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Abstract Community [15, 16]. The interest of describing software
systems as interconnected subsystems is that this promotes
A mathematical denotation is proposed for the notion the reuse of components either directly taken in a library
of complex software systems whose behavior is specifiedr adapted by slight modifications made on existing ones.
by rigorous formalisms. Complex systems are describedThe well-known difficulty with such systems is to infer the
in a recursive way as an interconnection of subsystems byglobal behavior of the system from the ones of subsystems.
means of architectural connectors. In order to consider Indeed, modern software systems are often open on the out-
the largest family of specification formalisms and architec side, that is they interact with the environment, composed
tural connectors, this denotation is essentially fornmalis  of interacting subsystems (e.g. active objects which inter
specification and connector independent. For this, we build act together concurrently [1, 27]) or defined by questioning
our denotation on Goguen'’s institution theory. In this ab- requirements of subsystems (e.g. feature-oriented sgstem
stract framework, we characterize complexity by the notion where each feature can modify the expected properties of
of property emergence. pre-existing features [18, 2, 26]). Thus, such global syste
This work is a revised and extended version of Aigu- may exhibit behaviors, that cannot be anticipated just from
ier, Le Gall and Mabrouki (3rd International Conference on a complete knowledge of subsystems. Hence, what makes
Software Engineering Advanced (ICSEA), IEEE Computer such software systeneemplexs they cannot be reduced to
Society Press, 2008). simple rules of property inference from subsystems towards
Keywords. abstract specification language, abstract ar- to the global system.
chitectural connector, emergent property, institutioafes

- - _ Following some works issued from other scientific dis-
gory theory, transition systems, modal first-order logic.

ciplinaries such as biology, physics, economy or sociol-
ogy [10, 13], let us make more precise what we mean by
) complex systems. A complex system is characterized by a
1 Introduction holistic behavior, i.e. global: we do not consider that is b
havior results from the combination of isolated behavidrs o

A powerful approach to develop large software systems some of its components, but instead has to be considered as
is to describe them in a recursive way as an interconnec-a whole. This is expressed by the appearance (emergence)
tion of sub-systems. This has then made emerge the noof global properties which is very difficult, see impossible
tion of architectural connector as a powerful tool to de- to anticipate just from a complete knowledge of component
scribe systems in terms of components and their interac-pehaviors. This notion of emergence seems to be the sim-
tions [6, 7, 16, 25]. Academic and industrial groups have plest way to define complexity. Succinctly, this could be
defined and developed computer languages dedicated to thexpressed as follows: suppose a system XY composed of
description of software architectures provided with archi two subsystems X and Y. Let us also suppose we have a
tectural connectors, calleéirchitectural Description Lan-  mathematical functio” which gives all potential pieces of
guage (ADL) such as ACME/ADML [17], Wright [5] or  information on XY, X and Y, and an operation '+ to com-

“This work is performed within the European project GENNETEC bine potential pieces of information of subsystems. If we
(GENetic NeTworks: Emergence and Complex@§REP 34952. have thatF'(XY) = F(X) + F(Y) then this means that




the systemXY integrates in a consistent manner the sub-
systemsX andY without either removing or adding pieces
of information. Therefore, we can say that the systgii
is notcomplex(i.e. the systenX'Y is said to banodulal).
On the contrary, if there exists somee F(X) + F(Y)
such thate ¢ F(XY') or there exists some € F(XY)
such that ¢ F'(X) + F(Y), then there is reconsideration
of some potential pieces of information &f or Y in the
first case, and appearance of true emergence in the second
case. The systeri Y is then saiccomplex

In this paper, we will study the notion of complex soft-
ware systems by using formal specifications, that is we will
suppose that every part of systems have been specified in a
given formalism from which we can infer properties. The
system XY will be built from subsystemsX andY by
means of an architectural connectoexpliciting how the
two subsystems are linked together to form the global sys-
temc(X,Y) = XY, the connector being implicit in the
notationX'Y. Finally, the function F will give for a spec-
ification its whole set of satisfied properties, the so-chlle
semantic consequencasspecifications usually notel ®,
andF(X)+ F(Y) = (X*UY*)*. Roughly speaking, this
last notation consists in saturating the property devati
mechanism, and then represents the factfiaf ) + F'(Y)
denote the set of all properties which can be derived from
the set of propertie¥ ®, resp.Y'®, associated t&, resp.Y'.
The notion of complexity being based on the emergence of
properties, a general framework dedicated to complex soft-

framework heterogeneous forms of specifications by
considering them as simple objects of a category
SPEC, while handled specifications over institutions
are mostly axiomatic (i.e. of the forift, Az) where

>l is a signature andz is a (finite) set of formulas (ax-
ioms) overY). However, because we are interested by
emergent properties, we will adapt/modify specifica-
tion logics by defining them over institutions in order
to focus on specification properties;

abstract connectors will be defined by using notions of
the category theory. The use of category theory has
already been applied strikingly to model the architec-
ture of software systems by Goguen [19] and Fiadeiro
& al. [15]. It has also been applied to model com-
plex natural systems such as biological, physical and
social systems (e.g. Ehresman and Vanbremeersch'’s
works [13]).

Fiadeiro & al. [16] have proposed an abstract formal
denotation of a class of architectural connectors in the
style of Allen and Garlan [6], that is defined by a set of
roles and a glue specification. Here, we will go beyond
by not supposing any structure in the architectural con-
nectors.

Over our abstract notions of specification and architec-
tural connector, we will define the notion of emergent prop-
erties according to the two following classes:

ware systems can be defined independently of formalisms, 1. the ones we will calirue emergent propertighat are

specifications and architectural connectors. Hence, we in-
vestigate an abstract form of complexity, by following the
paradigm “logical-system independency”. The intereseéher

properties which cannot be inferred from subsystem
properties,

is simple. We can observe, whatever the formalism used 2. and the ones we will cafion conformity properties

to specify softwares, that the same set of notions underlies
complexity. These notions are : architectural connectdr an
emergent property. To formalize abstractly these elements
our approach will be based on previous works:

that are subsystem properties which are not satisfied
by the global system anymore.

In practice, properties of the first form, i.e. true emer-

gent properties, combine knowledge inherited from subsys-

¢ we will use the general framework of institutions [20]

tems. Thus, they are defined in a richer language than the

which is recognized as well-adapted to generalize for- ©N€S associated to each subsystem, and the presence of such

malisms. The theory of institutions abstracts the se- Mergent properties is quite natural. Conversely, progsert
mantical part of logical systems according to the needs of the second form, i.e. non conformny properties, arerofte

of software specifications in which changes of signa- the consequences of bad interactions between subsystems.
tures are taken into account. The abstraction of the They characterize properties that are satisfied (respatot s
different parts of logical systems is obtained by us- isfied) by a subsystem considered in isolation, but are not
ing some notions of the category theory such as the Satisfied (resp. _satisfieo_l) by the global system incorpugati
category of signatures and the two functors to denote the subsystem in question. .

respectively the set of sentences and the category of A Software system will be then sasdmplexvhen emer-

models over a signature (see Section 2 for the completed€nt properties can be inferred from it. The complexity of
definition of institutions and some related notions); systems just means that we do not benefit from the complete

knowledge of subsystems we have, to analyze the behavior
of the large system. Hence, the recursive approach used to
describe the system cannot be used to analyze its behavior.
Complex systems can then be opposed to modular systems

e specifications will be defined following the generic
approach of specification logics [14]. The inter-
est of specification logics is they unify in the same



which by definition strictly preserve local properties at th between them. This emerged in computing science studies
global level (see [24] for a state-of-the-art on the modular of software specification and semantics, in the context of
approach). the increasing number of considered logics, with the ambi-

The formalizations of system complexity and emergent tion of doing as much as possible at the level of abstraction
properties are interesting if they are done in such way to independent of commitment to any particular logic. Now
support the characterization of general properties to-guar institutions have become a common tool in the area of for-
antee when a system is or is not complex. To answer thismal specification, in fact its most fundamental mathemética
point, we will give some conditions under which a system structure.
is modular. We will then establish two results: in the first
one we will give a sufficient and necessary conditionto en- 2.1 Basic definitions
sure the absence of true emergent properties. In the sec-
ond res_ult, we yvill give _sufficient conditions based on the efinition. 1 (Institution) An institution 7 _
categorical n_onon of a(_JIjunctness to ensure the absence o Sig, Sen, Mod, =) consists of
non-conformity properties.

