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Abstract. In this paper, we present a conformance testing theory for
Barbosa’s abstract components. This is made possible by defining first
a trace model for components by causal transfer functions, that is func-
tions of dataflow transformations rythmitical by discrete instants. This
then allows us to exploit a particular analysis technique to define a test
selection strategy based on test purposes defined as some subtrees of the
execution tree built from component traces. Moreover, we show in this
paper that Barbosa’s definition of components is abstract enough to sub-
sume a large family of state-base formalisms such as Mealy automata,
Labeled Transition Systems (LTS), Input Output Labeled Transition
Systems (IOLTS), etc. by instantiating the monads underlying Barbosa’s
definition. Hence, the conformance theory presented in this paper is de
facto a generalization of standard ones we find for different state-base
formalisms.
Keywords: Component based system, Coalgebra, Monad, Trace seman-
tics, Transfert function, Conformance testing, Test purpose.

Introduction

Complex industrial systems are built with several components that are designed
into different models. These components are integrated altogether to interact
in order to a coherent way. To deal with these heterogeneous components from
a global point of view, we model them with coalgebras. In this framework, an
important work has been done by Barbosa, who has introduced state-based soft-
ware components as concrete coalgebras for some set endofunctors [1, 19]. The
interest of such modeling is twofold: First, Barbosa has defined a component as
any coalgebra over the endofunctor H = T (Out × )In where T is a monad3,
In and Out are two sets elements of which denote respectively component input
and output. Hence, Barbosa’s definition of component is an extension of Mealy
automata [7, 18] that have been shown efficient to specify component behaviors

3 All the definitions and notations of coalgebras and monads are recalled in Section 1
of this paper.



deterministically. Here, using monads allows ones to abstract away from deter-
minism. Indeed, monads have been introduced in [22] to generically consider a
wide range of computation structures such as partiality, non-determinism, etc.
Then, Barbosa’s definition of component allows to define component indepen-
dently of any computation structure. In this paper, we will go further than this
definition that unifies in a same framework a large family of state-base formalisms
such as Mealy automata, Labeled Transition Systems [5, 20], Input-Iutput Sym-
bolic Sransitions [9, 10, 14], etc. Second, following Rutten’s works [11, 26], defin-
ing component behaviors as an extension of Mealy automata to any computation
structure by using monads, will allow us to define a trace model over components
by causal transfer functions, that is functions of dataflow transformations of the
form: y = F(x, q, t) where x, y and q are respectively, the input, output and
state of the component under consideration, and t stands for time considered
here as discrete.

This last point warms up our contribution in this paper. Indeed, defining
a trace model from causal functions will allow us: Firstly, to give some results
about the important notion in the categorical theory of coalgebras of final coal-
gebras. Hence, we will show the existence of such a final coalgebra in the category
of coalgebras over a signature T (Out × )In under some sufficient conditions on
the monad T . The interest of such results is there a powerful reasoning princi-
ple that underlies final coalgebras, which is coinduction. Secondly, to define a
conformance testing theory for components, that is the most important contri-
bution of this paper. Hence, following some previous works that have been done
by some authors of this paper [10], test purposes will be defined as some partic-
ular subtrees of the execution tree built from our trace model for components.
We will then define an algorithm which from test purposes will generate test
cases. As in [10], this algorithm will be given by a set of inference rules. Each
rule is dedicated to handle an observation from the system under test (SUT ) or
a simulation sent by the test case to the SUT . This testing process leads to a
verdict.

The paper is then structured as follows: In Section 1, we recall the basic
notions of the categorical theory of coalgebras and monads that will be useful
in this paper. Then, in Section 2, we recall Barbosa’s definition of components
and we define over, a trace model from causal transfer functions. We will take
the benefit to have formalized components as coalgebras to extend some stan-
dard results connected to the definition of a terminal component. In Section 3,
we present our conformance testing theory for components. Finally, Section 4
presents on-the-fly rules for generating test cases.

1 Preliminaries

This paper relies on many terms and notations from the categorical theory of
coalgebras and monads. In this section, we briefly introduce these notions and
notations used in the rest of the paper. Interested readers can refer textbooks
such as [2, 8, 17].



1.1 Categories, functors and natural transformations

A category C is a mathematical structure consisting of a collection of objects
Obj(C) and a collection of maps or morphisms Hom(C). Each map f : X → Y

has a domain X ∈ Obj(C) and a codomain Y ∈ Obj(C).
Maps may be composed using the ◦ operation, which is associative. For each

object X ∈ Obj(C), there is an identity map idX : X → X which is neutral for
the ◦ operation: for any map f : X → Y , one has f ◦ idX = f = idY ◦ f .

An object I ∈ Obj(C) is initial if for any object X ∈ Obj(C), there is a unique
morphism f : I → X in Hom(C). Conversely, an object F ∈ Obj(C) is final if for
any object X ∈ Obj(C), there is a unique morphism f : X → F in Hom(C).

Given two categories C and D, a functor F : C→ D consists of two mappings
Obj(C) → Obj(D) and Hom(C) → Hom(D), both written F , such that:

– F preserves domains and codomains:
if f : X → Y is in C, F (f) : F (X) → F (Y ) is in D

– F preserves identities: ∀X ∈ C, F (idX) = idF (X)

– F preserves composition:
∀f : X → Y and g : Y → Z in C, F (g ◦ f) = F (g) ◦ F (f) in D.

