
HAL Id: hal-00782889
https://centralesupelec.hal.science/hal-00782889v1

Submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing of component-based systems
Marc Aiguier, Bilal Kanso, Frédéric Boulanger, Christophe Gaston

To cite this version:
Marc Aiguier, Bilal Kanso, Frédéric Boulanger, Christophe Gaston. Testing of component-based
systems. 19th Asia-Pacific Software Engineering Conference APSEC’12, Dec 2012, Hong-Kong, Hong
Kong SAR China. pp.1-6. �hal-00782889�

https://centralesupelec.hal.science/hal-00782889v1
https://hal.archives-ouvertes.fr

Testing of component-based systems

Bilal Kanso

École Centrale Paris

Grande Voie des Vignes

F-92295 Châtenay-Malabry

bilal.kanso@ecp.fr

Marc Aiguier

École Centrale Paris

Grande Voie des Vignes

F-92295 Châtenay-Malabry

marc.aiguier@ecp.fr

Fréderic Boulanger

Supelec E3S

3 rue Joliot-Curie

F-91192 Gif-sur-Yvette cedex

frederic.boulanger@supelec.fr

Christophe Gaston

CEA LIST Saclay

F-91191 Gif-sur-Yvette cedex

christophe.gaston@cea.fr

Abstract—In this paper, we pursue our works on generic
modeling and conformance testing of component-based systems.
Here, we extend our theory of conformance testing to the testing
of component-based systems. We first show that testing a global
system can be done by testing its components thanks to the
projection of global behaviors onto local ones. Secondly, based
on our projection techniques, we define a framework to build
adequate test purposes automatically for testing components in
the context of the global system where they are plugged in. The
underlying idea is to identify from any trace tr of the global
system, the trace of any component involved in tr. Those projected
traces can be then seen as test cases that should be tested on
individual components.

Keywords: Component-based system, Conformance testing, Com-
positional testing, Testing in context, Projection, Test purpose.

INTRODUCTION

In the last decades, the component-based software ap-

proach [1], [2] has emerged due to the great advantages it

offers: modularity, re-usability, cost-effective solution. Com-

ponents are then designed, developed and validated in order to

be widely used, while complex software systems are described

recursively, at a higher level of abstraction, as interconnections

of those components. Hence, each sub-system (or component)

can be either a complex system itself or a simple component,

elementary enough to be handled without further decompo-

sition. Composition is used for fitting different components

together and then defining larger systems. Such a composition

is defined by operations which take components as well as the

nature of their interactions to provide a description of a new

and more complex component or system.

In [3], we proposed a formal framework for modeling basic

components viewed as abstract state-based systems. Compo-

nents were then modeled as coalgebras over sets-endofunctor

with monads [4], [5] following Barbosa’s component defi-

nition [6], [7]. Monads enabled us to generically consider

a wide range of computation structures such as partiality,

non-determinism, etc. [5], and then to define components

independently of any computation structure. This definition

allowed us to unify in a same framework a large family

of state-based formalisms such as Mealy automata [9], [8],

Labeled Transition Systems [10], Input-Output Labeled Tran-

sition Systems [14], [11], etc. Larger systems are then built

by integrating components from integration operators defined

by composition of two basic ones: Cartesian product and

feedback. In [3], we showed that most standard integration

operators such as sequential and concurrent composition or

synchronous product are subsumed by our generic definition of

integration operators. Based on this framework, a conformance

testing theory has been defined in [3].

The ”plug and play” nature of component-based system

design leads naturally to build always bigger systems whose

correctness happens to be more and more difficult to assert.

This is of course due to the fact that analyzing big systems

generates state and time explosion problems, but it may also

be caused by the system architecture (e.g. distributed system)

which may complicate the ability to instrument the system in

order to observe behaviors to be analyzed. Even more, if a

”faulty” behavior is observed in such a system, the size of the

system is a problem to identify the cause of the fault at the

debugging phase.

All these reasons call to find ways to make system val-

idation modular. Such methods enable to analyze a system,

subsystems per subsystems, in a modular way, rather than ”as

a whole”. Analyzed such systems are smaller (less prone to

generate explosion problems), more observable and control-

lable (thus their behaviors are easier to cover), and debugging

is greatly facilitated.

Compositional testing [15], [20], [22] is viewed as one of

the most promising directions to bridge the gap between the

increasing complexity of systems and actual testing method

limits due to the reasons discussed above. Similarly to com-

positinality result in [20] establishing under certain hypothesis

that the conformance testing relation ioco is compositional

with respect to parallel composition and hiding, we have

established a compositinality result in [3]. This result expresses

that for the conformance relation ioco1 and n implementations

and specifications iuti and speci, 1 ≤ i ≤ n, each one modeled

by a component as defined in [3], if for each i, 1 ≤ i ≤ n,

iuti ioco speci, then for any integration operator of arity n (see

Definition 1.7), op(iut1, . . . , iutn) ioco op(spec1, . . . , specn).
The compositinality result obtained in [3] is thus an extension

of Tretmans’s result [20] since it is established independently

of a given integration operator.

This result justifies the approach that consists in testing

separately the components of a system in order to build the

1Actually, a slight extension of this relation to our components called cioco

in [3] (see Definition 2.1 in this paper).

correctness of the global system. However, it turns out that in

practice, such an integration theory is not enough. Such a result

does not help to choose test purposes that are meaningful.

Indeed each iuti(i≤n)
is tested with respect to its specification

speci(i≤n)
, but since testing means selecting a finite number

of executions (test cases) to evaluate the conformance, the

question is then how to build a meaningful set of executions?

Following approaches in [20] and [3] which are dedicated to

model-based testing, we propose to extract test cases from

specification. However, speci, standing alone, does not contain

enough explanation to know how iuti will be used in the

context of the whole system. This usage is in the end the

only aspect that matters at test selection phases since all

behaviors reflecting a non-conformance between iuti and speci
which are never activated in the context of the whole system

op(iut1, . . . , iutn), will by definition never cause a fault at

the system level. For example, if a system uses a calculator

component to invoke only addition, then the component may

well be ”faulty” for multiplication; this will not cause a fault

at the system level. Even more, wasting time to test such

behaviors reduces the time and resources to test behaviors

of the component that will be activated in the frame of the

system. This may have dramatically harmful consequences.

For example, the disaster of Ariane 5 in 1996 is caused by the

absence of testing in context of a software component which

was only tested for Ariane 4. We will give in this paper, a new

compositinality result that will take into account the behavior

of global system in which components are plugged in. This last

result is inspired from the approach proposed in [15], initially

developed in the setting of IOSTS (symbolic automaton).

In [15], only projection is defined, but no compositinality

result is given.