As a result of our generalization defined in this paper, all
the notions, results, and techniques established and define
in our abstract framework ade factoadaptable to any in- e afunctorSen : Sig — Set giving for each signature
stitution. a set, elements of which are callseintences

The paper is structured as follows: Section 2 reviews
some concepts, notations and terminology about institu- e a contravariant functorMod : Sig°? — Cat giving
tions. Section 3 defines an abstract notion of specifications for each signature a category, objects and arrows of
over institutions. In Section 4, abstract architecturai-co which are called>-modelsand ¥-morphisms respec-
nectors are defined and classified as complex and modular. tively, and
The notations of the category theory used in this paper are
the standard ones and can be found in [15]. Although allthe ® a|Sig|-indexed family of relations
notions and results given in this manuscript are exemplified
by many examples all along the paper, Section 5 illustrates FxC [Mod(X)| x Sen(X)
more particularly the abstract framework developed in this
paper to reactive component-based systems described by
transition systems and combined together through the syn- )
chronous product operation. such that the following property holds:

Note : This manuscript extends the paper published in 77+ % = ¥, VM € [Mod(Y')|, Vo € Sen(%),
the proceedings of [4] with expanded definitions, new re-
sults and additional examples. Moreover, as an application
of our approach, we will study reactive systems described
by means of transition systems as components and of the
usual synchronous product as architectural connector, and”
whose behavior is expressed by logical properties over a
modal first-order logic. In this framework, we propose to
study complexity of reactive systems through this notion of
emergent properties. We will also give some conditions to . ) : "
guaragnteeF\)/vhgn asystem s Iackinggofnon-conformity prop-nOtecj_M1 =z M, if, and only if the following condition
erties which have been recognized as being the cause of baHOIds'vw € Sen(X), My e ¢ <= Mz Fx .
interaction between components. This last work has been_l_
published in the proceedings of [3]. Here, this manuscript
also extends the paper published in [3] with complete proofs
of the main results.

e a categorySig, objects of which are callesignatures

calledsatisfaction relation

M' sy Sen(o)(p) & Mod(o)(M') s ¢

Here, we define some notions over institutions which
ill be useful thereafter.

Definition. 2 (Elementary equivalence)Let 7 =
(Sig, Sen, Mod, =) be an institution. Let be a signa-
ture. TwoX-models)M; and M, are elementary equivalent

his means thajM; and M, are undistinguishable with
respect to the formula satisfaction.

Definition. 3 (Closed under isomorphism) An institution
o is closed under isomorphisify and only if every two iso-
2 Institutions morphic models are elementary equivalent.

The theory of institutions [20] is a categorical abstract All reasonable logics (anyway all the logics classicallgadis
model theory which formalizes the intuitive notion of logi- in mathematics and computer science) are closed under iso-
cal system, including syntax, semantics, and the satisfact morphism.



Definition. 4 (Logical theory) Let z =
(Sig, Sen, Mod, =) be an institution. LetY be a
signature of|Sig|. LetT be a set of¥-sentences (i.e.
T C Sen(X)). Let us denotdf od(T") the full sub-category
of Mod(X) whose objects are all-modelsM such that
foranyp € T, M =5 ¢, andT* the subset ofen(X),
so-calledsemantic consequencesBfdefined as follows:

T* ={p|VM € |[Mod(T)|, M |=s ¢}
T is alogical theoryif, and only if " = T'°.
¢ € T* is also denoted bY =5 ¢.

2.2 Examples of institutions

2.2.1 Propositional Logic (PL)

Signatures and signature morphisms are sets of proposi-

tional variables and functions between them respectively.
Given a signatureZ, the set of¥-sentences is the least set
of sentences finitely built over propositional variablesiin
and Boolean connectives i, vV, A,=}. Given a signa-
ture morphismr : ¥ — ¥’ associating to each proposi-
tional variable of a propositional variable af’, Sen(o)
translates:-formulas toX’-formulas by renaming proposi-
tional variables according t®.

Given a signature, the category okE-models is the cate-
gory of mappingsv : ¥ — {0,1} with identities as mor-
phisms. Given a signature morphism ¥ — Y, the for-
getful functorM od(o) maps a&’-modelv’ to theX-model
v=1oo.

Finally, satisfaction is the usual propositional satitat

2.2.2 Many-sorted First Order Logic with equality
(FOL)

Signatures are triple§S, F, P) where S is a set of sorts,
and F' and P are sets of function and predicate names re-
spectively, both with arities i§* x .S andS™ respectively:
Signature morphisms : (S, F, P) — (S’, F’, P') consist

of three functions between sets of sorts, sets of functions
and sets of predicates respectively, the last two presgrvin
arities.

Given a signatur& = (5, F, P), the X-atoms are of two
possible formst; = t, where® ¢y, ty € Tr(X), (s € S),
and p(t1,...,t,) wherep : s; x ... x s, € P and

t; € Tr(X)s, (1 <i<mn,s; €5). The set of-sentences

is the least set of formulas built over the sebthtoms by
finitely applying Boolean connectives i, vV, A, =} and

1{0,1} are the usual truth-values.

25+ is the set of all non-empty sequences of element$ &mdS* =
S+ U {e} wheree denotes the empty sequence.

3T (X)s is the term algebra of sastbuilt over F' with sorted variables
in a given setX.

guantifiersy and3.

Given a signatur& = (S, F, P), aX-model M is a fam-
ily M = (M;)ses Of sets (one for every € S), each one
equipped with a functiofi™ : M, x...x M, — M, for
everyf:s; x...x s, — s € F and with a n-ary relation

pM C M, x...x M, foreveryp:s; x...xs, € P.

Given a signature morphism : ¥ = (S, F,P) — ¥’
(S’, F', P") and a¥’-model M’, Mod(c)(M’) is the X-

model M defined for every € S by M, = M;(S), and for
every function nam¢g < F' and predicate namee< P, by

fM = o(f)M andpM = o(p)™'. Finally, satisfaction is
the usual first-order satisfaction.

Many other important logics can be obtained as FOL re-
strictions such as:

e Horn Clause Logic (HCL). An universal Horn sen-
tencefor a signatureX in FOL is a X-sentence of
the formI’ = « whereTl is a finite conjunction of
Y-atoms andy is a X-atom. The institution of Horn
clause logic is the sub-institution 6O0L whose sig-
natures and models are thoseF®L and sentences
are restricted to the universal Horn sentences.

Equational Logic (EQL). An algebraic signature
(S, F) simply is aFOL signature without predicate
symbols. The institution of equational logic is the sub-
institution of FOL whose signatures and models are
algebraic signatures and algebras respectively.

Conditional equational logic (CEL). The institution

of conditional equational logic is the sub-institution of
EQL whose sentences are universal Horn clauses for
algebraic signatures.

Rewriting Logic (RWL) Given an algebraic signature
¥ = (S, F), X-sentences are formulas of the form
ity = AL AL, =t =t — t wheret,, t; €
Tr(X)s, (1 < i < n,s; € S)andt,t’ € Tr(X)s

(s € S). Models of rewriting logic are preorder mod-
els,i.e. given a signatur& = (S, F'), Mod(X) is the
category of¥-algebras4 such that for every € S,
A, is equipped with a preorder. Hence, A = ¢ if,
and only if for every variable assignment X — A,

if eachu(t;)* > v(t))A thenv(t)A > v(t')* where
_A4: Tp(A) — Ais the mapping inductively defined
by: f(t1,...,ta)A = fAML, ... t2).

