Marc Aiguier
email: marc.aiguier@ecp.fr

Bilal Kanso
email: bilal.kanso@ecp.fr

Frédéric Boulanger

Christophe Gaston
email: christophe.gaston@cea.fr

Frédéric Boulanger

Fréderic Boulanger
email: frederic.boulanger@supelec.fr

Testing of component-based systems

Keywords: Component-based system, Conformance testing, Compositional testing, Testing in context, Projection, Test purpose

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

In the last decades, the component-based software approach [START_REF] Souza | Objects, Components, and Frameworks with UML: The Catalysis(SM) Approach Addison-Wesley Professional[END_REF], [START_REF] Szyperski | Component Software: Beyond Object-Oriented Programming[END_REF] has emerged due to the great advantages it offers: modularity, re-usability, cost-effective solution. Components are then designed, developed and validated in order to be widely used, while complex software systems are described recursively, at a higher level of abstraction, as interconnections of those components. Hence, each sub-system (or component) can be either a complex system itself or a simple component, elementary enough to be handled without further decomposition. Composition is used for fitting different components together and then defining larger systems. Such a composition is defined by operations which take components as well as the nature of their interactions to provide a description of a new and more complex component or system.

In [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF], we proposed a formal framework for modeling basic components viewed as abstract state-based systems. Components were then modeled as coalgebras over sets-endofunctor with monads [START_REF] Maclane | Categories for the Working Mathematician[END_REF], [START_REF] Moggi | Notions of computation and monads[END_REF] following Barbosa's component definition [START_REF] Barbosa | Towards a Calculus of State-based Software Components[END_REF], [START_REF] Meng | Components as coalgebras: the refinement dimension[END_REF]. Monads enabled us to generically consider a wide range of computation structures such as partiality, non-determinism, etc. [START_REF] Moggi | Notions of computation and monads[END_REF], and then to define components independently of any computation structure. This definition allowed us to unify in a same framework a large family of state-based formalisms such as Mealy automata [START_REF] Eilenberg | Automata, Languages and Machines[END_REF], [START_REF] Mealy | A method for synthesizing sequentiel circuits[END_REF], Labeled Transition Systems [START_REF] Milner | A Calculus of Communicating Systems[END_REF], Input-Output Labeled Transition Systems [START_REF] Jard | TGV: theory, principles and algorithms[END_REF], [START_REF] Tretmans | Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation[END_REF], etc. Larger systems are then built by integrating components from integration operators defined by composition of two basic ones: Cartesian product and feedback. In [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF], we showed that most standard integration operators such as sequential and concurrent composition or synchronous product are subsumed by our generic definition of integration operators. Based on this framework, a conformance testing theory has been defined in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF].

The "plug and play" nature of component-based system design leads naturally to build always bigger systems whose correctness happens to be more and more difficult to assert. This is of course due to the fact that analyzing big systems generates state and time explosion problems, but it may also be caused by the system architecture (e.g. distributed system) which may complicate the ability to instrument the system in order to observe behaviors to be analyzed. Even more, if a "faulty" behavior is observed in such a system, the size of the system is a problem to identify the cause of the fault at the debugging phase.

All these reasons call to find ways to make system validation modular. Such methods enable to analyze a system, subsystems per subsystems, in a modular way, rather than "as a whole". Analyzed such systems are smaller (less prone to generate explosion problems), more observable and controllable (thus their behaviors are easier to cover), and debugging is greatly facilitated.

Compositional testing [START_REF] Faivre | Symbolic Model Based Testing for Component Oriented Systems[END_REF], [START_REF] Van Der Bijl | Compositional Testing with ioco[END_REF], [START_REF] Sampaio | Compositional Verification of Input-Output Conformance via CSP Refinement Checking[END_REF] is viewed as one of the most promising directions to bridge the gap between the increasing complexity of systems and actual testing method limits due to the reasons discussed above. Similarly to compositinality result in [START_REF] Van Der Bijl | Compositional Testing with ioco[END_REF] establishing under certain hypothesis that the conformance testing relation ioco is compositional with respect to parallel composition and hiding, we have established a compositinality result in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF]. This result expresses that for the conformance relation ioco1 and n implementations and specifications iut i and spec i , 1 ≤ i ≤ n, each one modeled by a component as defined in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF], if for each i, 1 ≤ i ≤ n, iut i ioco spec i , then for any integration operator of arity n (see Definition 1.7), op(iut 1 , . . . , iut n) ioco op(spec 1 , . . . , spec n). The compositinality result obtained in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] is thus an extension of Tretmans's result [START_REF] Van Der Bijl | Compositional Testing with ioco[END_REF] since it is established independently of a given integration operator.