Based on this result, we will then propose a technique that

strengthens testing of each component involved in a global

system, by choosing suitable test purposes for them. This

will be done by defining a projection mechanism that, from

global behaviors of a system, will help generating test purposes

capturing the behaviors of the sub-systems, that typically occur

in the context of the whole system.

The paper is structured as follows: Section I recalls our

framework for modeling components and systems. Section II

introduces the conformance testing theory and discusses its

main limitation for the validation of complex software sys-

tems. Section III presents the compositinality result and shows

how components can be tested while taking the system to

which they belong into account.

I. COMPONENTS AND SYSTEMS

A. Components

In [3], a component is defined as a generalized Mealy

automaton in which the dependence between outputs and both

current state and inputs is relaxed from a strict deterministic,

to encompass more complex behaviors such as partiality, non

determinism, etc. Components are defined using terminology

and notations of coalgebras [24] and monads [4]. Hence,

a component in [3] is a coalgebra (S, α) over a signature

T (O ×)I : Set −→ Set where T is a monad. The monads

have been introduced because they allow us to generically

consider many computation situations such as determinism,

non-determinism, partiality, etc. (see [3], [5] for more expla-

nations).

Here, to make easier the readability of the paper, we restrict

ourself to a particular case when T stands for the powerset

monad P . The generalization to any monad T does not raise

any difficulties.

Definition 1.1 (Component): Let I and O be two sets de-

noting, respectively, the input and output domains. A compo-

nent C over (I,O) is a triplet (S, init, α) where:

• S is the set of states of C;

• init ∈ S is a distinguished element denoting the initial

state of C;

• α : S × I −→ P(O × S) is the transition function.

Example 1.1: To illustrate our approach, we will consider

in this paper a simple system S that computes grade averages

presented in Figure 1. This system S is built from two basic

components: a ”graphical interface” that helps the user to make

various operations on grades and a ”calculator” that receives

operation commands from the user, performs the requested

operation, and reports back to the user.

s0

s1

s2 s3

s4 s5

mark|val

plus|+ average|/mark|val nb|val

res|screen res|screen

q0

q1q3

q2

val |⊥

−, ∗,+, /|⊥val|⊥

⊥|res

+ / val res

mark plus average screen nb

− ∗

Fig. 1: Grade averages system as a composition of the graph-

ical interface and the calculator

In our framework, the graphical interface is modeled as

the component G = ({s0, s1, s2, s3, s4, s5}, s0, α1) over the

signature

Σ1 = ({mark, plus, average, nb, res}, {+, /, screen, val})

and the calculator as the component C =
({q0, q1, q2, q3}, q0, α2) over the signature

Σ2 = ({+, ∗,−, /}, {res,⊥})

α1 (resp. α2) is depicted in the box at the top side (resp.

bottom side) of Figure 1.

The semantics of a component is characterized by the set

of finite sequences of couples (input|output), that is illustrated

by the following definition:

Definition 1.2 (Component finite traces): The finite trace

from a state s of a component C, noted TraceC(s),
is the whole set of the finite input-output sequences

〈i0|o0, . . . , in|on〉 such that there exists a finite sequence

(s0, . . . , sn+1) ∈ S∗ of states where for every j, 0 ≤ j ≤
n, (oj , sj+1) ∈ α(sj)(ij) with s0 = s.

Hence, the set of traces of C, noted Trace(C), is the set

TraceC(init).

In the following, we note α(s)(i)|1 (resp. α(s)(i)|2) the set

composed of all first arguments (resp. second arguments) of

couples in α(s)(i).

B. Systems

Larger systems are built by composition from two basic

operators: Cartesian product and feedback.

Cartesian product: The cartesian product is a composi-

tion where both components are executed simultaneously when

triggered by a pair of input values.

Definition 1.3 (Cartesian product ⊗): Let C1 =
(S1, init1, α1) and C2 = (S2, init2, α2) be two components

over (I1, O1) and (I2, O2) respectively. C1 ⊗ C2, the

cartesian product of C1 and C2, is the component

(S1 × S2, (init1, init2), α) over (I1 × I2) × (O1 × O2)
where α is the mapping defined for every (i1, i2) ∈ I1 × I2
and every (s1, s2) ∈ S by:

α((s1, s2))((i1, i2)) =
{

((o1, o2), (s
′
1, s

′
2))|(ok, s

′
k) ∈

α(sk)(ik) for k = 1, 2
}

Feedback: The concept of feedback composition is intrin-

sic in dynamic system modeling in control theory [16], [17].

Here, we fit it to discrete systems. A component with feedback

has directed cycles, where an output from a component is fed

back to affect an input of the same component. That means the

output of a component in any feedback composition depends

on an input value that in turn depends on its own output value.

First, we introduce feedback interfaces for defining corre-

spondences between outputs and inputs of components and

only keeping both inputs and the outputs that are not involved

in feedback.

Definition 1.4 (Feedback interface): A feedback interface

over an interface signature (I,O) is a triplet I = (f, πi, πo)

where f : I × O −→ I is a mapping, and πi : I −→ I ′ and

πo : O −→ O′ are surjective mappings such that ∀(i, o) ∈
I ×O, f(f(i, o), o) = f(i, o) and πi(i) = πi(f((i, o))).

The mapping f specifies how components are linked and

which parts of their interfaces are involved in the composition

process. It finds the new value of the input that it is both a valid

input and a valid output of the component, given its current

state. Both mappings πi and πo can be thought as extensions

of the hiding connective found in process calculi [19].

The feedback operator2 we consider here is synchronous.

That means the reaction of a system takes no observable

time [18] and its outputs are produced synchronously with

its inputs. More precisely, at some reaction r, the output

of component C in r must be available to its inputs in the

same reaction r. The synchronous feedback requires then the

existence of an instantaneous fix-point (i.e. defined at the same

time and not deferred of one unit). This gives rise to the notion

of well-formed feedback interface.

Definition 1.5 (Well-formed feedback interface): Let C be a

component over Σ = (I,O) and I = (f, πi, πo) be a feedback

interface over Σ. We say that I is well-formed w.r.t C if, and

only if for every state s ∈ S and every sequence of inputs

x1, . . . , xn, there exists a sequence of outputs y1, . . . , yn such

that for every j, 1 ≤ j < n, yj ∈ α(s)(f(xj , yj))|1 .