2.2.3 Modal FOL (MFOL)

Signatures are coupléX, A) whereX is aFOL-signature
and A is a set of actions, and morphisms are couples of
FOL -signature morphisms and total functions on sets of ac-
tions. In the sequel, we will note by the same name both
MFOL -signature and each of its components.



Given aMFOL signature(X, A) with ¥ = (S, F, P), in the model uniquely. Finally, signature morphisms, model
(3, A)-atoms are either predicated, . . ., t,) orthe sym-  reductions and sentence translations are defined simitarly
bol T (for True), and the set d&, A)-formulas is the least  those in FOL.

set of formulas built over the set 6, A)-atoms by finitely

applying Boolean connectives i, vV, A, =}, quantifiers 3 Specifications in institutions

vV and3, and modalities i{0,|a € A}. For everya € A,
the intuitive meaning ofl, is “always after the action”.
Given a signaturé, A), a (X, A)-model (W, R), called
Kripke frame, consists of a familyy = (W?),;c; of -
models inFOL (thepossible worldgsuch that Wi = W/
for everyi,j € I ands € S, and aA-indexed family of
“accessibility” relationsR, C I x I. Given a signature
morphismo : (X, 4) — (¥, A4’) and a(X’, A’)-model
(W)ier, R), Mod(a)(W");er, R) is the (S, A)-

Over institutions, specifications are usually defined ei-
ther by logical theories or coupldf, Ax) whereX is a
signature anddx a set (usually finite) of formulae (often
called axioms) oveE. However, there is a large family of
specification formalisms mainly used to specify concurrent
reactive and dynamic systems for which specifications are
not expressed in this way. We can cite for instance pro-

. i cess algebras, transition systems or Petri nets. Now, all of
model (],V[Od(a)(wm)ie” R) deﬂned fpr everyr € A by these k?nds of specificatiorils can be studied through the set
Ra = Ra(a)' A (2, A)-sentence is said to be satisfied by of their semantic consequences expressed in an adequate

a (%, A)-model(W, R), noted(W, R) (s, ¢, ifforev- formalism. This leads us up to define the notion of specifi-
eryi € I we have(W, R) |=5; ¢, wherel=5; is inductively  cations over institutions.
defined on the structure gf as follows:

o for every FOL-formula ¢ built over s-atoms, -1 Definitions
W, R) EL o iff Wi
( Iy F= e . Let us now consider a fixed but arbitrary institution=
e (W,R) =L O Wwhen(W, R) =4 ¢ for everyj € I (Sig, Sen, Mod, ).

such that R, j. e e
J Definition. 5 (Specifications) A specification languag®L

2.2.4 More exotic institutions overZis a pair (Spec, Real) where:

e Spec : Sig°? — Set is a functor. Given a signature
¥, elements irbpec(X) are calledspecifications over
2.

The institution theory also enables to represent formalism
which are not logics strictly speaking.

Formal languages (FL) The institution of formal lan-
guages is defined by the category of signatufes Given
a setA, the set of sentences.is* andMod(A) is the cate- _
gory whose objects are all subsetsf Given a signature for everyX e |Sig|, and everySp € Spec(X),
morphismo : A — A’, Mod(c) is the functor which at Realx(Sp) is a full subcategory oM od(X). Objects
L' C A’ associates the sét = {a]o(a) € L'}. Finally, of Reals,(Sp) are calledrealizations ofSp.
given a signatur& € Sig, =y is just the membership rela-

tion 3. It is obvious to show that the satisfaction condition (Spec, Real) be a specification language ovét Let us
holds. define * = (_3)sesiy the Sig-indexed family of mappings
Programming languages (PLG)The institution of a  _% : Spec(X) — P(Sen(X)) that to everySp € Spec(X),
programming language [28] is built over an algebra of built- yields the set5p$, = {p|VM € Reals(Sp), M s ¢}.
in data types and operations of a programming language.Sps; is called theset of semantic consequena&sSp or
Signatures are FOL signatures and sentences are prograntgetheory ofSp.
of the programming language over signatures; and models
are algebraic structures in which functions are intergrete

as recursive mappings (i.e for each function symbol is as- 4 \we could expect thablod(Sp®) = Real(Sp) what
signed a computation (either diverging, or yielding a r_es_ul would make unmeaning the existence of the mappings
to any sequence of a!cf[ual parameters). A model satisfies @ jn reql in Definition 5. However, we can often be led
sentence if, and only if it assigns to each sequence of param- up to make some restrictions on specification models.

e Real = (Reals)se|sig) 1S a Sig-indexed family of
mappingsReals, : Spec(X) — |Cat| such that

Definition. 6 (Semantic consequenced)et SL =

Definition 6 calls for some comments:

eters the computation of the function body as given by the For instance, when dealing with axiom specifications
sentence. Hence, sentences determine partlcular fusction expressed in equational |OgiC, we can be interested by
“In the literature, Kripke frames satisfying such a propertysaidvith reachable or initial models to allow inductive proofs or

constant domains for computability reasons.



e Sometimes, °_is a natural transformation frotfipec P(Sen(X)). Itis easy to check that given a signature mor-
to® P o Sen°?. However, most of times, it is not the phismo : ¥ — ¥, the following diagram commutes and

case (see the examples in Section 3.2). then * is a natural transformation:
-
Definition. 7 (Category of specifications)Let S£ be a Spec(X) —— P(Sen(X))
specification language over an institutiah. Denote
SPEC the category of specifications ov8iZ whose the Spec(o) P(SenP(c*))
objects are the elementsin_| Spec(X), and morphisms .
ZE€|Sig| Spec(¥') — P(Sen(¥))

are actually given by signature morphisms (i.e. for every

Sp € Spec(X) and everySp' € Spec(¥'), o : Sp — (See Footnote 5 for the definition of)

Sp' € SPEC iff 0 : ¥ — X' € Sig). If a morphism

o : Sp — Sp'in SPEC further satisfies:Sen(o)(Sp$;) C 3.2.2 Axiomatic specifications

Sp's., thene is calledspecification morphism

Sig : SPEC — Sig is the functor which maps any specifi- In this case, specifications are defined by pélsAz)

cationSp € Spec(X) to the signature and any morphism ~ Where X is a signature anddz C Sen(X), and

o to the signature morphistiig(c). given a signature morphisny : ¥ — ¥', Spec(o)
matches every.’-specificationSp’ = (X', Az’) to Sp =

Hence, specification morphisms are arrowsSik EC (2, {¢|Sen(o)(p) € Az'}). By the satisfaction condition,
that further preserve semantic consequences. ComWe have thaSen(o)(Az®) C Az'®. The functorSpec then
monly, the category of specifications over institutionsehav associates to every signatiiehe set of pairg:, Az), and

|J Spec(E) as objects and specification morphisms as (X, Az)s, = Az*. Observe that? is not a natural transfor-
selsig| mation. Indeed, let us set FOL, and consider the inclu-

arrows [20, 29]. Here, the fact to consider just signature Sion morphisnv : ¥ — ¥’ whereX = ({s},0, { R1, R :
morphisms between specifications will be useful to define s x s}) andX = ({s},0,{Ry : s x s}). Let Az’ be the set
both architectural connectors and their combination. of axioms:

rRyy—=—=yRox

3.2 Examples of specifications
TRy xRy

We give three examples of specification languages that

L ~"Obviously, we prove fromAz’ that R; is a symmetric
correspond to the usual forms of specifications over arbi-

RS relation.
trary institutions. However, Spec(o)((¥',Az’)) = 0, and then
Spec(o)((X', Az"))® is restricted to tautologies while
3.2.1 Logical theories P(Sen?(c*))(Az’) contains at least R, y = y R; .