This result justifies the approach that consists in testing separately the components of a system in order to build the correctness of the global system. However, it turns out that in practice, such an integration theory is not enough. Such a result does not help to choose test purposes that are meaningful. Indeed each iut i (i≤n) is tested with respect to its specification spec i (i≤n) , but since testing means selecting a finite number of executions (test cases) to evaluate the conformance, the question is then how to build a meaningful set of executions? Following approaches in [START_REF] Van Der Bijl | Compositional Testing with ioco[END_REF] and [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] which are dedicated to model-based testing, we propose to extract test cases from specification. However, spec i , standing alone, does not contain enough explanation to know how iut i will be used in the context of the whole system. This usage is in the end the only aspect that matters at test selection phases since all behaviors reflecting a non-conformance between iut i and spec i which are never activated in the context of the whole system op(iut 1 , . . . , iut n), will by definition never cause a fault at the system level. For example, if a system uses a calculator component to invoke only addition, then the component may well be "faulty" for multiplication; this will not cause a fault at the system level. Even more, wasting time to test such behaviors reduces the time and resources to test behaviors of the component that will be activated in the frame of the system. This may have dramatically harmful consequences. For example, the disaster of Ariane 5 in 1996 is caused by the absence of testing in context of a software component which was only tested for Ariane 4. We will give in this paper, a new compositinality result that will take into account the behavior of global system in which components are plugged in. This last result is inspired from the approach proposed in [START_REF] Faivre | Symbolic Model Based Testing for Component Oriented Systems[END_REF], initially developed in the setting of IOST S (symbolic automaton). In [START_REF] Faivre | Symbolic Model Based Testing for Component Oriented Systems[END_REF], only projection is defined, but no compositinality result is given.

Based on this result, we will then propose a technique that strengthens testing of each component involved in a global system, by choosing suitable test purposes for them. This will be done by defining a projection mechanism that, from global behaviors of a system, will help generating test purposes capturing the behaviors of the sub-systems, that typically occur in the context of the whole system.

The paper is structured as follows: Section I recalls our framework for modeling components and systems. Section II introduces the conformance testing theory and discusses its main limitation for the validation of complex software systems. Section III presents the compositinality result and shows how components can be tested while taking the system to which they belong into account.

I. COMPONENTS AND SYSTEMS

A. Components

In [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF], a component is defined as a generalized Mealy automaton in which the dependence between outputs and both current state and inputs is relaxed from a strict deterministic, to encompass more complex behaviors such as partiality, non determinism, etc. Components are defined using terminology and notations of coalgebras [START_REF] Rutten | Universal coalgebra: a theory of systems[END_REF] and monads [START_REF] Maclane | Categories for the Working Mathematician[END_REF]. Hence, a component in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] is a coalgebra (S, α) over a signature T (O ×) I : Set -→ Set where T is a monad. The monads have been introduced because they allow us to generically consider many computation situations such as determinism, non-determinism, partiality, etc. (see [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF], [START_REF] Moggi | Notions of computation and monads[END_REF] for more explanations).

Here, to make easier the readability of the paper, we restrict ourself to a particular case when T stands for the powerset monad P. The generalization to any monad T does not raise any difficulties. Example 1.1: To illustrate our approach, we will consider in this paper a simple system S that computes grade averages presented in Figure 1. This system S is built from two basic components: a "graphical interface" that helps the user to make various operations on grades and a "calculator" that receives operation commands from the user, performs the requested operation, and reports back to the user. In our framework, the graphical interface is modeled as the component G = ({s 0 , s 1 , s 2 , s 3 , s 4 , s 5 }, s 0 , α 1) over the signature Σ 1 = ({mark, plus, average, nb, res}, {+, /, screen, val})

and the calculator as the component C = ({q 0 , q 1 , q 2 , q 3 }, q 0 , α 2) over the signature Σ 2 = ({+, * , -, /}, {res, ⊥}) α 1 (resp. α 2) is depicted in the box at the top side (resp. bottom side) of Figure 1.

The semantics of a component is characterized by the set of finite sequences of couples (input|output), that is illustrated by the following definition: Definition 1.2 (Component finite traces): The finite trace from a state s of a component C, noted Trace C (s), is the whole set of the finite input-output sequences i 0 |o 0 , . . . , i n |o n such that there exists a finite sequence (s 0 , . . . , s n+1) ∈ S * of states where for every j, 0 ≤ j ≤ n, (o j , s j+1) ∈ α(s j)(i j) with s 0 = s.

Hence, the set of traces of C, noted T race(C), is the set T race C (init).

In the following, we note α(s

)(i) |1 (resp. α(s)(i) |2
) the set composed of all first arguments (resp. second arguments) of couples in α(s)(i).

B. Systems

Larger systems are built by composition from two basic operators: Cartesian product and feedback.

Cartesian product: The cartesian product is a composition where both components are executed simultaneously when triggered by a pair of input values.

Definition 1.3 (Cartesian product ⊗): Let C 1 = (S 1 , init 1 , α 1) and C 2 = (S 2 , init 2 , α 2) be two components over (I 1 , O 1) and (I 2 , O 2) respectively. C 1 ⊗ C 2 , the cartesian product of C 1 and C 2 , is the component (S 1 × S 2 , (init 1 , init 2), α) over (I 1 × I 2) × (O 1 × O 2)
where α is the mapping defined for every (i 1 , i 2) ∈ I 1 × I 2 and every (s 1 , s 2) ∈ S by: α

((s 1 , s 2))((i 1 , i 2)) = ((o 1 , o 2), (s ′ 1 , s ′ 2))|(o k , s ′ k) ∈ α(s k)(i k) for k = 1, 2
Feedback: The concept of feedback composition is intrinsic in dynamic system modeling in control theory [START_REF] Lee | Structure and interpretation of signals and systems[END_REF], [START_REF] Lee | Introduction to Embedded Systems -A Cyber-Physical Systems Approach[END_REF].

Here, we fit it to discrete systems. A component with feedback has directed cycles, where an output from a component is fed back to affect an input of the same component. That means the output of a component in any feedback composition depends on an input value that in turn depends on its own output value.