Given two functors F,G : C → D from a category C to a category D, a
natural transformation ε : F ⇒ G associates to any object X ∈ C a morphism
εX : F (X) → G(X) in D, called the component of ε at X, such that for every
morphism f : X → Y in C, we have εY ◦ F (f) = G(f) ◦ εX .

1.2 Algebras and coalgebras

Given an endofunctor F : C → C on a category C, an F -algebra is defined
by a carrier object X ∈ C and a morphism α : F (X) → X. In this categorical
definition, F gives the signature of the algebra. For instance, with 1 denoting the
singleton set {⋆}, if we consider the functor F = 1 + which maps X 7→ 1 + X,
the F -algebra (N, [0, succ]) is Peano’s algebra of natural numbers, with the usual
constant 0 : 1 → N and constructor succ : N→ N.

Similarly, an F -coalgebra is defined by a carrier object X ∈ C and a mor-
phism α : X → F (X). In the common case where C is Set, the category of sets,
the signature functor of an algebra describes operations for building elements
of the carrier object. On the contrary, in a coalgebra, the signature functor de-
scribes operations for observing elements of the carrier objet. For instance, a
Mealy machine can be described as a F -coalgebra (S, 〈out, next〉) of the functor
F = (Out × )In with S, In and Out as its sets of states, input and output
respectively.

1.3 Induction and coinduction

An homomorphism of (co)algebras is a morphism from the carrier object of
a (co)algebra to the carrier object of another (co)algebra which preserves the



structure of the (co)algebras. On the following commutative diagrams, f is an
homomorphism of algebras and g is an homomorphism of coalgebras:

F (X) F (Y )

X Y

F (f)

f

α β

Z U

F (Z) F (U)

g

F (g)

δ γ

F -algebras and homomorphisms of algebras constitute a category Alg(F ).
Similarly, F -coalgebras and homomorphisms of coalgebras constitute a category
CoAlg(F ). If an initial algebra exists in Alg(F ), it is unique, and its structure
map is an isomorphism. The uniqueness of the homomorphism from an initial
object to the other objects of a category is the key for defining morphisms
by induction: giving the structure of an F -algebra (X, β) defines uniquely the
homomorphism f : I → X from the initial F -algebra (I, α) to this algebra.

Conversely, if a final coalgebra exists in CoAlg(F ), it is unique, and its
structure map is an isomorphism. The uniqueness of the homomorphism from
any object to a final object of a category is the key for defining morphisms by
coinduction: giving the structure of an F -coalgebra (Y, δ) defines uniquely the
morphism f : Y → F from this coalgebra to the final F -coalgebra (F, ω).

An interesting property is that if F is a finite Kripke polynomial functor,
Alg(F ) has an initial algebra and CoAlg(F ) has a final coalgebra. Finite Kripke
polynomial functors are endofunctors of the category Set which include the
identity functor, the constant functors, and are closed by product, coproduct,
exponent (or function space), and finite powerset.

1.4 Monads

Monads [17] are a powerful abstraction for adding structure to objects. Given
a category C, a monad consists of an endofunctor T : C → C equipped with
two natural transformations η : idC ⇒ T and µ : T 2 ⇒ T which satisfy the
conditions µ ◦ Tη = µ ◦ ηT = idC and µ ◦ Tµ = µ ◦ µT :

T 2 T T 2

T

Tη ηT

idC

µ µ

T 3 T 2

T 2 T

Tµ

µT

µ

µ

η is called the unit of the monad. Its components map objects in C to their
naturally structured counterpart. µ is the product of the monad. Its components
map objects with two levels of structure to objects with only one level of struc-
ture. The first condition states that a doubly structured object ηT (X)(t) built by
η from a structured object t is flattened by µ to the same structured object as
a structured object T (ηX)(x) made of structured objects built by η. The second



condition states that when flattening two levels of structure, we get the same
result by flattening the outer structure first (with µT (X)) or the inner structure
first (with T (µX)).

Let us consider a monad built on the powerset functor P : Set → Set. It can
be used to model non-deterministic state machines by replacing the target state
of a transition by a set of possible target states. The component ηS : S → P(S)
of the unit of this monad at state space S has to build a set of states from a
state. We can then choose ηS : σ 7→ {σ}. The component µS : P(P(S)) → P(S)
of the product of the monad at state space S has to flatten a set of sets of states
into a set of states. For a series of sets of states (si), ∀i, si ∈ P(S), we can then
choose µS : {s1 . . . si . . .} 7→ ∪si.

Moreover, monads have also been used to represent many computation situa-
tions such as partiality, side-effects, exceptions, etc [22] . For instance, partiality
can be represented by the monad T : S → S ∪ {⊥} equipped with both obvious
natural transformations η and µ which for any set S are defined by:

ηS : s 7→ s and µS :

{

⊥ 7→ ⊥
s 7→ s

2 Transfer functions and components

In this section, we will use the definition given by Barbosa in [1, 19] to define
components, i.e as coalgebras of the Set endofunctor T (Out × )In where In

and Out are the sets of respectively input and output data and T is a monad.
As we will see in Section 2.2, the interest of Barbosa’s definition of component
is it large enough to consider generically the notion of component, but also to
unify in a same framework a large family of formalisms classically used to specify
state-based systems such as Mealy machines [7, 18], Labelled Transition Systems
(LTS) [5, 20], Input-Output Labelled Transition Systems (IOLTS) [6, 29], etc.

Similarly to the Rutten’s works in [11, 26], we will denote component’s be-
haviors by a transfer function.

2.1 Transfer function

In the following, we will note ω the least infinite ordinal, identified with the
corresponding hereditarily transitive set.