Here, specifications are logical theories. To meet the re-

quirements given in Definition 5, this gives rise to the func- 3.2.3 Inference rules
tor Spec : Sig°’? — Set which to everyYX € Sig, as-
sociates the set of all-theoriesT', and to every signa-
ture morphisnv : ¥ — X/, matches every’-theory T’
with the X-theoryT = {p|Sen(o)(¢) € T'}. Hence,
Spec(X) C P(Sen(X)). We naturally defingreals(T') =
Mod(T). Moreover, specifications being saturated theories
this naturally leads to the identity functiof, : Spec(X) —

In the framework of formal language, languadesver an
alphabetA can be specified by inference rules, thahis
ary relations: on A* and a tuplgas, ..., a,) € r means
that if ay,...,a,_1 are words of the language, then so
is a,. Hence, a specification over an alphabdets a set
' R of n-ary relations onA*. Given a signature morphism
o : A — A’ and a specificatio’ overA’, the specification

5Given a functorF : C — D, F°P : C°P — DOP is the dual ofF Spec(o)(R') over A is the setR of n-ary relationr such
defined as follows: that there exists’ € R’ andr = {(a1,...,a,)|(Vi,1 <
— Vo €C, FoP(0) = F(o) i<nya; € A)A(a1,...,a,) € r’}..Gwen a set of mfer—
. . , ence rulesk over an alphabet, R is the languagé. in-
— f* being the reverse arrow of in C, Yo,o' € C,Vf € . . f .
Home (0,0'), FoP(f*) = F(f)* ductively generated from inference rulesiof Given a sig-
A . y nature morphisme : A — A’ and a set of inference rulés
The powerset functorP : Set°? — Set takes a sefS to its powerset / ; Ne __ Dle *
P(S), and a set functiorf : S — S’ (i.e., an arrow fromS’ to S in overd’. Itis easy to show thaipec(o)(R)} = R N 4

Set°P) to the inverse image functiofi-! : P(S") — P(S) which asso- ~ What proves that?_is a natural transformation frotipec
ciates to a subset C S’ the subse{s € S|f(s) € A} of S. toP o Sen®P.



3.3 Properties of specifications Tr (A) by the congruence generated by the kernel ofthe
morphismTr(A) in A extending the identity ofX . © This
Proposition. 1 Leto : Sp — Sp’ be a specification mor-  algebra satisfies the following universal property: forrgve
phism. Then, the functaifod(c) : Mod(Sig(Sp')) —  1'-algebraB and everyx-morphismy. : A — Mod(o)B,
Mod(Sig(Sp)) can be restricted to specification semantic there exists a uniqu&’-morphismns : T/ r(A) — B
consequences (.8 od(c) : Mod(Spis) — Mod(Sp%) such that for every. € A, ns(a) = p(a). This universal
is a functor). property directly shows that the functhy - is left-adjunct
to Mod(o), i.e., for everyl™-algebraA there exists a univer-
Proof. Lety € Spg; (s, and M € Mod(Sp'). As sal m(_)rphisnyA : A — Mod(c)(Tr /v (A)). pra is called
o is a specification morphism\t g5,y Sen(o)(yp).  theadjunct morphisnior A.
Therefore, by the satisfaction condition, we also have that

Mod(a)(M) Esig(sp) ¢- 4 Architectural connector

We cannot state a similar result for the family of map- 4.1 Definiti
pings Real, i.e. we cannot define in a general way a func- ~* elnitions
tor of the formReal(o) : Real(Sp’) — Real(Sp). The

following notion of compatibility captures the existende o Succinctly, architectural connectors enable one to com-
such a functor. bine components (specifications) together to make bigger

ones. However, depending on the used specification lan-

Definition. 8 (Compatible) Let SL = (Spec, Real) be a  9uage, the way of combining components can be differ-
specification language ovef. Leto : Sp — Sp’ be a ent. For instance, when specifications are logical theories

specification morphismReal is saidcompatiblewith o if, then their combination is often based on the set theoretical
and only if we can define a funct®eal () : Real(Sp') — union on signatures whereas the combination of specifica-
Real(Sp). tions made of transition systems is based on some kinds of

product. However, one can observe that most of existing

) ) ) connectorg have the following common features:
Here, we define two other notions that we will use after-

wards. e a connector gets as arguments a fixed numhbeof
existing specification$p;, Spo, ...Sp, defined re-

Definition. 9 (Definable by specification)Given an insti- spectively over the signaturés, X, ...%,,, to build

tution Z and a specification language ovér a X-theory a new one, denoteflp = ¢(Sp1, Spa, ..., Sp,). We

T is saiddefinable by specificationr definablefor being can then see the connectons a mapping of aritw

shorter if, and only if there existSp € Spec(X) such that from |SPEC|™ to |SPEC|. We will see in the ex-

T = Sps,. amples that actually may be a partial function, but
often defined in a way sufficiently general to accept as

In the following definition, we now adapt the standard arguments tuplesSp,, Sps, . . ., Sp,) With a large as-
notion of liberal specification morphism [12] which will be sociated family of signature tupl¢s,, X, .. ., Xy,).

usefulin Section 4.3. e as specifications will be recursively defined by means

of connectors, the argumentp;, Sps, ...Sp, Of

the connector: can be linked together by some con-
straints on elements present in specification signatures,
expressed by signature morphisms. These constraints
will be taken into account by the definition of the con-
nectorc. Hence, the arguments of a conneatawill

not be a tuple of specifications, but specifications
equipped with signature morphisms. This will be de-
fined by a graph whose nodes are specifications and
S’ = (S, F') be a signature morphism, and BtandT” edges are §ignature morphisms. In ourcqtegory theory
be two sets of conditional equations over, respectively, base.d. set_tmg, such a graph is Ca”e‘?' a d|agram of the
andy’ such thatSen(o')(T') C I'. We can build a functor specification categc_)ryPEC. In practice, for a given
Tt r : A Trop(A), from the category oF-algebras to connector, all the diagrams accepted as arguments by

the category of'-algebras. ] ] 6T/ (A) (resp. Tr(A)) is the term algebra built oveF” (resp. F)
Let A be aTl-algebras. Tt/ p(A) is the quotient of  with sorted variables in the carriet of theI™-algebraA.

Definition. 10 (Liberality) In any specification language
SL over Z, a specification morphisre : Sp — Sp’
is liberal if, and only if Real is compatible withc and
Real(o) : Real(Sp’) — Real(Sp) has a left-adjunct
F(o) : Real(Sp) — Real(Sp’).

Specifications defined by logical theories and axiomatic
specifications over the institutioBEL is liberal for every
specification morphism. Indeed, letv : ¥ = (S, F) —




¢ have the same graph shape (i.e. the same organizaExample. 1 (Enrichment and union) Enrichment  and
tion between nodes and edges). Hence, our connectorsinion of specifications have surely been the first primitives
will be built on the diagram category with the same architectural connectors (so-called structuring primi-
shape over the categoBPEC. tives) to be formally defined and studied especially when
dealing with specifications defined as axiomatic speci-

e the signatureX of Sp is the least one over the sig- fications. They even received an abstract formalization

natures¥i, ¥o, ..., X,. This expresses the fact that
generally, a connectar does not explicitly introduce

in institutions [8]. In our framework, both structuring
primitives are defined as follows: we consider an institu-

new elements to be specified, but on the contrary only tion 7 = (Sig, Sen, Mod, |=). Moreover, in Example 1,
combines the elements already present in one of theg pp s the category whose objects are specifications of

signatures:y, Y ...%,. In the following definition
of connectors, this will be expressed by the co-limit of
the diagram, projected on signatures.