First, we introduce feedback interfaces for defining correspondences between outputs and inputs of components and only keeping both inputs and the outputs that are not involved in feedback.

Definition 1.4 (Feedback interface):

A feedback interface over an interface signature (I, O) is a triplet I = (f, π i , π o)
where f : I × O -→ I is a mapping, and π i :

I -→ I ′ and π o : O -→ O ′ are surjective mappings such that ∀(i, o) ∈ I × O, f (f (i, o), o) = f (i, o) and π i (i) = π i (f ((i, o))).
The mapping f specifies how components are linked and which parts of their interfaces are involved in the composition process. It finds the new value of the input that it is both a valid input and a valid output of the component, given its current state. Both mappings π i and π o can be thought as extensions of the hiding connective found in process calculi [START_REF] Hoare | Communicating Sequential Processes[END_REF].

The feedback operator 2 we consider here is synchronous. That means the reaction of a system takes no observable time [START_REF] Benveniste | The synchronous approach to reactive and real-time systems[END_REF] and its outputs are produced synchronously with its inputs. More precisely, at some reaction r, the output of component C in r must be available to its inputs in the same reaction r. The synchronous feedback requires then the existence of an instantaneous fix-point (i.e. defined at the same time and not deferred of one unit). This gives rise to the notion of well-formed feedback interface. Definition 1.5 (Well-formed feedback interface): Let C be a component over Σ = (I, O) and I = (f, π i , π o) be a feedback interface over Σ. We say that I is well-formed w.r.t C if, and only if for every state s ∈ S and every sequence of inputs x 1 , . . . , x n , there exists a sequence of outputs y 1 , . . . , y n such that for every j,

1 ≤ j < n, y j ∈ α(s)(f (x j , y j)) |1 .
We want to build a component that hides the feedback of a component C. As one can see in Figure 2, the feedback component I (C) is defined over the signature

(I ′ , O ′). The C πi f πo x(n) x ′ (n) y ′ (n) y(n) I (C)
Fig. 2: Feedback composite: I (C) outputs are then hidden from any state s that are fed back as inputs to s. The result is a component with input and output sets I ′ and O ′ respectively. This is done by means of the feedback interface I = (f, π i , π o). Let us suppose that the current state of C at the n th reaction is s n ∈ S and the current external input is x(n) ∈ I, then let us compute both new input

x ′ (n) ∈ I ′ and output y ′ (n) ∈ O ′ when C is triggered by x(n). First, by f , we compute the input x(n) = f (x(n), y(n)). Then, x (
′ = (S, init, α ′) over Σ ′ = (I ′ , O ′)
where α ′ the mapping defined for every s ∈ S and every i ′ ∈ I ′ by: α

′ (s)(i ′) = (o ′ , s ′)|∃(i, o) ∈ (I × O), (o, s ′) ∈ α(s)(f (i, o)), π i (i) = i ′ and π o (o) = o ′

Complex operators and systems:

As previously explained, from Cartesian product and feedback operators, we can build more complex ones by composition.

Definition 1.7 (Complex operator):

The set of complex operators, is inductively defined as follows:

• is a complex operator of arity 1;

• if op 1 and op 2 are complex operators of arity n 1 and n 2 respectively, then op 1 ⊗op 2 is a complex operator of arity n 1 + n 2 ; • if op is complex operator of arity n and I is a feedback interface, then I (op) is a complex operator of arity n.

In Example 1.2, as an example of a complex operator, we show how the sequential operator can be defined in our framework.

Example 1.2:

The sequential composition ⊲ of two components C 1 and C 2 corresponds to a composition where both components C 1 and C 2 are interconnected side-by-side and the output of one is the input of the other. This kind of composition can be naturally defined in our framework as follows:

⊲((C 1 , C 2)) = I ((C 1 ⊗ C 2))
where

I = (f, π i , π o) is the feedback interface defined ∀(i, i ′) ∈ I 1 × I 2 , ∀(o, o ′) ∈ O 1 × O 2 by: f ((i, i ′), (o, o ′)) = (i, o), π i ((i, i ′)) = i and π o ((o, o ′)) = o ′
Other standard operators have been also defined similarly in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] Complex operators will not be necessarily defined when applied to a sequence of components. Indeed, for a complex operator of the form I (op), according to the component C resulting from the evaluation of op, the interface I has to be defined over the signature of C and the feedback over C has to be well-formed. Hence, a system will be the component resulting from the evaluation of complex operators, from a sequence of components, when it is defined. Definition 1.8 (Systems): Let C be a set of components. The set of systems over C is inductively defined as follows:

• for any C ∈ C, a component over a signature Σ, (C) = C is a system over the signature Σ and is defined for C;

• if op 1 ⊗ op 2 is a complex operator of arity n = n 1 + n 2
then for every sequence (C

I (op) is undefined for (C 1 , . . . , C n).
We introduce the definition of a sub-system involved in a given system. This intuitively allows us to characterize the set of all basic sub-systems from which the global system can be built.