Definition 1 (Dataflow). A dataflow over a set of values A is a mapping
x : ω → A. The set of all dataflows over A is noted Aω.

As we will see in the next section, the observable behavior of components
will be described by its associated transfer function. Transfer functions can be
seen as dataflow transformers satisfying the causality condition in a standard
framework [27], that is the output data at index n only depends on input data
at indexes 0, . . . , n.



Definition 2 (Transfer function). Let T be a monad. Let In and Out be
two sets denoting, respectively, the input and output domains. A function F :
Inω −→ Outω is a transfer function if, and only if it is causal, that is:

∀n ∈ ω, ∀x, y ∈ Inω, (∀m, 0 ≤ m ≤ n, x(m) = y(m)) =⇒ F(x)(n) = F(y)(n)

2.2 Components

Definition 3 (Components). Let In and Out be two sets denoting, respec-
tively, the values in input and in output. Let T be a monad. A component C
is any coalgebra (S, α) for the signature H = T (Out × )In : Set → Set with a
distinguished element s0 denoting the initial state of the component C.

Definition 4 (Category of components). Let C and C′ be two components
over H = T (Out × )In. A component morphism h : C → C′ is a coalgebra
homomorphism h : (S, α) → (S′, α′) such that h(s0) = h(s′0).
We note Cat(H) the category of systems over H.

The definition of components in Definition 3 allows to unify in a same frame-
work a large family of formalisms classically used to specify state-based sys-
tems such as Mealy machines, LTS and IOLTS. Hence, making T the identity
functor Id , the resulting component corresponds to Mealy machines. Taking
In = {} and Out = Act as a set of symbols standing for actions names, and
instantiating T with the powerset functor P, the resulting component leads
to labelled transition systems. Finally, taking the monad T as the powerset
monad P and by imposing the supplementary property on the transition func-
tion α : S −→ P(Out × S)In:

∀i ∈ In,∀s ∈ S, (o, s′) ∈ α(s)(i) =⇒ either i = ǫ or o = ǫ

leads to IOLTS.

Example 1. We illustrate the notions and results previously mentioned with the
simple example of a coffee machine M presented as the transition diagram shown
on Figure 1. The behavior of M is the following: from its initial state STDBY,
when it receives a coin from the user, the machine goes into the READY state.
Then, when the user presses the “coffee” button, the machine either serves a
coffee to the user and goes to the STDBY state, or it fails to do so, refunds
the user and goes to the FAILED state. The only escape from the FAILED
state is to have a repair. In our framework, this machine is considered as a
component M = (S, s0, α) over the signature Pf (Out× )In. The state space4 is
S = {STDBY,READY,FAILED} and s0 = STDBY. The set of inputs is In =
{coin, coffee, repair} and the set of outputs is Out = {⊥, served, refund}. Finally,

the transition function: α : S −→ Pf

(

{⊥, served, refund} × S
){coin,coffee,repair}

is
defined as follows :







α(STDBY)(coin) =
{

(⊥,READY)
}

α(READY)(coffee) =
{

(served,STDBY), (refund,FAILED)
}

α(FAILED)(repair) =
{

(⊥,STDBY)
}

4 Pf (X) = {U ⊆ X|U is finite} is the finite powerset of X.



STDBY READY FAILED

coin|⊥

coffee|served

coffee|refund

repair|⊥

Fig. 1. Coffee machine
2.3 Traces

To associate behaviors to components by their transfer function, we need to
impose the supplementary condition on the monad T that there exists a natural
transformation η−1 : T =⇒ P where P : S 7→ P(S) is the powerset functor, such
that ∀S ∈ Set,∀s ∈ S, η−1

S (ηS(s)) = {s}.
Most monads used to represent computation situations satisfy the above

condition. For instance, for the monad T : S 7→ P(S), η−1
S is the identity on

sets, while for the functor T : S 7→ S ∪ {⊥}, η−1
S is the mapping that behaves

like ηS for every element s ∈ S and associates the emptyset for ⊥. The interest of
η−1 is to allow the association of a set of transfer functions to a component (S, α)
as its possible traces. Indeed, we need to “compute” for a sequence x ∈ Inω all
the outputs o after “performing” any sequence of states (s0, . . . , sk) such that sj

is obtained from sj−1 by x(j−1). However, we do not know how to characterize
sj with respect to α(sj−1)(x(j − 1)). The problem is that nothing ensures that
elements in α(sj−1)(x(j − 1)) are couples (output, state). Indeed, the monad T

takes the product of a set of output Out and a set of states S and yields another
set which may not have the structure of Out×S. The mapping η−1

Out×S maps back

to this structure. Elements in η−1
Out×S(α(sj−1)(x(j − 1))) are couples (output,

state). In the following, we note η−1
Out×S(α(s)(i))|1 (resp. η−1

Out×S(α(s)(i))|2) the
set composed of all first arguments (resp. second arguments) of couples in α(s)(i).
Hence, component traces are defined as follows:

Definition 5 (Component traces).
Let C be a component over H = T (Out× )In. The Traces from a state s of C is
the whole set of transfer functions Fs : Inω → Outω defined for every x ∈ Inω

such that there exists an infinite sequence of states s0, s1, . . . , sk, . . . ∈ S with
s0 = s and satisfying: ∀j ≥ 1, sj ∈ η−1

Out×S(α(sj−1)(x(j − 1)))|2 and for every

k ∈ ω, Fs(x)(k) = ok such that (ok, sk+1) ∈ η−1
Out×S(α(sk)(x(k)))

Hence, C’s traces are the set of transfer functions Fs0
as defined above.