We want to build a component that hides the feedback of

a component C. As one can see in Figure 2, the feedback

component 	I(C) is defined over the signature (I ′, O′). The

Cπif πox(n)x′(n) y′(n)

y(n)

	I(C)

Fig. 2: Feedback composite: 	I(C)

outputs are then hidden from any state s that are fed back as

inputs to s. The result is a component with input and output

sets I ′ and O′ respectively. This is done by means of the

feedback interface I = (f, πi, πo). Let us suppose that the

current state of C at the nth reaction is sn ∈ S and the current

external input is x(n) ∈ I , then let us compute both new input

x′(n) ∈ I ′ and output y′(n) ∈ O′ when C is triggered by x(n).
First, by f , we compute the input x̄(n) = f(x(n), y(n)). Then,

x̄(n) becomes the new input of C. Indeed, component C reacts

by updating its state to sn+1 and producing an output y(n)
(such a y(n) exists since I is well-formed w.r.t C). Second, by

means of πi and πo, we hide both input and output involved

in the feedback, and then produce the input x′(n) = πi(x(n))
and the output y′(n) = πo(y(n)) of the feedback component

	I(C).

2There is another kind of feedback called relaxed feedback. Interested
readers may refer to [3].

Definition 1.6 (Synchronous feedback): Let

I = (f, πi, πo) be a feedback interface over Σ = (I,O).
Let C = (S, init, α) be a component over Σ such that I is

well-formed w.r.t C. 	I(C), the synchronous feedback over

I, is the component C′ = (S, init, α′) over Σ′ = (I ′, O′)
where α′ the mapping defined for every s ∈ S and every

i′ ∈ I ′ by: α′(s)(i′) =
{

(o′, s′)|∃(i, o) ∈ (I × O), (o, s′) ∈
α(s)(f(i, o)), πi(i) = i′ and πo(o) = o′

}

Complex operators and systems:

As previously explained, from Cartesian product and feedback

operators, we can build more complex ones by composition.

Definition 1.7 (Complex operator): The set of complex

operators, is inductively defined as follows:

• is a complex operator of arity 1;

• if op1 and op2 are complex operators of arity n1 and n2

respectively, then op1⊗op2 is a complex operator of arity

n1 + n2;

• if op is complex operator of arity n and I is a feedback

interface, then 	I(op) is a complex operator of arity n.

In Example 1.2, as an example of a complex operator, we show

how the sequential operator can be defined in our framework.

Example 1.2: The sequential composition ⊲ of two com-

ponents C1 and C2 corresponds to a composition where both

components C1 and C2 are interconnected side-by-side and the

output of one is the input of the other. This kind of composition

can be naturally defined in our framework as follows:

⊲((C1, C2)) =	I((C1 ⊗ C2))

where I = (f, πi, πo) is the feedback interface defined

∀(i, i′) ∈ I1 × I2, ∀(o, o
′) ∈ O1 ×O2 by:

f((i, i′), (o, o′)) = (i, o), πi((i, i
′)) = i and πo((o, o

′)) = o′

Other standard operators have been also defined similarly

in [3]

Complex operators will not be necessarily defined when

applied to a sequence of components. Indeed, for a complex

operator of the form 	I (op), according to the component C
resulting from the evaluation of op, the interface I has to be

defined over the signature of C and the feedback over C has

to be well-formed. Hence, a system will be the component

resulting from the evaluation of complex operators, from a

sequence of components, when it is defined.

Definition 1.8 (Systems): Let C be a set of components.

The set of systems over C is inductively defined as follows:

• for any C ∈ C, a component over a signature Σ, (C) = C
is a system over the signature Σ and is defined for C;

• if op1 ⊗ op2 is a complex operator of arity n = n1 + n2

then for every sequence (C1, C2, . . . , Cn1
, Cn1+1, . . . , Cn)

of components in C with each Ci over Σi = (Ii, Oi),
if both op1 and op2 are defined for C1, C2, . . . , Cn1

and

Cn1+1, . . . , Cn respectively, then op1⊗op2(C1, . . . , Cn) =

op1(C1, . . . , Cn1
) ⊗ op2(Cn1+1, . . . , Cn) is a system over

Σ = (
∏n

i=1 Ii,
∏n

i=1 Oi) and op1 ⊗ op2 is defined

for (C1, . . . , Cn), else op1 ⊗ op2 is undefined for

(C1, . . . , Cn);
• if 	I (op) is a complex operator of arity n, then for

every sequence (C1, . . . , Cn) of components in C, if op is

defined for (C1, . . . , Cn) with S = op(C1, . . . , Cn) is over

Σ, I is a feedback interface over Σ and I is well-formed

w.r.t S , then 	I (op)(C1, . . . , Cn) =	I (S) is a system

over Σ′ and3 	I (op) is defined for (C1, . . . , Cn), else

	I(op) is undefined for (C1, . . . , Cn).

We introduce the definition of a sub-system involved in a

given system. This intuitively allows us to characterize the set

of all basic sub-systems from which the global system can be

built.

Definition 1.9 (Sub-systems): Let S = op(C1, . . . , Cn) be a

system over a signature Σ. The set of sub-systems of S ,

noted Sub(S), is inductively defined on the structure of op as

follows:

• if op = , then Sub(S) = {S};
• if op = op1 ⊗ op2 with op1 and op2 of arity n1 and n2

respectively (i.e. n = n1 + n2), then Sub(S) = {S} ∪
Sub(op1(C1, . . . , Cn1

)) ∪ Sub(op2(Cn1+1, . . . , Cn));
• if op =	I (op′), then Sub(S) = {S} ∪

Sub(op′(C1, . . . , Cn)).

Example 1.3: The system S to compute grade averages is

obtained as a composition of G and C using our basic integra-

tion operators. Hence to define the system S , we first apply

the Cartesian product ⊗((G, C)) to G and C over the signature

Σ⊗ = (I⊗, O⊗) with: I⊗ = ({mark, plus, average, nb} ×
{val,+, /}) and O⊗ = ({val, screen,⊥}×{⊥, res}). We can

then see that:

• both outputs + and / of G are returned as inputs of C;

• the output ”res” of C is returned as input of G.

Then, we apply the synchronous feedback to ⊗((G, C)). This

leads to the operator 	I over the interface signature I =
(f, πi, πo) as follows:

f : I⊗ ×O⊗ −→ I⊗

((i, i′), (o, o′)) 7→

{

(i, o) if i′ = o

(i, i′) otherwise

πi : I⊗ −→ IG ∪ IC

(i, i′) 7→

{

i if i′ ∈ OC

i′ otherwise

πo : O⊗ −→ OG ∪OC

(o, o′) 7→

{

o′ if o ∈ IG

o otherwise

3
Σ

′ is the signature of the synchronous feedback.

Applying 	I to ⊗((G, C)) leads to a new component 	I

(⊗(G, C)) (see Figure 3) where all outputs of G (i.e +, / and

val) that are fed back to C and the output ”res” of G that is

fed back to G are hidden (i.e. synchronized).

mark|⊥

plus|⊥ average|⊥

mark|⊥ nb|⊥

⊥|screen ⊥|screen

Fig. 3: Component 	I (⊗(G, C))

II. CONFORMANCE TESTING

Conformance testing theory is usually based on the compar-

ison between the behavior of a specification and an implemen-

tation using a conformance relation. The goal of this relation

is to specify what the conformance of an implementation is

with respect to its specification. It has been shown that the

input-output conformance relation cioco is the most suitable

for testing our components [3]. This relation distinguishes

input and outputs actions, and requires that the implementation

behaves according to a specification, but also allows behaviors

on which the specification puts no constraint.