This then leads us up to formally define architectural
connectors as follows:

Notation. 1 (Diagram category) Let I and C' be two cat-
egories. NoteA; ¢ the category of diagrams it with
shapel, i.e. the category whose objects are all functors
0 : I — C, and morphisms are natural transformations be-
tween functorg, §’ : I — C.

Let I’ be a subcategory of a categofy Letd be a dia-
gram of A(; . Let us denoté|, the diagram ofA s ¢y
obtained by restricting to I'.

Definition. 11 (Co-cone) Given a diagramy : I — C. A
co-coneof § consists of an objeet € |C| and al-indexed
family of morphismsy; : §(i) — ¢ such that for each edge
e:i— 4 in I, we have thaty o d(e) = ;.

A co-limiting co-cone (co-limit)(¢, {; }ics) can be un-
derstood as a minimal co-cone, that is:

Definition. 12 (Co-limit) A co-cong(c, {«;}ics) of a dia-
gram is a co-limit if, and only if it has the property that
for any other co-conéd, {3; }:cr) of §, there exists a unique
morphisnry : ¢ — d such that for every € I,y o a; = ;.
Whenl is the categorw «— e — e with three objects and
two non-identity arrows, the co-limit is calledmushout

Definition. 13 (Co-complete)A category C' is co-
completeif for every shape category, every diagram
0 : I — C has a co-limit.

In the sequel, we will then consider institutions whose
the signature category is co-complete.

Definition. 14 (Architectural connector) Let SL be a
specification language over an institutidnfor which the
category Sig is co-complete. Ararchitectural connector
c: |Aq,spec)| — |SPEC|is a partial mapping such that
everyd € A spec) for whiche(d) is defined, is equipped
with a co-cone : Sigo d — Sig(c(d)) co-limit of Sig o 6.

the form(X, Ax) over a given institutio and morphisms
are anyo : (X, Az) — (¥, Az')st. o : ¥ — Y isa
signature morphism.

Enrichment Let I be the graph composed of two nodes
i and 7 and one arrowa : i — j. The connectoEn-
rich for axiomatic specifications is defined for every di-
agramoé : I — SPEC whered(i) = (¥,Az) and
5(j) = (¥, Az’) such thatSen(Sig(é(a)))(Az) C Aa’,
and yieldsEnrich(6) = (X', Az") together with the co-
cone Sig(d(a)) and Idg;ys(;)) Which is the obvious co-
limit of Sig o 0. Observe thab(a) and Ids;) are further
specification morphisms.

Union Let I be the graph composed of three nodes,
andk and two arrowsz; : ¢ — j andas : i — k. The con-
nectorUnion is defined for every diagram: I — SPEC
whered(i) = (X0, Azo), 6(j) = (Z1,Azy) andd(k) =
(32, Azz), and such thatSen(Sig(d(a1)))(Azg) C
Azy and Sen(Sig(d(az)))(Azg) C Axze, and yields
Union(§) = (X, Az) with the co-cone : Sigod — X
which is the pushout ofig(d(a;1)) and Sig(d(az)) and
such thatdz = Sen(p;)(Az1) U Sen(py)(Az2). Observe
that we can derive the co-copgprc : 6 — (X, Ax) such
thatSig o psprc = p, andpspec, andpsprc, are spec-
ification morphisms.

In [8], both above connectors have been brought down
to two basic connectors: union with constant signaturks
andtranslate _ by o for every signature morphism They
are defined by:

1. LetI be the graph composed of two nodeand j;
and without arrows betweehand j. The connec-
tor | J is defined for every diagram : I — SPEC
whered(i) = (X, Azq) andé(j) = (X, Axq), and
yields|J(0) = (X, Az) with the obvious co-limip :
Sigod — ¥ wherep; andp; are the identity signature
morphism fory, and such thatlz = Azq U Axs,.

2. LetI be the graph composed two nodeand!. The
connectortranslate _ by o whereo : ¥ — ¥/
is a signature morphism, is defined for every dia-
gramé : I — SPEC whered(k) = (X, Az) and
5(l) = (¥, Sen(o)(Az)), and yieldstranslate _ by
o(8) = (X', Sen(o)(Ax)).



In [8], J(d) andtranslate _by o (4) are respectively noted
5(¢) U () andtranslate §(k) by o.

Architectural connectors can be combined to deal with
specifications in the large.

Definition. 15 (Connector combination) Let ¢ :
|A]7SPEC| — |SPEC| andc’ : |A(I’,SPEC)| — |SPEC|
be two architectural connectors. Léte |I’| be an object.
Let!’ o; I be the category defined by:

o |10y 1| = |IITTIT'

o the setsHomy ., 1(k,1) for everyk,l € |I' oy I| are
inductively defined as follows:

— k,l S |I/| = Homp(k,l) - Hompoi/[(k,l)

— k,le|I|= Hom(k,l) C Homp.,,1(k,1)

— for everyi € |I], we introduce the arrovg; in
Hom]/oi/](i,i/).

— Hompy,, 1 is closed under composition.

Let us denote’ 01 C : |Al’oi/I,SPEC| — |SPEC| the
architectural connector defined by :

c(4),,) if c(,) is defined

6(i") = c(9),)

P andd(g;) is the morphism; in SPEC
p; of the co-limitp associated te(d),)

undefined otherwise

one glueG stating the interaction between roles (i.e. the
way roles communicate together). Roles and glue are pro-
grams defined over signatures (see [16] for a complete def-
inition of programs). In our framework, programs denote
specifications from which we can observe temporal proper-
ties. Each role and the glue are interconnected by a channel
to denote via signature morphisms shared attributes and ac-
tions. This gives rise to a diagram defined as the intercon-
nection on the glué; of basic diagrams of the form:

channel

In Community, the mathematical meaning of a connector is
then defined by the colimit of such diagrams. This can be
easily defined in our framework by considering a connec-
tor ¢ defined for every diagram of the previous form over
the category’ ROG (defined in [16]) taken as the category

SPEC.

whose the image byig is the componertt-2 Complex structuring

As already explained in the introduction of the paper,
an architectural connector will be considered as complex

Example. 2 Enrichment can be removed and replaced by when:

the following combination afranslate and U as follows:
let 6 be a diagram ofA; sprcy Where I is the index
category of the connectaEnrich, 6(i) (3, Az) and
6(j) = (X', Az')

Enrich(6) = |_Joitranslate_byd' (p;)(5")

where ¢’ is the diagram ofA ., 1/ sprcy for 1" (resp.
I') the index category of the connectof(resp.translate),
defined bys’(k) = 6(¢), &' (¢) = translated’ (k)byd’ (p;) =
(X, Sen(Sig(p;))(Ax)) andd’(j) = (X', Az’ \ Ax).

1. The global system does not preserve the complete be-
havior of some subsystems. We will then talk about
non-conformity properties

2. Some global properties cannot be deduced from a com-
plete knowledge of these components. We will then
talk abouttrue emergent properties

This is expressed by comparing the set of semantic con-
sequences of subsystems with the ones of the global system
up to signature morphisms.