In the context of our work, we are mainly interested by finite traces. Finite
traces are then any finite sequence of couples (input|output) defined as follows :

Definition 6 (Component finite traces). Let Fs0
be a trace of a component

C, let n ∈ N. The finite trace of length n Fs0|n
associated to Fs0

is the whole
set of the finite sequence 〈i0|o0, . . . , in|on〉 such that there exists x ∈ Inω where
for every j, 0 ≤ j ≤ n, x(j) = ij, and Fs0

(x(j)) = oj .

Then, Trace(C) =
⋃

Fs0

⋃

n∈N

Fs0|n
defines the whole set of finite traces over C.



2.4 Results

According to the cardinality of the sets yielded by the mapping η−1
S for each

element of T (S), such a final coalgebra may exist and may be defined. Hence,
if we suppose that for every S ∈ Set, and every S′ ∈ T (S), η−1

S (S′) is a one
element set, then given an endofunctor H = T (Out × )In, we can define a
coalgebra (Γ, π) over H and show that it is final in Cat(H). But before, let us
introduce some notions that will be useful for this purpose.

Definition 7 (Derivative dataflow). Let x be a dataflow over a set A. The
dataflow x′ derivative of x is defined by: ∀n ∈ ω, x′(n) = x(n + 1).
For every a ∈ A, let us note a.x the dataflow y defined by:

y(0) = a and ∀n ∈ ω \ {0}, y(n) = x(n − 1)

Hence, x = x(0).x′.

Definition 8 (Derivative function). Let T be a monad. Let In and Out be
two sets denoting, respectively, the values in input and in output. Let F : Inω →
Outω be a transfer function. For every input i ∈ In, we define the derivative
function Fi : Inω → Outω for every x ∈ Inω by Fi(x) = F(i.x)′

The coalgebra (Γ, π) is then defined by Γ = {F : Inω → Outω|F is causal}, and
∀F ∈ Γ,∀i ∈ In, π(F)(i) = T ({(F [i],Fi)}) where F [i] = F(i.x)(0) for x ∈ Inω

chosen arbitrarily 5.

Theorem 1. Let H be a the signature T (Out× )In such that for every S ∈ Set,
the mapping η−1

Out×S for each S′ ∈ T (Out × S) yields a one element set. Then,
the coalgebra (Γ, π) is final in the category Cat(H). (see its proof in Appendix).

This result can be extended to any monad T such that for every S ∈ Set
and every S′ ∈ T (S), η−1

S (S′) is of cardinality lesser than a cardinal κ. Indeed,
let V be a set of cardinal κ. Let us consider the set of coalgebras over H:

G = {(U, γ)|U ⊆ V and γ : U → H(U)}

Now, let us set:6 Γ = (
∐

(U,γ)∈G U)/∼
and π = (

∐

(U,γ)∈G γ)/∼
where ∼ is the

greatest bisimulation on
∐

(U,γ)∈G U .

Theorem 2. With the conditions on cardinality, (Γ, π) is final in Cat(H) (see
its proof in Appendix).

5 This makes sense because transfer functions are causal.
6 In the literature, G is so-called a set of generators [25].



3 Conformance Testing for Components

In this section, we examine how we can test the conformance of an implementa-
tion of a component to its specification. In order to compare the behavior of the
implementation to the specification, we need to consider both as components
which have the same signature. However, the behavior of the implementation is
unknown and can only be observed through its interface. We therefore need a
conformance relation between what we can observe on the implementation and
what the specification allows.

3.1 Conformance Relation

The specification Spec of a component is the formal description of its behav-
ior given by a coalgebra over a signature H = T (Out × )In. On the contrary,
its implementation SUT (for System under Test) is an executable component,
which is considered as a black box [3, 13, 28]. We interact with the implementa-
tion through its interface, by providing inputs to stimulate it and observing its
behavior through its outputs.

The theory of conformance testing defines the conformance of an implementa-
tion to a specification thanks to conformance relations. Several kinds of relations
have been proposed. For instance, the relations of testing equivalence and pre-
orders [23, 24] require the inclusion of trace sets. The relation conf [4] requires
that the implementation behaves according to specification, but allows behav-
iors on which the specification puts no constrain. The relation ioconf [29, 30]
is similar to conf, but distinguishes inputs from outputs. There are many other
types of relations [12, 15, 20, 21].

In the following, we use the ioconf relation because it is the most suitable to
our framework. For this we need to define some notions:

Definition 9. Let C = (S, s0, α) be a component. Let tr = 〈i0|o0, . . . , in|on〉 be
a finite trace over C i.e. an element of Trace(C), and let s be a state of S. We
have the two following definitions:

– (C after tr) = {s′ | ∃s1, . . . , sn ∈ S,

∀j, 1 ≤ j ≤ n, (oj−1, sj) ∈ η−1
Out×S(α(sj−1)(i(j−1))),

and (on, s′) ∈ η−1
Out×S(α(sn)(in))}

is the set of reachable states from the state s0 after executing tr

– OutC(s) =
⋃

i∈In

({o | ∃s′ ∈ S, (o, s′) ∈ η−1
Out×S(α(s)(i))})

is the set of the possible outputs in s.