The specification spec of a component is the formal de-

scription of its behavior given by a component over a signature

(I,O). On the contrary, its implementation iut is an executable

component, which is considered as a black box [25], [26]. We

interact with the implementation through its interface, by pro-

viding inputs to stimulate it and observing its behavior through

its outputs. Hence, to be able to treat the implementation iut,

we make the following two assumptions about it:

• The implementation iut can be modeled as a component

(S, init, α) over the signature (I ′, O′) with I ⊆ I ′ to

allow the implementation to accept all the inputs of the4

specification and O′ ⊆ O to allow the specification to

accept all the responses of the implementation.

• iut is input-enabled, i.e. at any state, it must produce

answers for all inputs provided by the environment:

∀(s, i) ∈ S × I, ∃(o, s′) ∈ O × S such that (o, s′) ∈
α(s)(i)

The conformance relation that we will call here cioco5 is a

slight adaptation of the standard relation ioco [11].

Definition 2.1: (cioco) Let spec, iut be two components

over (I,O) and (I ′, O′) respectively such that I ⊆ I ′, O′ ⊆ O
and iut is input-enabled. iut is in conformance with spec,

noted iut cioco spec, if and only if

∀tr ∈ Trace(spec), ∀i ∈ I,
Out(iut after (tr, i)) ⊆ Out(spec after (tr, i))

4I and O are the input and output sets of the specification respectively.
5c for component

where for any component C, any finite trace tr, and any input

i of C, Out(C after (tr, i)) is the set

{o | tr.〈i|o〉 ∈ Trace(C)}

When the Out(spec after (tr, i)) is empty, that ensures the

quiescence notion introduced by Tretmans in [13].

Similarly to [20], we studied in [3] compositionality proper-

ties for cioco over integration operators defined in Section I-B.

We then proved the following theorem:

Theorem 2.1 (Compositionality [3]): Let op be a complex

operator of arity n. Let iut1, . . . , iutn, spec1, . . . , specn
be input-enabled components such that ∀i, 1 ≤
i ≤ n, iuti cioco speci, then one has

op(iut1, . . . , iutn) cioco op(spec1, . . . , specn).

That means if single components of a system conform to

their specifications, the whole system built over our integration

operators is in accordance with its specification, unless the

specification model is input-enabled. Such a testing compo-

sitionality result theory provides a way to test the integrated

system only by testing its sub-systems i.e. there is no need to

re-test its conformance correction. Hence, once this property is

verified, the correctness of the integrated system is obtained

from the correctness of the individual components. To test

the integrated system, it is not necessary to consider it as a

whole, but it is enough to consider its sub-systems and test

them separately. Indeed, the contraposition of this property is

the following:

¬
(

op(iut1, . . . , iutn) cioco op(spec1, . . . , specn)
)

=⇒

∃i, 1 ≤ i ≤ n,¬(iuti cioco speci)

Thus, by looking at this new property, we can easily see

that non-correctness of the integrated system under test

op(iut1, . . . , iutn) implies that at least one of its components

iut1, . . . , iutn is incorrect. In other words, that means to test

op(iut1, . . . , iutn), it suffices to test iut1, . . . , iutn in isolation.

In the sequel, we will show how to improve significantly

the result obtained in Theorem 2.1 by taking into account the

global system in which components are plug in. This will be

achieved by using projection mechanisms.

III. PROJECTION AND TEST PURPOSES

A. Projection and compositionality

Projection techniques [15] are defined by pruning from any

global behavior p, all that does not concern the sub-system

that we want to test. This will allows us to generate more

relevant unit test cases to test individual components. As an

illustration, let us again consider the system that computes

grade averages (see Example 1.3). According to the result

obtained in Theorem 2.1, to test the grade average system,

it suffices to test separately the calculator C and the controller

G. Now, testing the calculator C separately may lead to the

consideration of test cases involving arithmetic operations

which are irrelevant to computing student grade averages such

as subtraction or multiplication. This may cause test cases

of interest to the system to be missed, i.e. test cases only

bringing into play addition and division for grades ranging

from 0 to 20. In the approach we propose in the following, we

intend to generate a test purpose that guides the test derivation

process of C by only testing operations needed to compute

grade averages. We do this by making a projection of this

behavior on calculator component C.

Definition 3.1 (Projection): Let S = op(C1, . . . , Cn) be a

system over (I,O). Let sub ∈ Sub(S) be a sub-system of S
over (I ′, O′). Let tr = 〈i1|o1, . . . , im|om〉 ∈ Trace(S). The

projection of tr on sub, denoted by tr↓sub
, is the subset of

Trace(sub) inductively defined as follows:

• if op = , then tr↓sub
= {tr};

• if op = op1 ⊗ op2 with op1 and op2 of arity n1 and n2

respectively (i.e. n = n1 + n2), then6:

tr↓sub
=

is the projection of 〈i1|1 |o1|1 , . . . , im|1 |om|1〉
on sub if sub ∈ Sub(op1(C1, . . . , Cn1

))

is the projection of 〈i1|2 |o1|2 , . . . , im|2 |om|2〉
on sub otherwise

• if op =	I (op′) with I = (f, πi, πo), then tr↓sub
=

⋃

tr′∈tr↓
S′

tr′↓sub
where

– S ′ = op′(C1, . . . , Cn)
– and tr↓S′ =

{

〈i′1|o
′
1, . . . , i

′
m|o

′
m〉 | ∀j, 1 ≤ j ≤

m, ∃sj ∈ S′,
o′j ∈ αS′(sj)(f(i

′
j , o

′
j))|1 , ij = πi(i

′
j) and oj =

πo(o
′
j)
}

We then introduce the projection of a system on a one of

its sub-systems.

Definition 3.2 (Component in context): Let S be a system

over (I,O) and sub ∈ Sub(S) be a subsystem of S over

(I ′, O′). The component obtained by projecting S on sub,
noted S↓sub

is the triplet (S, s0, α) defined by:

• s0 = 〈〉

• S is the whole set of finite traces defined as follows:

– s0 = {〈〉}
– ∀j, 1 ≤ j ≤ n, sj = {tr′.〈i|o〉 | ∃tr′ ∈ sj−1, ∃i ∈

I ′, ∃o ∈ O′, ∃tr ∈ Trace(S)such that tr′.〈i|o〉 ∈
tr↓sub

Hence, S =
⋃

0≤j≤ω

si

• α : S×I ′ −→ P(O′×S) is the mapping which for every

〈i0|o0, . . . , im|om〉 ∈ S and every input i ∈ I ′ associates

the set:

Π = {(o, 〈i0|o0, . . . , im|om, i|o〉) | ∃o ∈ O′, ∃tr ∈
Trace(S) such that 〈i0|o0, . . . , im|om, i|o〉 ∈ tr↓sub

}

6a|i
is the projection of the n-tuple a on ith argument.