The reader accommodated to the terminology and to thepafinition. 16 (Complex connector) Let c

concepts of software architecture can be disappointeddy th
way connectors are interpreted here, i.e. by functions thaty,,

|A,specyl — |SPEC| be an architectural connec-
Let 6 be a diagram ofA(; sprc) such thate(d) is

take components and produce systems. Indeed, connectoigefined. ¢ is said complex foré if, and only if one of the

are typically viewed as forms of communicating compo-

two following properties fails:

nents. Such connectors can also be formalized in our frame-

work. For instance, in Community [15, 16], in the style of
Allen and Garlan [6], a connector consistsafolesR; and

7q, is the arrow introduced il omy/,, , 1 (3,1).
i

1. Conformity.
Vi € I,Vyp € Sen(Sig(3(i))), ¢ € 0(1)%,50)) <
Sen(pi) () € c(0)g,4(c(6))



2. Non true emergence.

¥ € ¢(0)3i4(e(s)): (U Sen () (6()Sigs7)) Fsiatetsn
icl
P

A formulap that makes fail the equivalence of both Point 1.
and Point 2. is calleg@mergent property
If cis not complex for a diagram, then it is saidnodular

Example. 3 Here, we give a very simple example of spec-
ifications in which modularity fails. Le¥lat be the specifi-
cation inEQL defined as follows:

Specification of Nat Sorts: Sy.: = { nat }

Functions : Fya: =
{0 :— nat,
succ : nat — nat,
+ _: nat X nat — nat }

AXioms: Az png: =
{z+0==x
x + succ(y) = suce(x +y)}

4.3 Conditions for modularity

As we have explained it in the introduction of this
manuscript, complex software systems prevent to check
their correctness with respect to their specification step b
step by taking the benefit of their recursive structure. This
leads to the important consequence that adding any compo-
nent gives rise to a new systems whose the correctness has
to be completely (re)checked. It is then important to study
general properties that guarantee when a system is not com-
plex (i.e. modular). This is what we propose to do with the
two following results.

Theorem 1 states that showing the non-presence of true
emergent properties for a connectorand a diagramy
comes to show tha(tU Sen(pi)(6(1)%ig(5017)))° is defin-

iel

able byc(9).

Theorem. 1 Letc be an architectural connector aridbe a
diagram such that(d) is defined. Then, we have:

U Sen(pi)(8(i)%i4(51))))" is definable by:(s) if, and

Let us us enrich this specification by adding operations only ifthe set of true emergent properties is empty and each
and axioms to specify stacks of natural numbers. This leadsP: iS & specification morphism.

to the following enrichment:

Sorts: Ssiack = { nat, stack }

Functions: Fsqcr
{empty :— stack
push : nat x stack — stack ,
pop : stack — stack ,
top : stack — nat,
high : stack — nat}

FNat )

Axioms: Azxgsiqck
{pop(empty) = empty
pop(push(e, P)) = P
top(push(e, P)) =e
high(push(e, P)) = succ(high(P))}

A'rNat U

If we suppose that realizations are either the initial
model or reachable modefwof both specifications, then an
example of emergent property is:

Ve, (x =0)V 3y, z = succ(y))

This is becauséigh(empty) has not been specified to
be equal tod. On the contrary, if we add this equation in
Axgiqck, there is not emergent property anymore.

8A model is reachable when any of its values is the result o&treu-
ation of a ground term.

Proof. The only if part. This obviously results
from the fact that (| JSen(p:)(6(i)%igs0))"
iel
is definable by c¢(9). Indeed we have
(0)%ig(e(s) = USen pi)(0(1)%igs0iyy)°,  that
i€l

is for every v € C(d)éiq(c(a))* we have that
U 5en()(6(0)%ig(s0) Esigtets)) #-
iel

Theif part. As eaclhp; of p is a specification morphism,

we have that|_J Sen(p:)(6(1)%i5(50)))° S e(0)%ige(s)-
icl
Moreover, as the set of true emerging properties is empty,

we have that(d szq(c(a) U Sen(pi)(6(1)%ig(5(17))) "

i€l
Hence, c(8) 4,000 = (L Sen(0i)(0(i)%ig050:7)))"> and
i€l
then
(L Sen(pi)(5(1)%ig(s1)))" is definable by:(é).
i€l

By Theorem 1, the architectural connectdtarich,
Union, |J andtranslate _ by ¢ have no true emergence
properties for any defined diagram.

As we could expect, modularity is a property which
holds for some, but certainly not for all architectural con-
nectors. More surprising, even under the condition that



(U Sen(pi)(6(i)%iq4(5(17)))° is definable by:(5) for a con-

iel

nectorc and a diagrand such thatc(d) is defined, mod-
ularity can fail because of non-conformity properties (see
Example 3).

In the next theorem, we give a supplementary condition
based on the liberality of eagh of the co-limitp, that leads

to an empty set of non-conformity properties. For Theo-
rem 2, we suppose the following conditions :

1. the institution under consideration is closed under iso-
morphism,

2. Real is compatible for every specification morphism
p; of the associated co-copeand

3. eachp; of the co-limit p associated to the con-
nector ¢ in A sprc) Satisfies the supplemen-
tary condition, so-calledRight Satisfaction Con-
diton (RSC) : Vo € Sen(Sig(d;)), VM €
Real(c(9)), Real(p:) (M) Fsige) ¢ =
M Esigs(e)) Sen(pi)(¢).

The interest of RSC is, realizations being a subset of mod-

els, some pruning on realizations Real(4(c)) have been

allowed to be done, and then this direction of the satisfac-

tion condition has been able to be brought into failure. For
instance, this property does not hold when specificatioms ar
logical theories and realizations are restricted to relbleha

Theorem 2 generalizes to any architectural connectors
the standard condition of modularity based on the two no-
tions of hierarchical consistency and sufficient complete-
ness [22], which has been stated for the enrichment connec-
tor in the algebraic specification framework (when specifi-
cations are conditional positive).

5 Application to reactive systems

In this section, we propose to exemplify our abstract
framework to reactive system modeling. We will then give a
rigorous and formal definition of emergent properties in the
framework of reactive system modeling. We restrict our-
selves to reactive systems described by means of the usual
synchronous product of transition systems, and whose be-
havior is expressed by logical properties oMFOL . The
reason is this is sufficient for the purpose of the study, and
the results given in this paper could easily be adapted to
temporal logics more classically used to reason on reactive
systems and other composition connector whose the great-
est number are based-on transition system product. In our
setting, we will study some conditions under which non-
conformity properties do not occur. The interest is thispro
vides guidance in the design process. Indeed, the appear-
ance of non-conformity properties leads to make a posteri-
ori verification of the global system without benefiting from
the decomposition of the system into components.

models (see Example 3). For the next theorem, we suppose In Section 5.1, we introduce transition systems and their

that these three conditions hold.

Theorem. 2 Let ¢ be an architectural connector and
be a diagram such that(o) is defined. Suppose that
(U Sen(pi)(6(1)%iq(5(17)))° is definable bye(), Real is
iel

cgmpatible with eaclp; and eachp; is liberal. Then, for
every: € I and everyM € Real(d(7)), If each adjunct
morphismua : M — Real(p;)(F(p;)(M)) is an isomor-
phism, then the set of hon-conformity properties is empty.

Proof. Lety € 0(i)%;,(s5¢;)). and letM € Real(c(d)).
As (U Sen(pi)(0(1)%i4(5(1y))° is definable by c(9),

iel
Real(p;)(M) FEsigsi)) ¢- Therefore, by the hypothe-
sis that the truth of property is preserved for the functor
Real through each signature morphism, we have that
M Esiges)) Sen(pi)(¢).

lety € Sen(d(i)) suchthatSen(p;)(¢) € ¢(d)®, and let
M € Real(6(i)). AsF(p;) is left-adjunct toReal(p;), we
haveF (p;)(M) FEsig(es)) Sen(pi)(¢). AsReal is com-
patible with eachp;, Real(o)(F(pi)(M)) Esigisi)) ©-
As the adjunct morphism is an isomorphism &nh sta-
ble under isomorphismM and Real(o)(F(p;)(M)) are
elementary equivalent, and theé¥l |=g;,(5(:)) ©-

semantics, and define the synchronous product as means to
compose them. Finally, Section 5.2 presents results ensur-
ing the non-existence of non-conformity properties along
synchronous product.