The set OutC(s) can be extended to any set of states S′ ⊆ S, we have :

OutC(S′) =
⋃

s′∈S′

(OutC(s′))

These definitions allows us to define the ioconf relation in our framework:



Definition 10. (ioconf) Let Spec and SUT be two components over the signa-
ture T (Out × )In. The ioconf relation is defined as follows :

SUT ioconf Spec ⇐⇒

{

∀tr ∈ Trace(Spec),
OutSUT (SUT after tr) ⊆ OutSpec(Spec after tr)

3.2 Finite Computation Tree

In this section, we define the finite computation tree of a component, which
captures all its finite computation paths:

Definition 11. (Finite computation tree of component) Let (S, s0, α) be a com-
ponent over T (Out× )In. The finite computation tree of depth n of C, noted
FCT (C, n) is the coalgebra (SFCT , s0

FCT , αFCT ) defined by :

– SFCT is the whole set of C−paths. A C−path is defined by two finite se-
quences of states and inputs (s0, . . . , sn) and (i0, . . . , in−1) such that for ev-
ery j, 1 ≤ j ≤ n, sj ∈ η−1

Out×S(α(sj−1)(ij−1))|2

– s0
FCT is the initial C−path 〈s0, ()〉

– αFCT is the mapping which for every C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉
and every input i ∈ In associates T (Γ ) where Γ is the set:

Γ = {(o, 〈(s0, . . . , sn, s′), (i0, . . . , in−1, i)〉) | (o, s′) ∈ η−1
Out×S(α(sn)(i))}

In this definition, SFCT is the set of the nodes of the tree. s0
FCT is the root of the

tree. Each node is represented by the unique C-path 〈(s0, . . . , sn), (i0, . . . , in−1)〉
which leads to it from the root:

s0
i0

s1
i1

. . .
in−2

sn−1

in−1
sn

αFCT gives, for each node p and for each input i, the set of nodes Γ that can be
reached from p when input i is submitted to the component.

3.3 Test Purpose

In order to guide the test derivation process, test purposes can be used. A test
purpose is a description of the part of the specification that we want to test
and for which test cases are to be generated. In [6] test purposes are described
independently of the model of the specification. On the contrary, we [10] prefer
to describe test purposes by selecting the part of the specification that we want
to explore. We therefore consider a test purpose as a tagged finite computation
tree of the specification. The leaves of the FCT which correspond to paths that
we want to test are tagged accept. All internal nodes on such paths are tagged
skip, and all other nodes are tagged ⊙.

Definition 12. (Test Purpose) Let FCT (C, n) be the finite computation tree of
depth n associated to a component C. A test purpose TP for C is a mapping
TP : SFCT −→ {accept, skip,⊙} such that:



– there exists a C−path p ∈ SFCT such that TP (p) = accept,

– if TP (〈(s0, . . . , sn), (i0, . . . , in−1)〉) = accept, then:

for every j, 1 ≤ j ≤ n − 1, TP (〈(s0, . . . , sj), (i0, . . . , ij−1)〉) = skip

– TP (〈s0, ()〉) = skip

– if TP (〈(s0, . . . , sn), (i0, . . . , in−1)〉) = ⊙, then:

TP (〈(s0, . . . , sn, s′n+1, . . . , s
′
m), (i0, . . . , in−1, i

′
n, . . . , i′m−1)〉) = ⊙

for all m > n and for all (s′j)n<j≤m and (i′k)n≤k<m

Example 2. Figure 2 gives a test purpose TP on the finite computation tree of
depth 4 of the coffee machine M whose specification is shown on Figure 1. This
test purpose allows us to ignore the behaviors of M related to failure and repair
and to concentrate on its interaction with a user. When the machine fails and the
user is refunded, we reach node p3 or p6 which are tagged with ⊙. This indicates
that we are not interested in further behavior from these nodes. p5 is tagged
with accept because it is a leaf which corresponds to an expected behavior. All
nodes leading from the root p0 to this node are tagged with skip because they
are valid prefixes of p5.

p0

p1

p2 p3

p4

p5 p6

coin|⊥

coffee|served coffee|refund

coin|⊥

coffee|served coffee|refund

skip

skip

skip ⊙

accept ⊙

p0 = 〈STDBY, ()〉
p1 = 〈(STDBY, READY),

coin〉
p2 = 〈(STDBY, READY, STDBY),

(coin, coffee)〉
p3 = 〈(STDBY, READY, FAILED),

(coin, coffee)〉
p4 = 〈(STDBY, READY, STDBY, READY),

(coin, coffee, coin)〉
p5 = 〈(STDBY, READY, STDBY, READY, FAILED),

(coin, coffee, coin, coffee)〉
p6 = 〈(STDBY, READY, STDBY, READY, STDBY),

(coin, coffee, coin, coffee)〉

Fig. 2. Test purpose of the coffee machine

In order to build a test purpose on a finite computation tree, we therefore
choose the leaves of the tree which we accept as correct finite behaviors and we
tag them with accept. We then tag every node which represents a prefix of an
accepted behavior with skip. The other nodes, which lead to behaviors that we
do not want to test, are tagged with ⊙.
In the following, we use the notation TP to refer to an arbitrary test purpose.