It is easy to see that the traces of the component S↓sub
ob-

tained by projection is a subset of the traces of the component

sub itself.

Example 3.1: Consider again the grade average system

	I(⊗(G, C)) given in Figure 3. The projection 	I(⊗(G, C))↓C

of 	I (⊗(G, C)) on the calculator C is given in Figure 4.

By applying Definition 3.2, we only retain the C’s behaviors

that are involved in the final behavior of 	I (⊗(G, C)).
Only the addition and the division operations are specified

in 	I(⊗(G, C))↓C
, the specifications of both subtraction and

multiplication operations are omitted due to their absence in

the global system 	I(⊗(G, C)).

val|⊥

+|⊥ /|⊥
val|⊥ val|⊥

⊥|res ⊥|res

Fig. 4: The projection 	I ((G, C))↓C
of 	I ((G, C)) on the

calculator C

Such projected traces will be the cornerstone to improve the

compositionality result presented in Theorem 2.1 and to define

test purposes dedicated to test components separately while

taking into account the behavior of the global system.

Theorem 3.1 (Compositionality with projection): Let op be

a complex operator of arity n. Let iut1, . . . , iutn be input-

enabled implementations and spec1, . . . , specn their specifica-

tions respectively. Then, one has ∀i, 1 ≤ i ≤ n

(iut1 cioco op(spec1, . . . , specn)↓spec1
), . . . ,

(iutn cioco op(spec1, . . . , specn)↓specn
)

=⇒ op(iut1, . . . , iutn) cioco op(spec1, . . . , specn)

Proof: Sketch of the proof

This is proven by structural induction on the integration opera-

tor op. The main difficulty is to prove the property preservation

over both Cartesian product and feedback operator. Then, we

need the following two theorems:

Theorem 3.2 (Compositionality for Cartesian product):

Let C1 and C′1 be two components over (I1, O1), and C2 and

C′2 be two components over (I2, O2). Then, we have:

C1 cioco ⊗ ((C′1, C
′
2))↓C′

1

C2 cioco ⊗ ((C′1, C
′
2))↓C′

2

}

=⇒ ⊗((C1, C2)) cioco⊗((C
′
1, C

′
2))

Theorem 3.3 (Compositionality for feedback operator):

Let Σ = (I,O) be a signature and I = (f, πi, πo) be a

feedback interface. Let C1 = (S1, α1) and C2 = (S2, α2) be

two components over Σ. Then, we have:

C1 cioco 	I(C2)↓C2
=⇒ 	I(C1) cioco 	I(C2)

The proof of both theorems 3.2 and Theorem 3.3 is given in

Appendix.

Theorem 3.1 then provides a way to test the integrated system

only by testing the projection of that system on its sub-

systems. As a consequence, to test the integrated system, it

is not necessary to consider it as a whole, but it is enough

to consider the projection of that system on its sub-systems

(which may be done at different development steps and even-

tually developed by different teams) and test them separately.

Comparing this result with our previous result presented

in [3] or Tretmans’s result [20], the new result does not require

that the specifications are input-enabled. This last property is

often hard to get in practice due to the fact that system input

domains are usually too large.

B. Test purpose

A specification model usually contains a growth of expo-

nential states which makes the testing process difficult even

impossible to be implemented. To cope with this problem, test

purposes can be used. A test purpose is a description of the part

of the specification that we want to test and for which test cases

are later generated. In [14], they are described independently

of the model of the specification. In [23], they are deduced

from the specification by construction. In order to guide the

test derivation process in our approach, we have preferred, as

in [23], to describe test purposes by selecting the part of the

specification that we want to explore. We therefore consider a

test purpose as a tagged finite computation (FCT) tree of the

specification. The leaves of the FCT which correspond to paths

that we want to test are tagged accept. All internal nodes on

such paths are tagged skip, and all other nodes are tagged ⊙.

Formally, FCT is defined as follows:

Definition 3.3 (Finite computation tree of component):

Let (S, s0, α) be a component over (I,O). The finite

computation tree of depth n of C, noted FCT (C, n), is the

triplet (SFCT , s
0
FCT , αFCT) defined by:

• SFCT is the whole set of C−paths. A C−path is defined

by two finite sequences of states and inputs (s0, . . . , sn)
and (i0, . . . , in−1) such that:

∀j, 1 ≤ j ≤ n, sj ∈ α(sj−1)(ij−1)|2

• s0FCT is the initial C−path 〈s0, ()〉

• αFCT is the mapping which for every

C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉 and every

input i ∈ I associates the set:

Γ = {(o, 〈(s0, . . . , sn, s
′), (i0, . . . , in−1, i)〉) | (o, s

′) ∈
α(sn)(i)}

In this definition, SFCT is the set of the nodes of the tree and

s0FCT its root. Each node is represented by the unique C-path

〈(s0, . . . , sn), (i0, . . . , in−1)〉 which leads to it from the root.

αFCT gives, for each node p and for each input i, the set

of nodes Γ that can be reached from p when the input i is

submitted to C.

We intend in the following to extend the notion of test

purpose proposed in [3] to test purpose in context. This

latter allows us to test, from a global behavior of a system,

the behavior of its involved sub-systems and then guide the

component testing intelligently by taking into account the way

components are used in systems. Thus, taking a behavior p of

a system S , we intend to define test purposes that are able

to test the behavior pi of each sub-system Si ∈ Sub(S). We

identify therefore for each sub-system all its finite paths that

are involved in constructing the whole behavior of S .

Definition 3.4 (Test purpose in context): Let S be a system

over (I,O). Let sub ∈ Sub(S) be a sub-system of S and

sub′ = S↓sub
the projection of S on sub. Let FCT (sub, n) =

(S, s0, α) be the finite computation tree of sub. A test purpose

in context TP for sub is a mapping TP : SFCT −→
{accept, skip,⊙} such that:

• for every node p = 〈i0|o0, . . . , im|om〉 ∈ Trace(sub′),
TP (p) = accept;

• if TP (〈i0|o0, . . . , im|om)〉 = accept, then:

∀j, 0 ≤ j ≤ m,TP (〈i0|o0, . . . , ij−1|oj−1)〉) = skip

• TP (〈〉) = skip

• if TP (〈i0|o0, . . . , ik|ok)〉) = ⊙, then:

TP (i0|o0, . . . , ik|ok, i
′
k+1|o

′
k+1, . . . , i

′
k′ |o′k′)〉) = ⊙

for all k < k′ ≤ n and for all (i′l)k≤l<n ∈ I ′ and

(o′l)k≤l<n ∈ O′.