Definition 1.9 (Sub-systems): Let S = op(C 1 , . . . , C n) be a system over a signature Σ. The set of sub-systems of S, noted Sub(S), is inductively defined on the structure of op as follows:

• if op = , then Sub(S) = {S};

• if op = op 1 ⊗ op 2 with op 1 and op 2 of arity n 1 and n 2 respectively (i.e.

n = n 1 + n 2), then Sub(S) = {S} ∪ Sub(op 1 (C 1 , . . . , C n1)) ∪ Sub(op 2 (C n1+1 , . . . , C n)); • if op = I (op ′), then Sub(S) = {S} ∪ Sub(op ′ (C 1 , . . . , C n)).
Example 1.3: The system S to compute grade averages is obtained as a composition of G and C using our basic integration operators. Hence to define the system S, we first apply the Cartesian product ⊗((G, C)) to G and C over the signature Σ ⊗ = (I ⊗ , O ⊗) with: I ⊗ = ({mark, plus, average, nb} × {val, +, /}) and O ⊗ = ({val, screen, ⊥} × {⊥, res}). We can then see that:

• both outputs + and / of G are returned as inputs of C; • the output "res" of C is returned as input of G.

Then, we apply the synchronous feedback to ⊗((G, C)). This leads to the operator I over the interface signature I = (f, π i , π o) as follows:

f : I ⊗ × O ⊗ -→ I ⊗ ((i, i ′), (o, o ′)) → (i, o) if i ′ = o (i, i ′) otherwise π i : I ⊗ -→ I G ∪ I C (i, i ′) → i if i ′ ∈ O C i ′ otherwise π o : O ⊗ -→ O G ∪ O C (o, o ′) → o ′ if o ∈ I G o otherwise
3 Σ ′ is the signature of the synchronous feedback.

Applying I to ⊗((G, C)) leads to a new component I (⊗(G, C)) (see Figure 3) where all outputs of G (i.e +, / and val) that are fed back to C and the output "res" of G that is fed back to G are hidden (i.e. synchronized).

II. CONFORMANCE TESTING

Conformance testing theory is usually based on the comparison between the behavior of a specification and an implementation using a conformance relation. The goal of this relation is to specify what the conformance of an implementation is with respect to its specification. It has been shown that the input-output conformance relation cioco is the most suitable for testing our components [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF]. This relation distinguishes input and outputs actions, and requires that the implementation behaves according to a specification, but also allows behaviors on which the specification puts no constraint.

The specification spec of a component is the formal description of its behavior given by a component over a signature (I, O). On the contrary, its implementation iut is an executable component, which is considered as a black box [START_REF] Bernot | Testing Against Formal Specifications: A Theoretical View[END_REF], [START_REF] Tretmans | A Formal Approach to Conformance Testing[END_REF]. We interact with the implementation through its interface, by providing inputs to stimulate it and observing its behavior through its outputs. Hence, to be able to treat the implementation iut, we make the following two assumptions about it:

• The implementation iut can be modeled as a component (S, init, α) over the signature (I ′ , O ′) with I ⊆ I ′ to allow the implementation to accept all the inputs of the 4 specification and O ′ ⊆ O to allow the specification to accept all the responses of the implementation. • iut is input-enabled, i.e. at any state, it must produce answers for all inputs provided by the environment:

∀(s, i) ∈ S × I, ∃(o, s ′) ∈ O × S such that (o, s ′) ∈ α(s)(i)
The conformance relation that we will call here cioco 5 is a slight adaptation of the standard relation ioco [START_REF] Tretmans | Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation[END_REF]. When the Out(spec after (tr, i)) is empty, that ensures the quiescence notion introduced by Tretmans in [START_REF] Tretmans | Test Generation with Inputs, Outputs and Repetitive Quiescence[END_REF].

Similarly to [START_REF] Van Der Bijl | Compositional Testing with ioco[END_REF], we studied in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] compositionality properties for cioco over integration operators defined in Section I-B. We then proved the following theorem:

Theorem 2.1 (Compositionality [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF]): Let op be a complex operator of arity n. Let iut 1 , . . . , iut n , spec 1 , . . . , spec n be input-enabled components such that ∀i, 1

≤ i ≤ n, iut i cioco spec i , then one has op(iut 1 , . . . , iut n) cioco op(spec 1 , . . . , spec n).
That means if single components of a system conform to their specifications, the whole system built over our integration operators is in accordance with its specification, unless the specification model is input-enabled. Such a testing compositionality result theory provides a way to test the integrated system only by testing its sub-systems i.e. there is no need to re-test its conformance correction. Hence, once this property is verified, the correctness of the integrated system is obtained from the correctness of the individual components. To test the integrated system, it is not necessary to consider it as a whole, but it is enough to consider its sub-systems and test them separately. Indeed, the contraposition of this property is the following:

¬ op(iut 1 , . . . , iut n) cioco op(spec 1 , . . . , spec n) =⇒ ∃i, 1 ≤ i ≤ n, ¬(iut i cioco spec i)
Thus, by looking at this new property, we can easily see that non-correctness of the integrated system under test op(iut 1 , . . . , iut n) implies that at least one of its components iut 1 , . . . , iut n is incorrect. In other words, that means to test op(iut 1 , . . . , iut n), it suffices to test iut 1 , . . . , iut n in isolation.

In the sequel, we will show how to improve significantly the result obtained in Theorem 2.1 by taking into account the global system in which components are plug in. This will be achieved by using projection mechanisms.