4 Test generation guided by test purposes

Similarly to [10], we propose an approach for test cases selection according to a
test purpose. In order to test the conformance of the SUT to the specification,



we start from the root of a finite computation tree, we choose a possible input
i and submit it to the SUT . We observe the outputs o and compare them with
the possible outputs in the finite computation tree. If the outputs do not match
the specification, the verdict of the test is FAIL. Otherwise, if at least one of
the nodes which can be reached with i|o is tagged skip in the test purpose, the
test goes on. If the nodes are tagged ⊙, the test stops (further behavior is not
of interest). Last, if one of the nodes is tagged accept, the test succeeds. A test
case is therefore a sequence of input-output actions built

In this section, we describe the process which allows the construction of such
a sequence. The main idea consists in choosing an input action according to the
interactions with the SUT previously computed and the set of reachable states
that can lead to accepting states of TP . Therefore, the reaction (output) received
from the implementation is compared to the specified ones, and depending on
the result of this comparison, our algorithm continues its computation, or stops
by generating a verdict. Four verdicts are therefore distinguished : PASS, FAIL,
INCONC and WeakPASS. Informally, PASS means that we reached an accept

state and no observable difference between the specification and the implemen-
tation has been detected. FAIL means that the SUT had a behavior which is not
allowed by the specification. INCONC means that no error has been detected but
the behavior of the SUT went outside the test purpose, so we cannot conclude.
Finally, WeakPASS means that the implementation behaved correctly but, due
to the non-determinism of the specification, we are not sure to have reached an
accept state (it may also be a ⊙ one).

4.1 Preliminaries

In this section, we introduce some notations and definitions that will be used in
describing our algorithm for generating conformance tests for components.

As mentioned above, a test case is considered as a sequence generated by TP

interacting with SUT . This is denoted by [ev0, ev2, . . . , evn][V erdict], where for
all i ∈ [0, . . . , n], evi = i|o is an input-output elementary sequence with i ∈ In ∪
{ǫ} and o ∈ Out∪{ǫ}, and V erdict ∈ {FAIL, PASS, INCONC, WeakPASS}.
We added the special symbol ǫ to the set of input actions In (resp. to the set
of output actions Out) to denote the absence of output for a stimulation of
the implementation (resp. a stimulation of SUT without an input). We note
stimobs(i|o) the output o received from SUT when stimulating it with input i.

In order to compute the set of reachable states that lead to accept states
after a given input-output sequence, we define a current set of states denoted by
CS that contains a subset of the states of the test purpose. It must be initialized
at the beginning of our algorithm to the initial state of TP . Moreover, we intro-
duce three functions : Next(CS, ev), NextSkip(CS, ev) and NextPass(CS, ev).
These functions help exploring TP by selecting paths that lead to accept states.
Next(CS, ev) allows us to compute the set of directly reachable states from the
current set states CS after executing ev. NextSkip(CS, ev) computes the set of
states belonging to Next(CS, ev) from which it is possible to go to accepting
states, and NextPass(CS, ev) computes the set of states labelled by accept.



Definition 13. Let TP : SFCT → {accept, skip,⊙} be a test purpose for a
component C, ev = 〈i|o〉 an event, and S′ a subset of SFCT :

– Next(S′, ev) =
⋃

s′∈S′

({s | (o, s) ∈ η−1
Out×SF CT

(αFCT (s′)(i))}),

– NextSkip(S′, ev) = Next(S′, ev)
⋂

TP (S′)|skip
,

– NextPass(S′, ev) = Next(S′, ev)
⋂

TP (S′)|accept
.

with TP (S′)|tag = {s′ ∈ S′ | TP (s′) = tag}

4.2 Inferences rules

We our test case generation algorithm as a set of inferences rules. Each rule
states that under certain conditions on the next observation of output action
from SUT or the next stimulation of SUT by an input action, the algorithm
either performs an exploration of other states of TP , or stops by generating a
verdict.

We structure these rules as CS
Results cond(ev), where CS is a set of current

states, Results is either a set of current states or a verdict, and cond(ev) is a set of
conditions including stimobs(ev). Each rule must be read as follows : Given the
current set of states CS, if cond(ev) is verified, then the algorithm may achieve
a step of execution, with ev as input-output elementary sequence.

Our algorithm can be seen as an exploration of the finite computation tree
starting from the initial state. It switches between sending stimuli to the im-
plementation and waiting for output of the implementation according to the
inference rules as long as a verdict is not reached. We distinguish two kinds of
inference rules : exploring rules and diagnosis rules. The first kind, is applied to
pursue the computation of the sequence as long as Result is a set of states. The
second kind leads to a verdict and stops the algorithm.

Rule 0 : Initialization rule7:
{s0

FCT }

Rule 1 : Generation of the verdict FAIL: the output from the SUT is not
expected with regards to the specification.

CS

FAIL
stimobs(ev), Next(CS, ev) = ∅

Rule 2 : Generation of the verdict FAIL : the emission from the SUT is not
expected with regards to the specification.

CS

FAIL
stimobs(ev), Next(CS, ev) = ∅

7 This rule is involved only once when starting the algorithm.



Rule 3 : Generation of the verdict INCONC : the emission from the SUT is
specified but not compatible with the test purpose.

CS

INCONC
stimobs(ev),



Next(CS, ev) 6= ∅,
NextSkip(CS, ev) = NextPass(CS, ev) = ∅

Rule 4 : Generation of the verdict PASS : all next states directly reachable
from the set of current set are accept ones.

CS

PASS
stimobs(ev), NextPass(CS, ev) = Next(CS, ev), Next(CS, ev) 6= ∅

Rule 5 : Generation of the verdict WeakPASS : some of the next states are
labelled by accept, but not all of them.

CS

WeakPASS
stimobs(ev),



NextPass(CS, ev) ⊂ Next(CS, ev),
NextPass(CS, ev) 6= ∅

We should now note that each of these rules except rule 0 can be used in
several ways according to the form of ev. When ev = ǫ|o, o is produced sponta-
neously by SUT . When ev = i|ǫ, the stimulation of SUT with i does not produce
any output. Finally, when ev = i|o, o is produced by SUT when it is stimulated
with i. These possibilities for ev therefore give rise to a generic algorithm that
can be applied to a wide variety of state-based systems. This means that an ap-
propriate choice of the monad T and both input In and output Out sets, allows
us to obtain models as defined in [6, 7, 10, 16, 29].