In order to build a test purpose for a subsystem sub, we

identify all finite paths of its finite computation tree FCT

whose traces embody traces in Trace(sub′) and we tag them

with accept. We then tag every node which represents a prefix

of an accepted behavior with skip. The other nodes, which lead

to behaviors that we do not want to test, are tagged with ⊙.

Example 3.2: In this example, we intend to build a test pur-

pose dedicated to test the behavior of the calculator component

C in the context of the system computing grade averages. To

do so, we first build the finite computation tree FCT (C, 4) of

C that we present in Figure 5. Second, each state of FCT (C, 4)
reachable after each trace tr of the projection 	I(⊗(G, C))↓C

of 	I (⊗(G, C)) on C (see Figure 3) is tagged with accept.

Then, p9 and p11 are only tagged with accept. All nodes

leading from the root init to p9 or p11 are tagged with skip

(i.e p1, p3, p5 and p7). Finally, all other states are tagged with

⊙.

Thus, testing of C is re-enforced as far as student grade

averages computing is concerned: only behaviors related to

grade average computing are chosen and then the behaviors

of C that are not activated in the global system 	I(⊗(G, C))
are not tested. This allows us to restrict the test domain to the

one under consideration.

Finally, we use the algorithm developed in Algorithm 1 to

generate correct and sound test cases. Given an implementa-

tion iut of a subsystem sub of a system S and the test purpose

init

p0

p1 p2 p3 p4

p5 p6 p7 p8

p9 p10 p11 p12

val|⊥

+|⊥

∗|⊥ /|⊥

−|⊥

val|⊥ val|⊥ val|⊥ val|⊥

⊥|res ⊥|res ⊥|res ⊥|res

skip

skip

skip ⊙ skip ⊙

skip ⊙ skip ⊙

accept ⊙ accept ⊙

init = 〈q0, ()〉, p0 = 〈(q0, q1), (val)〉, p1 = 〈(q0, q1, q2), (+)〉,
p2 = 〈(q0, q1, q2), (∗)〉, p3 = 〈(q0, q1, q2), (/)〉
p4 = 〈(q0, q1, q2), (−)〉, p5 = 〈(q0, q1, q2, q3), (+, val)〉
p6 = 〈(q0, q1, q2, q3), (∗, val)〉, p7 = 〈(q0, q1, q2, q3), (/, val)〉
p8 = 〈(q0, q1, q2, q3), (−, val)〉,
p9 = 〈(q0, q1, q2, q3, q4), (+, val,⊥)〉
p10 = 〈(q0, q1, q2, q3, q4), (∗, val,⊥)〉
p11 = 〈(q0, q1, q2, q3, q4), (/, val,⊥)〉
p12 = 〈(q0, q1, q2, q3, q4), (−, val,⊥)〉

Fig. 5: Test purpose of the calculator component

TP for sub generated from S , we want to test the conformance

of the iut to the test purpose TP . We start from the root of

TP , we choose a possible input i and submit it to the iut.

We observe the outputs o and compare them with the possible

outputs in TP . If the outputs do not match the ones specified in

TP , the verdict of the test is FAIL. Otherwise, if at least one of

the nodes which can be reached with i|o is tagged skip in TP ,

the test goes on. If the nodes are tagged ⊙, further behavior is

not of interest, so the test is inconclusive (INCONC verdict).

If one of the nodes is tagged accept, the test succeeds (PASS

verdict). It may happen, due to the non-determinism of the

specification, that the implementation behaved correctly, but

we cannot determine if we reached an accept state or an ⊙
state. This leads to a WeakPASS verdict.

IV. CONCLUSION

This paper extends our previous work [3] which defines

a generic testing conformance theory. We have proposed an

approach to test components that are typically involved in

the whole system by defining test purposes from the global

behaviour of the whole system. Such test purposes are given

in a accurate way by defining a projection mechanism taking

a global behaviour p of the whole system and keeping only

the part of p being activated in the sub-system that we want to

input : a test purpose

TP : FCT = (S, s0, α) −→ {accept, skip,⊙}
and an implementation iut

output: a test case [i0|o0, i1|o1, . . . , in|on, verdict]

Preliminaries;

Next(CS, i|o) returns the set of directly reachable states

from the current set of states CS after executing i|o;

NextSkip(CS, i|o) returns the set of states in

Next(CS, i|o) which are labeled by skip;

NextPass(CS, i|o) returns the set of states in

Next(CS, i|o) which are labeled by accept;

initialization ;

i← ChooseInputFrom({i | α(s0)(i) is defined});
o← ReactionOf(iut, i);
CS ← {s} // set of explored states;

TC ← [] // initialization of the test case;

//sending stimuli to iut and waiting for its output as long

as a verdict is not reached

while

NextSkip(CS, i|o) 6= ∅ and NextPass(CS, i|o) = ∅ do

TC ← Concatenate(TC, i|o);
CS ← Next(CS, i|o)
i← ChooseInputFrom(

{

i | i ∈
⋃

s∈CS

{i | α(s)(i) is defined
}

);

o← ReactionOf(iut, i);
end

TC ← Concatenate(TC, i|o);
// the emission from the iut is not expected with regards

to the specification

if Next(CS, i|o) = ∅ then

TC ← Concatenate(TC,FAIL);
end

// the emission from the iut is specified, but not

compatible with the test purpose

if Next(CS, i|o) 6= ∅ and NextSkip(CS, i|o) =
NextPass(CS, i|o) = ∅ then

TC ← Concatenate(TC, INCONC);
end

// all next states directly reachable from the set of current

set are accept ones

if Next(CS, i|o) =
NextPass(CS, i|o) and Next(CS, i|o) 6= ∅ then

TC ← Concatenate(TC,PASS);
end

// some of the next states are labeled by accept, but not

all of them

if NextPass(CS, i|o) ⊂
Next(CS, i|o) and NextPass(CS, i|o) 6= ∅ then

TC ← Concatenate(TC,WeakPASS);
end

return TC;
Algorithm 1: Test generation algorithm

test. Thus, our method for generating test purposes from the

global system specification helps to generate relevant unit test

cases to test individual components.

June 11, 2012

REFERENCES

[1] D’Souza, D.F. and Wills, A.C., Objects, Components, and Frame-

works with UML: The Catalysis(SM) Approach Addison-Wesley Profes-
sional,octobre 1998.

[2] C. Szyperski, Component Software: Beyond Object-Oriented Program-

ming, ACM Press and Addison-Wesley, New York, NY, 1998.

