475.
[20] P. Kosiuczenko, M. Wirsing, Timed rewriting logic withan application to object-based specification, Science of

Computer Programming 28 (1997) 225–246.
[21] D. Krob, Modelling of complex software systems: A reasoned overview, in: E. Najm, J. Pradat-Peyre, V. Donzeau-

Gouge (Eds.), Formal Techniques for Networked and Distributed Systems - FORTE 2006, volume 4229 ofLecture
Notes in Computer Science, Springer Berlin/ Heidelberg, 2006, pp. 1–22.

[22] J. Lygeros, Lecture notes on hybrid systems, in: Notes for an ENSIETA Workshop.
[23] M.W. Maier, E. Rechtin, The art of system architecturing, CRC Press, 2002.
[24] P. Marwedel, Embedded System Design, Kluwer, 2003.
[25] G.H. Mealy, A method for synthesizing sequential circuits, Bell System Technical Journal 34 (1955).
[26] E. Nelson, Internal set theory: a new approach to nonstandard analysis, Bulletin of the American Mathematical

Society 83 (1977) 1165–1198.
[27] A. Rabinovitch, Automata over continuous time, Theor.Comput. Sci. 300 (2003) 331–363.
[28] F. Robert, Les systèmes dynamiques discrets, Mathématiques et Applications 19 (1994).
[29] A. Robinson, Non-standard analysis, American Elsevier, 2nd. ed. edition, 1974.
[30] A.P. Sage, J.E. Amstrong, Introduction to system engineering, John Wiley, 2000.
[31] Y. Sergeyev, A new applied approach for executing computations with infinite and infinitesimal quantities, Infor-

matica 19 (2008) 567–596.
[32] E. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, volume 6 ofTextbooks in

Applied Mathematics, Springer-Verlag, 1998.
[33] B. Trakhtenbrot, Understanding basic automata theoryin the continuous time setting, Fundam. Inform. 62 (2003).
[34] J. Zaytoun, Systèmes dynamiques hybrides, Hermes, 2001.
[35] B.P. Zeigler, H. Praehofer, K.T. Gon, Theory of Modeling and Simulation — Integrating Discrete Event and Con-

tinuous Complex Dynamic Systems, Academic Press, 2000.

25