4.3 Properties

A test case informs us about the conformance of the implementation to its spec-
ification. This means that the non-existence of a FAIL verdict leads to a confor-
mance, and that any non-conformance should be detected by a test case ending
by a FAIL verdict. In order to study the coherence between the notion of con-
formance of an implementation under test and its specification, and the notion
of test case generated by our algorithm, we denote by CS and EV respectively
the whole set of current state sets and the whole set of input-output elementary
sequences used during the application of the set of inference rules on an imple-
mentation SUT according to a test purpose TP . We then introduce a transition
system whose states are the sets of current states and four special states labelled
by the verdicts. Two states are linked by a transition labelled by an input-output
elementary sequence. This transition system is formally defined as follows :

Definition 14. Let TP be a test purpose for a specification Spec, let SUT be
an implementation, let CS be the whole set of current state sets and let EV be the
whole set of input-output elementary sequences. Then, the execution of the
test generation algorithm on SUT according to TP denoted by TS(TP, SUT )
(see its explanation in Section 4.2) is the coalgebra (STS , αTS) over the signature
( )EVdefined by :



– STS = CS ∪ Verdict where Verdict is the set whose elements are FAIL,
PASS, INCONC and WeakPASS,

– αTS is the mapping which for every CS ∈ CS and for every ev ∈ EV is
defined as follows :

αTS(CS)(ev) =







































Next(CS, ev) if NextSkip(CS, ev) 6= ∅, NextPass(CS, ev) = ∅
FAIL if Next(CS, ev) = ∅
INCONC if NextSkip(CS, ev) = NextPass(CS, ev) = ∅

and Next(CS, ev) 6= ∅
PASS if Next(CS, ev) = NextPass(CS, ev)

and Next(CS, ev) 6= ∅
WeakPASS if NextPass(CS, ev)  Next(CS, ev)

and NextPASS(CS, ev) 6= ∅

With this definition, test cases are sets of possible traces which can be ob-
served during an execution of TS(TP, SUT ), and lead to a verdict state.

Definition 15. Let TS(TP, SUT ) = (STS , αTS) be the execution of the test
generation algorithm on SUT according to TP . A test case for TP is a sequence
[ev0, . . . , evn][V erdict] for which there is a sequence of states s

0
, . . . , sn ∈ CS

with ∀j, 0 ≤ j < n, sj+1 = αTS(sj)(evj), and there is a verdict state V erdict ∈
Verdict such that V erdict = αTS(sn)(evn). We note st(TP, SUT ) the set of all
possible test cases for TP .

We can now introduce the notation:

vdt(TP, SUT ) = {V erdict | ∃ev0, . . . , evn, [ev0, . . . , evn|V erdict] ∈ st(TP, SUT )}

Theorem 3. (Correctness and completeness) For any specification Spec and
any SUT :

– Correctness: If SUT conforms to Spec, for any test purpose TP , FAIL 6∈
vdt(TP, SUT ).

– Completeness: If SUT does not conform to Spec, there exists a test pur-
pose TP such that FAIL ∈ vdt(TP, SUT ).

(See its proof in Appendix)

5 Conclusion

In this paper, we have presented a coalgebraic model, a conformance relation
between implementations and specifications, and a test generation algorithm for
component based systems. This work relies on previous work by Barbosa [1,
19] for defining software components as coalgebras, and defines a framework
which encompasses Mealy machines, labeled transition systems and input-output
labeled transition systems. It still has to be applied to systems with data.

A conformance testing theory has been generalized to our framework. It con-
siders both the specification and the implementation models as components, and



defines a generic version of the relation of conformance testing proposed in [29].
The main idea is to replace the specification by a finite computation tree whose
set of paths denotes the set of all computations allowed by the specification. We
have used test purposes to narrow the computation tree by pruning the parts
which are not of interest for testing. An algorithm to test the conformance of
an implementation to a specification according to a test purpose has been pro-
posed. It is based on the exploration of the computation tree according to a set
of rules. This exploration stops when a leaf of the test purpose is reached (the
test passes), when the behavior of the SUT leaves the test purpose (the test
is unconclusive), or when the behavior of the SUT leaves the specification (the
test fails). Moreover, we have proved that this algorithm is correct and complete
with regard to the conformance relation ioconf.

The ability of this framework to model and generate tests for various kinds
of components is a step toward the testing of heterogeneous systems, made from
components specified using different formalisms. This requires the definition of
integration operators to combine the behavior of components. It should allow us
to check wether an implementation made of conforming components combined
with integration operators is conform to its specification.
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Appendix

– Proof of theorem 1 (page 8). For every coalgebra (S, α), let us define
!α : S → Γ which for every s ∈ S, associates the transfer function !α(s) :
Inω → Outω defined for every s ∈ S, every x ∈ Inω and every k ∈ ω as
follows. Let s0, . . . , sk ∈ S the sequence of state such that s0 = s and:

∀j, 1 ≤ j ≤ k − 1, sj = η−1
Out×S(α(sj−1)(x(j − 1)))|2

This sequence exists and by hypothesis on cardinality of η−1
Out×S , is unique.

Then, let us set:

!α(s)(x)(k) = η−1
Out×S(α(sk)(x(k)))|1

It is not very difficult to check that !α(s) is causal, and that !α defined in
this way is a homomorphism, which is further unique.