[3] Marc Aiguier, Frédéric Boulanger and Bilal Kanso, A formal abstract

framework for modeling and testing complex software systems, Theoret-
ical Computer Science (TCS), Elsevier, December 2011, to appear.

[4] S. MacLane, Categories for the Working Mathematician, Springer Verlag,
Graduate Texts in Mathematics, New York, Heidelberg, Berlin, 1971.

[5] E. Moggi, Notions of computation and monads, Information and Com-
putation journal, 93, 55-92, 1991.

[6] L.S Barbosa, Towards a Calculus of State-based Software Components,
Journal of Universal Computer Science, 9(8):891-909, August 2003.

[7] Meng, S. and Barbosa, L.S., Components as coalgebras: the refinement

dimension, Theoretical Computer Science (TCS), 351(2):276-294, Else-
vier Science Publishers Ltd, Essex,UK, 2006.

[8] G. H. Mealy, A method for synthesizing sequentiel circuits, Bell Systems
Techn. Jour. journal, 0167-6423, 1955.

[9] S. Eilenberg, Automata, Languages and Machines, Academic Press, New
York, 1978.

[10] R. Milner, A Calculus of Communicating Systems, Springer-Verlag, New
York, Inc, secaucus, NG, USA, 1982.

[11] J. Tretmans, Conformance Testing with Labelled Transition Systems:

Implementation Relations and Test Generation, Computer networkss and
ISDN systems, 29(1):49-79, 1996.

[12] A. Petrenko and N. Yevtushenko, Testing from partial deterministic fsm

specifications, IEEE Trans. Comput., 54:11541165, September 2005.

[13] J. Tretmans, Test Generation with Inputs, Outputs and Repetitive Qui-

escence, Software-Concepts and Tools, 17(3):103-120, 1996.

[14] C. Jard, T. Jéron, TGV: theory, principles and algorithms, International
Journal on Software Tools for Technology Transfer,7(4):297–315, August
2005.

[15] A. Faivre, C. Gaston and P. Le Gall, Symbolic Model Based Testing for

Component Oriented Systems, , TestCom/FATES, 90–106, 2007.

[16] Edward A. Lee and Pravin Varaiya, Structure and interpretation of

signals and systems, Addison-Wesley,I-XXI, 1-647, 2003.

[17] Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded Systems

- A Cyber-Physical Systems Approach, Lee and Seshia, 978-0-557-70857-
4, 2010.

[18] A. Benveniste and G. Berry, The synchronous approach to reactive and

real-time systems, Proceedings of the IEEE, 1270–1282, 1991.

[19] C. A. R. Hoare, Communicating Sequential Processes, journal of Com-
munications of the ACM, 21: 666-677 1985.

[20] H.M. van der Bijl and A. Rensink and J. Tretmans, Compositional

Testing with ioco, FATES, A. Petrenko and A. Ulrich, LNCS, 2931:86–
100, Berlin, 2004.

[21] S. Brookes and A. W. Roscoe, An Improved Failures Model for Com-

municating Processes, journal of NSF-SERC Seminar on Concurrency,
Pittsburgh, Springer Lecture Notes in Computer Science(LNCS) 197:281-
305. July 1984.

[22] A. Sampaio, S. Nogueira, A. Mota, Compositional Verification of Input-

Output Conformance via CSP Refinement Checking, In ICFEM, pages
20–48, Springer-Verlag, Rio de Janeiro, Brazil, 2009.

[23] C. Gaston, P. Le Gall, N. Rapin and A. Touil, Symbolic Execution

Techniques for Test Purpose Definition, TestCom, 1-18, 2006.

[24] J. Rutten, Universal coalgebra: a theory of systems, Theoretical Com-
puter Science (TCS), 249(1), pages = 3-80, 2000.

[25] G. Bernot, Testing Against Formal Specifications: A Theoretical View,
TAPSOFT’91: Proc. of the Intl. Joint Conference on Theory and Practice
of Software Development, 2: 99-119, Springer-Verlag, London, UK, 1991.

[26] J. Tretmans, A Formal Approach to Conformance Testing, Proceedings
of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test
systems VI, 257–276, Amsterdam, The Netherlands, 1994.

V. APPENDIX

Proof: Compositionality for synchronous feedback

(Theorem 3.3)

We first need to prove the following lemma:

Lemma 5.1: Consider two components C1 and C2, then we

have: C1 cioco 	I (C2)↓C2
=⇒ ∀tr ∈ Trace(I (C1)) ∩

Trace(I(C2)), tr↓C2
⊆ tr↓C1

Proof: Let us prove this point by induction on the

structure of a trace tr in Trace(I (C1)) ∩ Trace(I (C2)).
Let tr = 〈i1|o1, i2|o2, . . . , in|on〉.

• Basic Step: tr = 〈〉 is empty trace.

tr↓C2
= {〈〉} ⊆ tr↓C1

= {〈〉} trivially holds.

• Induction Step: Let us write tr as concatenation of two

finite traces: tr = 〈i1|o1, i2|o2, . . . , in−1|on−1〉 · 〈in|on〉.
Let σ = 〈i′1|o

′
1, . . . , i

′
n−1|on−1, i

′
n|o

′
n〉 ∈ tr↓C2

and let us

prove that σ ∈ tr↓C1
. σ ∈ tr↓C2

, then according to the

definition of tr↓C2
, there exists a finite sequence of states

s0, . . . , sn of S2 such that ∀j, 1 ≤ j ≤ n:

– (o′j , sj) ∈ α2(sj−1)(f(i
′
j , o

′
j)) and

– and πi(i
′
j) = ij and πo(o

′
j) = oj

Now, by induction hypothesis, we have σ =
〈i′1|o

′
1, . . . , i

′
n−1|on−1〉 ∈ tr↓C1

, then according to the

definition of tr↓C1
, there exists a finite sequence of states

s′0, . . . , s
′
n−1 of S1 such that ∀j, 1 ≤ j ≤ n− 1:

– (o′j , s
′
j) ∈ α1(s

′
j−1)(f(i

′
j , o

′
j)) and

– and πi(i
′
j) = ij and πo(o

′
j) = oj

One has that σ = 〈i′1|o
′
1, . . . , i

′
n−1|on−1, i

′
n|o

′
n〉 ∈

Trace(I (C2)↓C2
) since σ ∈ tr↓C2

and tr↓C2
⊆

Trace(I(C2)↓C2
) (see Definition 3.2). That means that

o′n ∈ Out(I(C2)↓C2
after (〈i′1|o

′
1, . . . , i

′
n−1|o

′
n−1〉, i

′
n))

But we know that C1 is input-enabled, then i′n is in-

evitably an input of the state s′n−1. Hence, one has

o′n ∈ Out(C1 after (〈i′1|o
′
1, . . . , i

′
n−1|o

′
n−1〉, i

′
n))

because of (C1 cioco 	I (C2)↓C2
). That means there

exists s′n ∈ S1 such that (o′n, s
′
n) ∈ α1(s

′
n−1)(f(i

′
n, o

′
n))

since C1 is well-formed for I. We know also πi(i
′
j) = ij

and πo(o
′
j) = oj , thus 〈i′1|o

′
1, . . . , i

′
n−1|o

′
n−1, i

′
n|o

′
n〉 ∈

Tr↓C1
. Consequently, Tr↓C2

⊆ Tr↓C1
.