5.1 Transition systems

5.1.1 Syntax

As usual when considering automata, transition systems
describe possible evolutions of system states. Elementary
evolutions are represented by a transition relation betwee
states. Each transition between two states is labeled bg thr
elements: actions of the system, guards expressed here by
formulas of FOL presented in Section 2, and side-effects
on states defined by pairs of ground terms or of the form
(p(t1,...,tn),b) wherep(t,...,t,)is a ground atom and

b is equal totrue or false. As usual, we start by defin-
ing the language, so-called signature, on which transition
systems are built:

Definition. 17 (Signature) A signatureis a triple .¥ =

(3, V, A) where: X is aFOL -signature,V is a set of vari-
ables overX and A is a set whose elements are calkeck
tions



Definition. 18 (Side-effect) Given a signature ¥ =
(3,V, A) whereX = (S, F, P), a side-effectover £ is a
pair of ground terms ovek (¢,t') of the same sort (i.e.
ds € S,t,t' € Tr) or a couple(p(t1,...,t,),b) where
p(t1,...,t,) is a groundX-atom (i.e. each; is a ground
term) andb is equal totrue or false. In the sequel, a side-
effect(¢,¢’) will be notedt — ¢'.

We noteSE(L) the set of side-effects over

A transition system is then defined as follows:

Definition. 19 (Transition system) Given a  signature

Definition. 22 (Semantics of transition systems)Given a
transition systens = (Q, T) over a signature?, the se-
mantics forS, noted Real(S), is the set of all the Kripke
frames(W, R) over.Z such that the set of indexés= Q,
and satisfying both implications:

1 (q,0,¢,0,¢') € TAWT = @ AW ~ss WT
= qR.q

2. qR, q
= 3(q,a,0,6,¢') € T, W = o AW ~ss WA

Hence, the way whose dynamic is dealt with in this paper
follows the state-as-algebra style [21, 1] where states are
Y.-models and state transformations are transitions from a
state-model to another state-model.

< = (%,V,A), atransition systenis a couple(Q, T)
where:

e () is a set ofstatesand

e TCQxAx Sen(X) x 2584 x Q.
5.1.3 Synchronous product
~ A small specification example is given in [3]. Transi- Synchronous product combines two transition systems into
tion systems are specifications of rea/ctlv/e systems. GiVen, gingle one by synchronizing transitions. Understandably
a S|g_natur/e morp/h|s/m - (3 A/) _/’ (&, A7) ano/l a SPeC- executions of synchronous product modelize system behav-
ification 8" = (Q',T') over (X', &), Spec(a)(S’) 'S the jor as a synchronizing concurrent system. Hence, when an
specificationS = ,(Q’T) over(3, 4) such thaQ,: Q /and actiona is “executed” in the product, then every compo-
T = {(¢,a:¢,0.4)|(g,0(a), Sen(o)(¢),0(4),¢') € T'}. nent witha in its alphabet must execute a transition labeled
with a. Formally, the synchronous product of two transition

5.1.2 Semantics systems is defined as follows:

Semantics of transition systems are defined by Kripke Definition. 23 (Synchronous product) Let S; = (Q;, T;)

frames themselves defined as follows: be a transition system over a signatusé — (., Vi, 4;)

Definition. 20 (Kripke frame) Given a signature? = with ¢ = 1,2 such that:

(3,V, A), anKripke frameover.Z or .£-model, is a cou-

ole (. F) where: o for every transition(qi,a, v1,01,¢;) € Ti and ev-

ery f(tla s 7t’n.) = tll € 51 (reSp. p(tlv s 7tn) =

b € ¢1), there does not exist a transition
(g2,a,p2,02,¢5) € T and a side-effecty —
t, € 02 with to of the form f(¢},...,t]) (resp.
p(th, ..., t,) — b € ),

e and conversely, that is this condition on side-effects
has also to be satisfied by replacifiy by Ts, d; by
0o and§2 by&l

e Wis aI-indexed sefW');c; of ¥-models such that
Wi =W/ foreveryi,j € I ands € S, and

e Ris aA-indexed set of “accessibility” relation®, C
Ix1I.

Here, states are defined By¥models. Therefore, side-
effects will consist on moving from &-model to another
one by changing the semantics of functions according the
assignments given in the seof transitions. Formally, this
is defined as follow: if4 is aX-model, then 4 : Tp — A
is theX-morphism inductively defined by (¢4, ..., t,) —
FARE, 1)

Thesynchronous productf S; andS,, notedS; ® S, is the
transition systen(@, T) over.¥ = (X1UX2, V1 UVa, A1 U
As) defined as follows:

e Q=01 xQ2

o if a S Al n A21 (qlvaa(pladlvqi)
(QQa a, P2, 527 QQ) € TQ then
((Q17q2)aa7§01 A 4%72751 U527 (qaaqé)) eT

Definition. 21 (Side-effect semantics) et.Z = (X,V, A)
be a signature. Letd and B be twoX-models. We note
A ~s B to mean that the statdl is transformed into the
stateBB alongé, if and only if B is defined as4 except that
for everyt — t' € 6 (resp. p(ti,...,t,) — b), t8 = t'A
(resp.(t{, ..., t}) € pBiff b = true).

e T, and

o ifa € A\ As and(¢q1,a, ¢1,01,¢;) € Ty then for
every(h S Q21 ((qlaq2)7aa 301751a (q/17q2)) eT



o ifa € Ay \ Ay and (q2,a, v2,02,¢,) € Ty then for (¢,a,9¢,q") € T;. By construction, there exists a transi-
everyq; € le ((QIaQ2)7 a, P2, 521 (C]h q&)) eT tion ((Q7 q7)7 a, wlt 6/1 (q/7 q;)) eT such that eithel;@l =@
andd’ =4,0r¢’ = p A’ andd’ = o UH”. In both cases,
Both conditions on side-effects allow to remove the case by hypothesis, we have thaty(+%) |= /. Therefore, by
where for a same function nanfe(resp. a predicatg) ap-  the satisfaction condition fdFOL W¢ = . Moreover, by

plied to a same tuple of arguments yields to different values the condition on side-effects in Definition 23, we have that
an then make fail the functionality gf(resp. makes incon-  yyq ~t w?
K3 3

sistent the set of side-effects restinggn

. . Proposition.2 V. : V. — W,
By following the notions of our abstract framework, the '
synchronous product gives rise to the connestgnc. To (YW, R;) € Ty, Vg € Qi, Wi, R) EY ») »
define this connector, we consider the shdpeomposed = (Vg; € Q;, W, R) =7 )
of three nodes, j andk and two arrows:; : ¢ — j and
as : i — k. The connectoSync is then defined for ev-
ery diagramd whered(i) is the empty transition system Basic case.y is of the formp(¢q,...,t,). Letg; €
over the signaturéXy, A;) whereXy is the emptyFOL- Q;. By definition, there existéW;, R;) € I'; such that
signatureg(j) = (Q;, T;) over the signatur€>;, A;) and ~ W{ = Mod(Z; — X)(W(@4)). By hypothesis, we have
§(k) = (Q, Ty) over the signaturéXy,, A;), and yields ~ W k=, p(t1,...,t,), and thetW(@%) =, p(ty,... t,).
Sync(d) = 5(].)  d(k) over the S|g_natt_1ré2, A) with the General caselet us handle the case whegeis O,¢'.
co-conep : Sigo d — (X, A) which is the pushout of (4,4;)
Si . LG Let us suppose th&V, R) =,/ ¢. Then, let us consider
ig(d(a1)) andSig(d(az)) in Sig.
(¢, g;) such that(q, ¢;) R. (¢, q;). By the hypothesis, we
have for evenyW;, R;) € T; that (Wi, R;) E7 ¢. By con-
struction, we also have R;, ¢’ for every(W;,R;) € T

The synchronous product of two transition systefns Therefore, for evenyVs, i) & T, (Wi, ) =1 ¢ aqnd
S, have generally true emergent properties. The reasonfhen by the induction hypothesis, we have, k) |:L o
is the setMod(Th(Sy U S3)) of Kripke frames may be ¢/, whence we can conclud®V, R) (q %) @
greater thanReal(S; ® Sz). Indeed, Kripke frames in
Real (81 ® S2) have to preserve the shape of the transition
systemS; ®S, unlike Kripke frames im\fod(Th(S3US3)).
Hence, propertiesifS; ®S2)® may be more numerousthan  Theorem. 4 ST (S8
in Th(Sy U S3). However, we can show under some con-
ditions that non-conformity properties cannot occur along Proof. Lety € S, and let(W, R) € Real(S; ® Sa). Let
synchronous product. More precisely, we are going to show, : V' — W be an interpretation. By Theorem 3, for every
that the “only if” part of the conformity property is satisfie ~ model(W;, R;) € T;, we have(W;, R;) = ¢, and then
but the “if” part only holds when formulas that label tran- for everyq € Q; we also havgW;, R;) =? ¢. There-
sitions are conditional equations (i.e. expressed in thelo  fore, by Proposition 2, we have for evegy € @, that

Proof. By induction on the structure gf.