III. PROJECTION AND TEST PURPOSES

A. Projection and compositionality

Projection techniques [START_REF] Faivre | Symbolic Model Based Testing for Component Oriented Systems[END_REF] are defined by pruning from any global behavior p, all that does not concern the sub-system that we want to test. This will allows us to generate more relevant unit test cases to test individual components. As an illustration, let us again consider the system that computes grade averages (see Example 1.3). According to the result obtained in Theorem 2.1, to test the grade average system, it suffices to test separately the calculator C and the controller G. Now, testing the calculator C separately may lead to the consideration of test cases involving arithmetic operations which are irrelevant to computing student grade averages such as subtraction or multiplication. This may cause test cases of interest to the system to be missed, i.e. test cases only bringing into play addition and division for grades ranging from 0 to 20. In the approach we propose in the following, we intend to generate a test purpose that guides the test derivation process of C by only testing operations needed to compute grade averages. We do this by making a projection of this behavior on calculator component C. Definition 3.1 (Projection): Let S = op(C 1 , . . . , C n) be a system over (I, O). Let sub ∈ Sub(S) be a sub-system of S over (I ′ , O ′). Let tr = i 1 |o 1 , . . . , i m |o m ∈ T race(S). The projection of tr on sub, denoted by tr ↓ sub , is the subset of T race(sub) inductively defined as follows:

• if op = , then tr ↓ sub = {tr};

• if op = op 1 ⊗ op 2 with op 1 and op 2 of arity n 1 and n 2 respectively (i.e. n = n 1 + n 2), then 6 :

tr ↓ sub =          is the projection of i 1| 1 |o 1| 1 , . . . , i m| 1 |o m| 1 on sub if sub ∈ Sub(op 1 (C 1 , . . . , C n1))
is the projection of i 1| 2 |o 1| 2 , . . . , i m| 2 |o m| 2 on sub otherwise

• if op = I (op ′) with I = (f, π i , π o), then tr ↓ sub = tr ′ ∈tr ↓ S ′ tr ′ ↓ sub where -S ′ = op ′ (C 1 , . . . , C n) -and tr ↓ S ′ = i ′ 1 |o ′ 1 , . . . , i ′ m |o ′ m | ∀j, 1 ≤ j ≤ m, ∃s j ∈ S ′ , o ′ j ∈ α S ′ (s j)(f (i ′ j , o ′ j)) |1 , i j = π i (i ′ j) and o j = π o (o ′ j)
We then introduce the projection of a system on a one of its sub-systems.

Definition 3.2 (Component in context):

Let S be a system over (I, O) and sub ∈ Sub(S) be a subsystem of S over (I ′ , O ′). The component obtained by projecting S on sub, noted S ↓ sub is the triplet (S, s 0 , α) defined by:

• s 0 =
• S is the whole set of finite traces defined as follows:

-

s 0 = { } -∀j, 1 ≤ j ≤ n, s j = {tr ′ . i|o | ∃tr ′ ∈ s j-1 , ∃i ∈ I ′ , ∃o ∈ O ′ , ∃tr ∈ T race(S)such that tr ′ . i|o ∈ tr ↓ sub Hence, S = 0≤j≤ω s i • α : S ×I ′ -→ P(O ′ ×S)
is the mapping which for every i 0 |o 0 , . . . , i m |o m ∈ S and every input i ∈ I ′ associates the set:

Π = {(o, i 0 |o 0 , . . . , i m |o m , i|o) | ∃o ∈ O ′ , ∃tr ∈ T race(S) such that i 0 |o 0 , . . . , i m |o m , i|o ∈ tr ↓ sub } 6 a | i is the projection of the n-tuple a on i th argument.
It is easy to see that the traces of the component S ↓ sub obtained by projection is a subset of the traces of the component sub itself. Such projected traces will be the cornerstone to improve the compositionality result presented in Theorem 2.1 and to define test purposes dedicated to test components separately while taking into account the behavior of the global system.

Theorem 3.1 (Compositionality with projection): Let op be a complex operator of arity n. Let iut 1 , . . . , iut n be inputenabled implementations and spec 1 , . . . , spec n their specifications respectively. Then, one has ∀i,

1 ≤ i ≤ n (iut 1 cioco op(spec 1 , . . . , spec n) ↓spec 1), . . . , (iut n cioco op(spec 1 , . . . , spec n) ↓spec n) =⇒ op(iut 1 , . . . , iut n) cioco op(spec 1 , . . . , spec n)
Proof: Sketch of the proof This is proven by structural induction on the integration operator op. The main difficulty is to prove the property preservation over both Cartesian product and feedback operator. Then, we need the following two theorems:

Theorem 3.2 (Compositionality for Cartesian product):

Let C 1 and C ′ 1 be two components over (I 1 , O 1), and C 2 and C ′ 2 be two components over (I 2 , O 2). Then, we have:

C 1 cioco ⊗ ((C ′ 1 , C ′ 2)) ↓ C ′ 1 C 2 cioco ⊗ ((C ′ 1 , C ′ 2)) ↓ C ′ 2 =⇒ ⊗((C 1 , C 2)) cioco ⊗((C ′ 1 , C ′ 2))
Theorem 3.3 (Compositionality for feedback operator): Let Σ = (I, O) be a signature and I = (f, π i , π o) be a feedback interface. Let C 1 = (S 1 , α 1) and C 2 = (S 2 , α 2) be two components over Σ. Then, we have:

C 1 cioco I (C 2) ↓ C 2 =⇒ I (C 1) cioco I (C 2)
The proof of both theorems 3.2 and Theorem 3.3 is given in Appendix.