Let us now prove Theorem 3.3. Let C1 and C2 be two

components over (I,O), and 	I (C1) and 	I (C2) over

(I ′, O′).
Let tr = 〈i1|o1, . . . , in|on〉 ∈ Trace(I (C1)) ∩ Trace(I

(C2)) and (in+1, on+1) ∈ I ′ ×O′ such that:

on+1 ∈ Out(I(C1) after (tr, in+1))

Then, let us prove that

on+1 ∈ Out(I(C2) after (tr, in+1))

Let us define the set X by

{i′n+1 | 〈i
′
1|o

′
1, . . . , i

′
n|o

′
n, i

′
n+1|o

′
n+1〉 ∈ tr. < in+1|on+1 >↓C1

}

of all inputs enabling in C1 after projecting the trace

tr.〈in+1|on+1〉 on C1. Since, tr↓C2
⊆ tr↓C1

(By Lemma 5.1),

we can extract from X the set:

Y = {i′n+1 | 〈i′1|o
′
1, . . . , i

′
n|o

′
n, i

′
n+1|o

′
n+1〉 ∈

tr↓C1
and 〈i′1|o

′
1, . . . , i

′
n|o

′
n〉 ∈ tr↓C2

}

of all inputs enabling in C1 after the traces obtained by

projecting tr on C2.

In the same manner, let us define the set

Z = {i′n+1 | 〈i
′
1|o

′
1, . . . , i

′
n|o

′
n, i

′
n+1|o

′〉 ∈ tr. < in+1|o >↓C2

and o ∈ Out(I(C2) after (tr, in+1))}

of all inputs enabling in C2 after projecting the trace tr on C2.

By construction of Y and Z, we have that Z ⊆ Y . Since

C1 cioco C2↓C2
, then for every σ ∈ tr↓C2

and for every i ∈ Z,

Out(C1 after (σ, i)) ⊆ Out(C2↓C2
after (σ, i)) (1)

Let Φ = {σ.〈i′n+1|o
′
n+1〉 | σ ∈ tr↓C2

, o′n+1 ∈
Out(C1 after (σ, i′n+1)), and i′n+1 ∈ Z}

Since σ.〈i′n+1|o
′
n+1〉 ∈ tr.〈in+1|on+1〉↓C1

then by the

projection definition, one has

πi(i
′
n+1) = in+1 and πi(o

′
n+1) = on+1 (2)

By (1), (2) and the definition of tr.〈in+1|on+1〉↓C2
,

we can conclude that Φ = tr.〈in+1|on+1〉↓C2
. Thus

tr.〈in+1|on+1〉 ∈ Trace(I (C2)). consequently, on+1 ∈
Out(I(C2) after (tr, in+1)).

Proof: Compositionality for Cartesian product (Theo-

rem 3.2)

Let us assume that

C1 cioco ⊗ ((C′1, C
′
2))↓C′

1
and C2 cioco ⊗ ((C′1, C

′
2))↓C′

2

and then prove that ⊗((C1, C2)) cioco ⊗ ((C′1, C
′
2)).

Let us use the contradiction principle. For this, let us assume

that

¬(⊗((C1, C2)) cioco ⊗ ((C′1, C
′
2)))

i.e that there exists a finite trace tr =
〈(i1, i

′
1)|(o1, o

′
1), . . . , (in, i

′
n)|(on, o

′
n)〉 ∈ Trace(⊗((C′1, C

′
2)))

and (i, i′) ∈ I1 × I2 such that there exists an output

(o, o′) ∈ O1×O2 among the outputs obtained after executing

(tr, (i, i′)) on ⊗((C1, C2)) not belonging to the ones obtained

after executing (tr, (i, i′)) on ⊗((C′1, C
′
2)).

Now, we have

tr = 〈(i1, i
′
1)|(o1, o

′
1), . . . , (in, i

′
n)|(on, o

′
n)〉 ∈ Trace(⊗((C1, C2)))

According to the definition of the cartesian product, it is easy

to show that the two traces:

tr1 = 〈i1|o1, . . . , in|on〉 ∈ Trace(C1)

and

tr2 = 〈i′1|o
′
1, . . . , i

′
n|o

′
n〉 ∈ Trace(C2)

are respectively the traces involved in C1 and C2 to obtain tr.

We also know by the projection definition (see Defini-

tion 3.2) that tr1 ∈ Trace(⊗((C′1, C
′
2))↓C′

1
) and tr2 ∈

Trace(⊗((C′1, C
′
2))↓C′

2
).

Since (o, o′) ∈ Out(⊗((C1, C2)) after (tr, (i, i′)))
and tr is composed of tr1 and tr2, then o ∈
Out(C1 after (tr1, i)) and o′ ∈ Out(C2 after (tr2, i

′)).
Similarly, o 6∈ Out(⊗((C′1, C

′
2))↓C′

1
after (tr1, i))

and o′ 6∈ Out(⊗((C′1, C
′
2))↓C′

2
after (tr2, i

′)) because

(o, o′) 6∈ Out(⊗((C′1, C
′
2)) after (tr, (i, i′))) and tr1 and

tr2 are involved to obtain tr. Hence, there exists a trace

tr1 ∈ Trace(⊗((C′1, C
′
2))↓C′

1
), an input i of ⊗((C′1, C

′
2))↓C′

1

and an output o ∈ O1 such that o ∈ Out(C1 after (tr1, i))
and o 6∈ Out(⊗((C′1, C

′
2))↓C′

1
after (tr1, i)).

In the same manner, there exists a trace tr2 ∈
Trace(⊗((C′1, C

′
2))↓C′

2
) an input i′ of ⊗((C′1, C

′
2))↓C′

2
and an

output o′ ∈ O2 such that o′ ∈ Out(C2 after (tr2, i
′)) and o′ 6∈

Out(⊗((C′1, C
′
2))↓C′

1
after (tr2, i

′)). Indeed, this means that

¬(C1 cioco ⊗ ((C′1, C
′
2))↓C′

1
) and ¬(C2 cioco ⊗ ((C′1, C

′
2))↓C′

2
).

Hence, we have a contradiction with our hypothesis.