5.2 Results

The cases of Boolean connectives and quantifier are sim-
pler and left to the interested reader.

CEL). (2:95)

Let us start by showing that the semantic consequencesfwﬁ) = o andthen(V, B) = ¢.

of & and S, are preserved b, ® S,. Let us suppose To show the “if” part of the conformity property, we need

a Sy ® Sa-model (W, R), and let us define &;-model to make some restrictions on formulas that label transition
(Wi, R;) fori = 1,2 as follow: Hence, we suppose that transition systems are built over the

. () logic CEL, and then given a mod¢WV, R) of transition
o for everyq € Qi, W' = Mod(%; — X)(W')) for  systems, for eachg € Q, W1 is now an algebra. There-
anyq' € Q; with j # i € {1,2} fore, the logic for transition systems is the modal firsteard
eVa € A, R, = {(¢.4)]F € Sen(%:),3 € logic defined as in Section 2 except that niatoms are

tricted to>-equations.
SEL 5,q) €T, restn " .
(£), (¢:0,,0,q") € Ti} Given two transition systemS; andS, over the signa-

Letus notd’; fori = 1,2, the set of all thes&,;-models. turesL; and L., respectively, and satisfying the above re-
striction, fori # j € {1,2}, and for everyW;, R;) €
Theorem. 3 Each(W;, R;) € I'; is aS;-model. Mod(S;) we define the mapping v, r;) : Mod(S;) —

Mod(L) whereL is the signature over which the transition
Proof. The first condition of Definition 22 is obvious. To systemS; ® S; is built as follow: if we note for &-algebra
prove the second condition, let us suppose a transition A, th(A) = {p|p : CEL-formula A |= ¢}, then to every



(Wi, Ri), f(Wj,Rj)((Wia Rz)) = (W, R) such tha(W, R)
is the £-model defined by

o Vg € Qi V¢ € Qj, W) = Ty r(WY) x
Tr, ;rOW)

* RBa = {((q1,01),(22,4))|Fp € Sen(X),36 €
SE(L), ((q1,91),a, ¢, (g2, 93)) € T}
wherel'; = th(W}), T'; = th(WJ‘»‘/), andl’ = th(W]) U
thw?).
Theorem. 5 For every (W;,R;) € Mod(S;) and every

Wi, R;) € Mod(S;), f(Wj,Rj)((WiaRi)) isas; ® Sa-
model.

Proof. The first condition of Definition 20 is obvious. To

Tr,;rOWV') x Tr,,;r(W}?) (recall that conditional
equations are preserved along the cartesian product of
algebras). Moreover, by hypothesis, we also have that
W o5 WE and W2 ~s0 W2, By definition,

I'; (resp.I';) contains the ground equational theory of
Wi (resp. W??). If we notel'; = th(W"), T} =

th(WJgé) andl” = th(Wf;) U th(Wf;), then we have
Tr,;r W) ~s Tryo (W) and Tr, ;p(W)?) ~5

/

Try o (W),

2. The case wherg € Sen(X;) U Sen(X;) andd’ €
SE(L;) andd” € SE(L;) is noticeably similar to the
previous one.

MFOL is closed underisomorphism. Moreover, by The-

prove the second condition, let us suppose a transitionorem 3,Real is compatible with each morphisms of the

((q1,41),a,,6,(q2,43)) € T. By construction,> and §
are:

1. either of the formy’ A ¢ with ¢’ € Sen(X;) and
¢" € Sen(X;) and ¢’ U " with ¢’ € SE(L;) and
8" e SE(L),

2. orp € Sen(X;)USen(3;) andd € SE(L;))USE(L;).
This then leads to the two following cases:

1. Suppose that is of the form¢’ A ¢ and then
§ = §ud.
(QIaaa(plaélaqll) € T, and (q27a79@”aéuvqé) € Tj'
By hypothesis, we hav®/? [ ' and Wfll =
¢". Therefore, we have thafy, ,r(W") | ¢ A
¢" and Tp, ;r(W?) E ¢ A", and then so is

9Cartesian product and preservation resultsLet = be a signature]
be a set and.A;),c; be al-indexed family of¥-algebras. Let us note

H A; theX-algebra defined as follow:
iel

o foreverys € S, its carrier of sort is H (Ai)s,
i€l

Aj
o foreveryf:s;y X...xXsp, > s€ F,filgl is the mapping that
toevery(ai,...,an) € H (Ai)sy X... % H (A;)s, , associates
il i€l
,al,)|i € I) where givera € [ [ (4i)s, o' is the ith
i€l

(fAi(af, ...
coordinate ofa.

By construction, we can notice that:

H.Ai FEo=Viel A =

i€l
where for every interpretation .* is the interpretation defined hy— a’
if 1(x) = a. Itis well-known that conditional equations are preserbgd
Cartesian product of algebras, that is, if for everg I, A; E T = «,
thenH A ET = a.

iel

This means by construction, that

co-conep associated to the connectSync. Finally, by
Proposition 2 and Theorem 4, RSC is satisfied. Therefore,
Theorem 6 is a specialization of Theorem 2.

Theorem. 6 If for every (W;, R;) € Mod(S;), every
(W;,R;) € Mod(S;), and everyg € @; and every
¢' € Qj, the adjunct morphismyye : W — Mod(%; —
) (Tr,\r(W))) is an isomorphism, thetiS; ® S2)* N
Sen(L;) CS?.

Proof. Lety € (51 ® S2)°® N Sen(S;) and let(W;, R;) €
Mod(S;). By Theorem 5, for everfWV;, R;) € Mod(S;),
we have thaFF(yy, r,) (Wi, Ri)) = ». As the adjunct mor-
phism,ye is an isomorphism, for every: V- — W, there
exists/ : V — Tr,)r (Wi) xTr, ;r (W;) suchthat = p;o//
wherep; is the i-th projection map; : Tr,,r(W}) —
Tr,;r(Wf) ® Tr,;r(WY) for ¢ € Qi andq € Q.
By hypothesis, for every € @, and everyqy < Qj,
Fow,. ) (Wi, Ry)) lzf/q’q/) ¢. Itis then easy to show by
induction on the structure a@f that(W;, R;) E7 .

Example. 4 When dealing with formulas expressed in the
logic CEL to label transitions, we often make restrictions
on algebras denoting states. Indeed, to allow inductive
proofs or for computability reasons, state-algebras aerth
restricted to reachablé® or some quotients of the ground
term algebra. Let us the suppose for the below counter-
example of the conditions given in Theorem 6, that we re-
strict our approach to state-algebras defined by reachable
algebras. Let us consider the two following transition sys-
temsS; and S, defined respectively over the two following
signatures?) and.%:

10A y-algebra isreachableif, and only if the uniqueX-morphism
n: Tr — Ais surjective, that is all the values iA are denoted by
the evaluation of a ground term.
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