Theorem 3.1 then provides a way to test the integrated system only by testing the projection of that system on its subsystems. As a consequence, to test the integrated system, it is not necessary to consider it as a whole, but it is enough to consider the projection of that system on its sub-systems (which may be done at different development steps and eventually developed by different teams) and test them separately.

Comparing this result with our previous result presented in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] or Tretmans's result [START_REF] Van Der Bijl | Compositional Testing with ioco[END_REF], the new result does not require that the specifications are input-enabled. This last property is often hard to get in practice due to the fact that system input domains are usually too large.

B. Test purpose

A specification model usually contains a growth of exponential states which makes the testing process difficult even impossible to be implemented. To cope with this problem, test purposes can be used. A test purpose is a description of the part of the specification that we want to test and for which test cases are later generated. In [START_REF] Jard | TGV: theory, principles and algorithms[END_REF], they are described independently of the model of the specification. In [START_REF] Gaston | Symbolic Execution Techniques for Test Purpose Definition[END_REF], they are deduced from the specification by construction. In order to guide the test derivation process in our approach, we have preferred, as in [START_REF] Gaston | Symbolic Execution Techniques for Test Purpose Definition[END_REF], to describe test purposes by selecting the part of the specification that we want to explore. We therefore consider a test purpose as a tagged finite computation (FCT) tree of the specification. The leaves of the FCT which correspond to paths that we want to test are tagged accept. All internal nodes on such paths are tagged skip, and all other nodes are tagged ⊙. Formally, FCT is defined as follows:

Definition 3.3 (Finite computation tree of component):

Let (S, s 0 , α) be a component over (I, O). The finite computation tree of depth n of C, noted F CT (C, n), is the triplet (S F CT , s 0 F CT , α F CT) defined by:

• S F CT is the whole set of C-paths. A C-path is defined by two finite sequences of states and inputs (s 0 , . . . , s n) and (i 0 , . . . , i n-1) such that:

∀j, 1 ≤ j ≤ n, s j ∈ α(s j-1)(i j-1) |2 • s 0 F CT is the initial C-path s 0 , () • α F CT
is the mapping which for every C-path (s 0 , . . . , s n), (i 0 , . . . , i n-1) and every input i ∈ I associates the set: Γ = {(o, (s 0 , . . . , s n , s ′), (i 0 , . . . , i n-1 , i)

) | (o, s ′) ∈ α(s n)(i)}
In this definition, S F CT is the set of the nodes of the tree and s 0 F CT its root. Each node is represented by the unique C-path (s 0 , . . . , s n), (i 0 , . . . , i n-1) which leads to it from the root. α F CT gives, for each node p and for each input i, the set of nodes Γ that can be reached from p when the input i is submitted to C.

We intend in the following to extend the notion of test purpose proposed in [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] to test purpose in context. This latter allows us to test, from a global behavior of a system, the behavior of its involved sub-systems and then guide the component testing intelligently by taking into account the way components are used in systems. Thus, taking a behavior p of a system S, we intend to define test purposes that are able to test the behavior p i of each sub-system S i ∈ Sub(S). We identify therefore for each sub-system all its finite paths that are involved in constructing the whole behavior of S. Definition 3.4 (Test purpose in context): Let S be a system over (I, O). Let sub ∈ Sub(S) be a sub-system of S and sub ′ = S ↓ sub the projection of S on sub. Let F CT (sub, n) = (S, s 0 , α) be the finite computation tree of sub. A test purpose in context T P for sub is a mapping T P : S F CT -→ {accept, skip, ⊙} such that:

• for every node p = i 0 |o 0 , . . . , i m |o m ∈ T race(sub ′), T P (p) = accept;

• if T P (i 0 |o 0 , . . . , i m |o m) = accept, then: ∀j, 0 ≤ j ≤ m, T P (i 0 |o 0 , . . . , i j-1 |o j-1)) = skip • T P () = skip • if T P (i 0 |o 0 , . . . , i k |o k)) = ⊙, then: T P (i 0 |o 0 , . . . , i k |o k , i ′ k+1 |o ′ k+1 , . . . , i ′ k ′ |o ′ k ′)) = ⊙ for all k < k ′ ≤ n and for all (i ′ l) k≤l<n ∈ I ′ and (o ′ l) k≤l<n ∈ O ′ .
In order to build a test purpose for a subsystem sub, we identify all finite paths of its finite computation tree FCT whose traces embody traces in T race(sub ′) and we tag them with accept. We then tag every node which represents a prefix of an accepted behavior with skip. The other nodes, which lead to behaviors that we do not want to test, are tagged with ⊙.

Example 3.2:

In this example, we intend to build a test purpose dedicated to test the behavior of the calculator component C in the context of the system computing grade averages. To do so, we first build the finite computation tree F CT (C, 4) of C that we present in Figure 5. Second, each state of F CT (C, 4) reachable after each trace tr of the projection 3) is tagged with accept. Then, p 9 and p 11 are only tagged with accept. All nodes leading from the root init to p 9 or p 11 are tagged with skip (i.e p 1 , p 3 , p 5 and p 7). Finally, all other states are tagged with ⊙.