– Proof of theorem 2 (page 8).
For every coalgebra (S, α), there exists by definition a coalgebra (U, γ) in
G such that (S, α) and (U, γ) are isomorphic. Obviously, two isomorphic
coalgebras are bisimilar. Therefore, we can define the homomorphism !α
which to (S, γ) associates the unique element [(U, γ)] in Γ where [(U, γ)] is
the equivalence class of (U, γ) for ∼.

– Proof of theorem 3 (page 15).
Proof of the correctness : Let Spec = (S, s0, α) be a specification over
H = T (Out × )In and FCT = (SFCT , s0

FCT , αFCT ) be its finite compu-
tation tree. Let us prove the correctness using the contraposition principle.
This means that to prove :

if SUT conforms to Spec, for any test purpose TP, FAIL 6∈ vdt(TP, SUT ).

we have to prove :

if there exists a test purpose TP such that FAIL ∈ vdt(TP, SUT ),

then SUT does not conform to Spec.

More precisely, according to the definition of ioconf, we have to prove that :
there exists a finite trace tr ∈ Trace(FCT ) such that OutSUT (SUT after tr) *
OutFCT (FCTc after tr). This is proved by the following proposition :

Proposition 1. If there exists a test purpose TP such that [ev0, . . . , evn|FAIL] ∈
st(TP, SUT ), then :

1. ev0 . . . evn−1 ∈ Trace(FCT ).

2. evn ∈ OutSUT (SUT after (ev0 . . . evn−1)).

3. ev0 . . . evn 6∈ Trace(FCT ).

4. ev0 . . . evn ∈ Trace(SUT ).



Proof of (1).
In order to show that the sequence ev0 . . . evn−1 ∈ Trace(FCT ), we are
going to reason on the way of computation of this sequence by using the
inference rules. First of all, let TS(TP, SUT ) be the execution of the test
generation algorithm and st(TP, SUT ) be the set of generated test cases.
Since [ev0, . . . , evn|FAIL] ∈ st(TP, SUT ), then there exists for every j, 0 ≤
j < n, Sj ∈ CS such that S0 = {s0

TS}, Sj+1 = αTS(Sj)(evj) and FAIL =
αTS(Sn)(evn). Hence, for every j, 0 ≤ j < n, Sj+1 which equals to Next(Sj , evj)
is not empty by Definition 14. Hence, by Definition 13, for every j, 0 ≤ j < n,
every state belonging into Sj+1 is a state of FCT . This means that for every
j, 0 ≤ j < n, every state s ∈ Sj is related to a state s′ ∈ Sj+1 by evj .
Consequently, the sequence ev0 . . . evj . . . evn−1 ∈ Trace(FCT ).

Proof of (2).
It is obvious because [ev0 . . . evn|FAIL] ∈ st(TP, SUT ).

Proof of (3).
We have above proved that ev0 . . . evn−1 ∈ Trace(FCT ) and Sn 6= ∅. We
have that [ev0 . . . evn|FAIL] ∈ st(TP, SUT ) i.e. applying evn have to lead
to a FAIL verdict. This means that αTS(Sn)(evn) = FAIL. Hence by Defini-
tion 14, Next(Sn, evn) have to be empty. But we know that Next(Sn, evn) ⊆
SFCT . Hence, ev0ėvn−1evn does not belong to Trace(FCT ).

Proof of (4).
It is obvious because [ev0 . . . evn|FAIL] ∈ st(TP, SUT ).

Proof of the completeness : Let Spec = (S, s0, α) be a specification
over a signature H = T (Out × )In and FCT = (SFCT , s0

FCT , αFCT ) be its
finite computation tree. Let us prove that the completeness holds. For this,
let us assume that SUT does not conform to Spec and let us prove that
there exists a test purpose TP such that there exists [ev0, . . . , evn|FAIL] ∈
st(TP, SUT ).
First of all, SUT does not conform to Spec. According to the definition
of ioconf, there exists a trace tr = ev0 . . . evn−1 ∈ Trace(FCT ) such that
OutSUT (SUT after tr) * OutFCT (FCT after tr) i.e. there exists evn = i|o
such that o ∈ OutSUT (SUT after tr), ev0 . . . evn−1evn ∈ Trace(SUT ) and
ev0 . . . evn−1evn 6∈ Trace(FCT ).
Now, let us denote by TP a test purpose of FCT such that there exists ev′n ∈
EV and a state s ∈ SFTC such that s ∈ (FCT after ev0 . . . evn−1ev

′
n) and

TP (s) = accept i.e. ev0 . . . evn−1ev
′
n forms a path of TP . Let us prove that

there exists [ev0 . . . evn−1evn|FAIL] ∈ st(TP, SUT ). For this, it is enough
to show that there exists (Sj)0≤j≤n such that for every j, 0 ≤ j < n, Sj+1 =
αTS(Sj)(evj) ∈ CS and FAIL = αTS(Sn)(evn).
We have that ev0 . . . evn−1 ∈ Trace(FCT ), then, for every j, 0 ≤ j ≤ n, Sj

exists because for every j, 1 ≤ j ≤ n, αTS(Sj)(evj) = Next(Sj , evj) and
S0 = {s0

FCT }. Thus, what remains is to prove that there is a verdict state



FAIL such that FAIL = αTS(Sn)(evn). By hypothesis, ev0 . . . evn−1evn 6∈
Trace(FCT ) and ev0 . . . evn−1evn ∈ Trace(SUT ), hence Next(Sn, evn) = ∅,
and consequently αTS(Sn)(evn) = FAIL.