I (⊗(G, C)) ↓ C of I (⊗(G, C)) on C (see Figure
Thus, testing of C is re-enforced as far as student grade averages computing is concerned: only behaviors related to grade average computing are chosen and then the behaviors of C that are not activated in the global system I (⊗(G, C)) are not tested. This allows us to restrict the test domain to the one under consideration.

Finally, we use the algorithm developed in Algorithm 1 to generate correct and sound test cases. Given an implementation iut of a subsystem sub of a system S and the test purpose init = q0, () , p 0 = (q 0 , q 1), (val) , p 1 = (q 0 , q 1 , q 2), (+) , p 2 = (q 0 , q 1 , q 2), (*) , p 3 = (q 0 , q 1 , q 2), (/) p 4 = (q 0 , q 1 , q 2), (-) , p 5 = (q 0 , q 1 , q 2 , q 3), (+, val) p 6 = (q 0 , q 1 , q 2 , q 3), (* , val) , p 7 = (q 0 , q 1 , q 2 , q 3), (/, val) p 8 = (q 0 , q 1 , q 2 , q 3), (-, val) , p 9 = (q 0 , q 1 , q 2 , q 3 , q 4), (+, val, ⊥) p 10 = (q 0 , q 1 , q 2 , q 3 , q 4), (* , val, ⊥) p 11 = (q 0 , q 1 , q 2 , q 3 , q 4), (/, val, ⊥) p 12 = (q 0 , q 1 , q 2 , q 3 , q 4), (-, val, ⊥) Fig. 5: Test purpose of the calculator component T P for sub generated from S, we want to test the conformance of the iut to the test purpose T P . We start from the root of T P , we choose a possible input i and submit it to the iut. We observe the outputs o and compare them with the possible outputs in T P . If the outputs do not match the ones specified in T P , the verdict of the test is FAIL. Otherwise, if at least one of the nodes which can be reached with i|o is tagged skip in T P , the test goes on. If the nodes are tagged ⊙, further behavior is not of interest, so the test is inconclusive (INCONC verdict). If one of the nodes is tagged accept, the test succeeds (PASS verdict). It may happen, due to the non-determinism of the specification, that the implementation behaved correctly, but we cannot determine if we reached an accept state or an ⊙ state. This leads to a WeakPASS verdict.

IV. CONCLUSION

This paper extends our previous work [START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] which defines a generic testing conformance theory. We have proposed an approach to test components that are typically involved in the whole system by defining test purposes from the global behaviour of the whole system. Such test purposes are given in a accurate way by defining a projection mechanism taking a global behaviour p of the whole system and keeping only the part of p being activated in the sub-system that we want to input : a test purpose T P : F CT = (S, s 0 , α) -→ {accept, skip, ⊙} and an implementation iut output: a test case [i 0 |o 0 , i

Definition 1 . 1 (

 11 Component): Let I and O be two sets denoting, respectively, the input and output domains. A component C over (I, O) is a triplet (S, init, α) where: • S is the set of states of C; • init ∈ S is a distinguished element denoting the initial state of C; • α : S × I -→ P(O × S) is the transition function.

Fig. 1 :

 1 Fig. 1: Grade averages system as a composition of the graphical interface and the calculator

Fig. 3 :

 3 Fig. 3: Component I (⊗(G, C))

Definition 2 . 1 :

 21 (cioco) Let spec, iut be two components over (I, O) and (I ′ , O ′) respectively such that I ⊆ I ′ , O ′ ⊆ O and iut is input-enabled. iut is in conformance with spec, noted iut cioco spec, if and only if ∀tr ∈ T race(spec), ∀i ∈ I, Out(iut after (tr, i)) ⊆ Out(spec after (tr, i)) 4 I and O are the input and output sets of the specification respectively. 5 c for component where for any component C, any finite trace tr, and any input i of C, Out(C after (tr, i)) is the set {o | tr. i|o ∈ T race(C)}

Example 3 . 1 :Fig. 4 :

 314 Fig. 4: The projection I ((G, C)) ↓ C of I ((G, C)) on the calculator C

 Let I = (f, π i , π o) be a feedback interface over Σ = (I, O). Let C = (S, init, α) be a component over Σ such that I is well-formed w.r.t C. I (C), the synchronous feedback over I, is the component C

n) becomes the new input of C. Indeed, component C reacts by updating its state to s n+1 and producing an output y(n) (such a y(n) exists since I is well-formed w.r.t C). Second, by means of π i and π o , we hide both input and output involved in the feedback, and then produce the input x ′ (n) = π i (x(n)) and the output y ′ (n) = π o (y(n)) of the feedback component Definition 1.6 (Synchronous feedback):

 op 1 (C 1 , . . . , C n1) ⊗ op 2 (C n1+1 , . . . , C n) is a system over Σ = () and op 1 ⊗ op 2 is defined for (C 1 , . . . , C n), else op 1 ⊗ op 2 is undefined for (C 1 , . . . , C n); • if I (op)is a complex operator of arity n, then for every sequence (C 1 , . . . , C n) of components in C, if op is defined for (C 1 , . . . , C n) with S = op(C 1 , . . . , C n) is over Σ, I is a feedback interface over Σ and I is well-formed w.r.t S, then I (op)(C 1 , . . . , C n) = I (S) is a system over Σ ′ and 3 I (op) is defined for (C 1 , . . . , C n), else

	n i=1 I i ,

1 , C 2 , . . . , C n1 , C n1+1 , . . . , C n) of components in C with each C i over Σ i = (I i , O i), if

both op 1 and op 2 are defined for C 1 , C 2 , . . . , C n1 and C n1+1 , . . . , C n respectively, then op 1 ⊗op 2 (C 1 , . . . , C n) = n i=1 O i

 1 |o 1 , . . . , i n |o n , verdict] Preliminaries; N ext(CS, i|o) returns the set of directly reachable states from the current set of states CS after executing i|o; N extSkip(CS, i|o) returns the set of states in N ext(CS, i|o) which are labeled by skip; N extP ass(CS, i|o) returns the set of states in N ext(CS, i|o) which are labeled by accept; initialization ; i ← ChooseInputFrom({i | α(s 0)(i) is defined}); o ← ReactionOf(iut, i); CS ← {s} // set of explored states; T C ← [] // initialization of the test case; //sending stimuli to iut and waiting for its output as long as a verdict is not reached while N extSkip(CS, i|o) = ∅ and N extP ass(CS, i|o) = ∅ do T C ← Concatenate(T C, i|o); CS ← N ext(CS, i|o) i ← ChooseInputFrom(i | i ∈ Concatenate(T C, i|o); // the emission from the iut is not expected with regards to the specification if N ext(CS, i|o) = ∅ then T C ← Concatenate(T C, FAIL); end // the emission from the iut is specified, but not compatible with the test purpose if N ext(CS, i|o) = ∅ and N extSkip(CS, i|o) = N extP ass(CS, i|o) = ∅ then T C ← Concatenate(T C, INCONC); end // all next states directly reachable from the set of current set are accept ones if N ext(CS, i|o) = N extP ass(CS, i|o) and N ext(CS, i|o) = ∅ then T C ← Concatenate(T C, PASS); end // some of the next states are labeled by accept, but not all of them if N extP ass(CS, i|o) ⊂ N ext(CS, i|o) and N extP ass(CS, i|o) = ∅ then T C ← Concatenate(T C, WeakPASS); end return T C; Algorithm 1: Test generation algorithm test. Thus, our method for generating test purposes from the global system specification helps to generate relevant unit test cases to test individual components. June 11, 2012

s∈CS {i | α(s)(i) is defined); o ← ReactionOf(iut, i); end T C ←

Actually, a slight extension of this relation to our components called cioco in[START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF] (see Definition

2.1 in this paper).

I (C).2 There is another kind of feedback called relaxed feedback. Interested readers may refer to[START_REF] Aiguier | A formal abstract framework for modeling and testing complex software systems[END_REF].

V. APPENDIX

Proof: Compositionality for synchronous feedback (Theorem 3.3) We first need to prove the following lemma:

Lemma 5.1: Consider two components C 1 and C 2 , then we have:

Proof: Let us prove this point by induction on the structure of a trace tr in T race(I (C 1)) ∩ T race(I (C 2)). Let tr = i 1 |o 1 , i 2 |o 2 , . . . , i n |o n .

• Basic Step: tr = is empty trace.

tr ↓ C 2 = { } ⊆ tr ↓ C 1 = { } trivially holds.

• Induction Step: Let us write tr as concatenation of two finite traces:

then according to the definition of tr ↓ C 2 , there exists a finite sequence of states s 0 , . . . , s n of S 2 such that ∀j, 1 ≤ j ≤ n:

-

, then according to the definition of tr ↓ C 1 , there exists a finite sequence of states

Let us now prove Theorem 3.3. Let C 1 and C 2 be two components over (I, O), and I (C 1) and

Then, let us prove that

of all inputs enabling in C 1 after projecting the trace tr. i n+1 |o n+1 on C 1 . Since, tr ↓ C 2 ⊆ tr ↓ C 1 (By Lemma 5.1), we can extract from X the set:

} of all inputs enabling in C 1 after the traces obtained by projecting tr on C 2 .

In the same manner, let us define the set

of all inputs enabling in C 2 after projecting the trace tr on C 2 .

By construction of Y and Z, we have that Z ⊆ Y . Since

, then for every σ ∈ tr ↓ C 2 and for every i ∈ Z,

then by the projection definition, one has

By (1), (2) and the definition of tr. i n+1 |o n+1 ↓ C 2 , we can conclude that Φ = tr. i n+1 |o n+1 ↓ C 2 . Thus tr. i n+1 |o n+1 ∈ T race(I (C 2)). consequently, o n+1 ∈ Out(I (C 2) after (tr, i n+1)).

Proof: Compositionality for Cartesian product (Theorem 3.2) Let us assume that

). Let us use the contradiction principle. For this, let us assume that

i.e that there exists a finite trace tr

the outputs obtained after executing (tr, (i, i ′)) on ⊗((C 1 , C 2)) not belonging to the ones obtained after executing (tr, (i, i

According to the definition of the cartesian product, it is easy to show that the two traces:

and

are respectively the traces involved in C 1 and C 2 to obtain tr.

We also know by the projection definition (see Definition 3.2) that tr 1 ∈ T race(⊗((

)) after (tr, (i, i ′))) and tr is composed of tr 1 and tr 2 , then o ∈ Out(C 1 after (tr 1 , i)) and o ′ ∈ Out(C 2 after (tr 2 , i ′)).

)) after (tr, (i, i ′))) and tr 1 and tr 2 are involved to obtain tr. Hence, there exists a trace). Hence, we have a contradiction with our hypothesis.