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Enforcing interface flux continuity in enhanced XFEM: stability
analysis

Pedro Dı́ez

(joint work with Sergio Zlotnik and Régis Cottereau)

XFEM is found to be an efficient approach for solving multiphase problems. The
model problem reads as follows, find u taking values in Ω1 ∪ Ω2 such that

∇·(−ν1∇u) = f in Ω1(1a)

∇·(−ν2∇u) = f in Ω2(1b)

−ν∇u·n = gN on ΓN(1c)

u =uD on ΓD(1d)

ν1∇u|Ω1
·n =ν2∇u|Ω2

·n on Γ := ∂Ω1 ∩ ∂Ω2(1e)

The level set representation of the phase domains allows having a grid inde-
pendent of the location of the interface [2]. In order to introduce the necessary
gradient discontinuities inside the elements crossed by the interface, XFEM uses
the partition of the unity idea to enrich the discretization. In this context, a
sensible choice for the enrichment is using a ridge function R defined as

R =
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∣

∣

∣

∣

∣

nH
∑

i=1

Niφi

∣

∣

∣

∣

∣

,

being Ni the shape functions and φi the nodal values of the level set, for i =
1, . . . , nH , see [1, 3]. Thus, the XFEM approximation reads

uX =

nH
∑

i=1

Niui +
∑

j∈Na

RNjaj ,

where the coefficients ui for i = 1, . . . , nH are the standard Finite Element nodal
unknowns and aj , j ∈ Na, stand for the enriched nodal coefficients.

XFEM provides a much better approximation of the multiphase solution, im-
proving the quality the global quantity (energy like) that the variational form of
the problem seeks minimizing. Nevertheless, when applied to diffusion problems
in a multiphase setup with high diffusivity contrast, the XFEM strategy suffers
from an inaccurate representation of the local fluxes in the vicinity of the interface.
The XFEM enrichment improves the global quality of the solution but it is not
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properly enforcing any local feature to the fluxes. Thus, the resulting numerical
fluxes in the vicinity of the interface are not realistic, in particular when the para-
metric contrast between the two phases is important. An additional restriction to
the XFEM formulation is introduced, aiming at properly reproducing the features
of the local fluxes in the transition zone. This restriction is implemented through
Lagrange multipliers. The resulting enlarged variational problem reads find the
XFEM approximation uX ∈ VX and the (discrete) Lagrange multiplier λH ∈ ṼH

such that

a(uX , w) + b(λH , w) = ℓ(w) ∀w ∈ VX,0(2a)

b(µ, uX) = 0 ∀µ ∈ ṼH(2b)

being a(·, ·) the standard bilinear form representing the weak form of problem (1)
and

(3) b(µ, u) :=

∫

Γ

(ν1∇u|Ω1
− ν2∇u|Ω2

)·nµ dΓ.

Note that (2b) is the weak form of (1e) and it is the restriction aiming at improving
the quality of the flux continuity and, consequently, the quality of the fluxes in the
vicinity of the interface. Several examples are presented and the solutions obtained
from (2) show a spectacular improvement of the quality of the fluxes with respect
to the standard XFEM.

Figure 1. Illustration of the semi-hat functions of the Lagrange
multipliers space, Ñk.

The problem of choosing the proper Lagrange multiplier space introduces a
classical dilemma: if ṼH is too small the restriction is not properly enforced and if
it is too large the resulting method may be unstable. After some numerical tests,
the option selected corresponds to the semi hat functions along the interface, as
illustrated in figure 1. In this case, the dimension of ṼH is twice the number of
elements crossed by the interface.
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The mathematical proof of the stability of the numerical scheme requires check-
ing if the LBB condition (also known as inf-sup condition) is fulfilled for the elected
spaces and bilinear restriction. We propose a novel approach to prove this propo-
sition by introducing an equivalent form of the theorem and two auxiliary lemmas.

Recall that the well-known LBB compatibility condition, is sufficient to guar-
antee the stability of the formulation. In other words, the formulation is stable if
it exists k > 0 such that

(4) inf
µ∈ṼH

sup
w∈VX

b(µ,w)

||µ|| ||w||
≥ k

The LBB condition is equivalent to the following
Proposition: ∃α > 0 such that ∀µ ∈ ṼH , ∃v ∈ VX verifying

!ν∇v · n" =µ(5a)

‖v‖VX
≤α‖µ‖ṼH

(5b)

The equivalence is straightforwardly shown by considering that

b(µ,w) =

∫

Γ

µ2dΓ = ||µ|| and
b(µ, v)

||µ|| ||v||
=

||µ||

||v||

Thus, since ||v|| ≤ α||µ||, taking k = 1/α the LBB condition follows.
The latter proposition is reduced to proof the two following lemmas.

Lemma 1 (local version of the proposition, restricted to one element):
Let Ωk be one linear triangular element crossed by the interface Γ. The restriction
of Γ to Ω

k is denoted Γ
k. The nodes of Ωk are denoted P1, P2 and P3, choosing

the order such that P1 and P2 are on the same side of the interface. As classically
done in XFEM, we assume that ∃ǫ > 0 such that |Γk| > ǫ. The restrictions of the

functional spaces VX and ṼH to Ω
k and Γ

k are denoted V k
X and Ṽ k

H , with respective
norms ‖v‖2

V k
X

=
∫

Ωk v
2dΩ and ‖µ‖2

Ṽ k
H

=
∫

Γk µ
2dΓ. The standard FE shape function

corresponding to the node P1 is denoted N1, and the ridge function R.

Then, ∃α > 0 such that ∀µ ∈ Ṽ k
H , ∃v ∈ span{N1, RN1} ⊂ V k

X (i.e. describing v
with the d.o.f. corresponding to P1 only) verifying

!ν∇v · n" =µ(6a)

‖v‖V k
X
≤α‖µ‖Ṽ k

H
(6b)

Lemma 2 (controlled propagation of the norm along the interface el-
ements strip): Let Ω

k and Ω
k+1 be two contiguous elements crossed by the

interface. Let us denote P1 and P3 the common nodes to Ω
k and Ω

k+1, being
P2 the third node in Ω

k. P1 is selected such that it is on the same side of the
interface as P2. The third node in Ω

k+1 is denoted as P4. Then, ∃β > 0 such that,

for any v defined by the d.o.f. of Ωk, v ∈ span{Ni, RNi}, i = 1, 2, 3 it holds that
‖v‖

V
k+1

X

≤ β‖v‖V k
X
.
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Isoparametric C
0 Interior Penalty Methods for Plate Bending
Problems on Smooth Domains

Li-yeng Sung

(joint work with Susanne C. Brenner and Michael Neilan)

Let Ω be a bounded smooth domain in R
2 such that ∂Ω is the union of the disjoint

closed curves ΓC, ΓS and ΓF . The bending problem of a thin Kirchhoff plate [7] is
to find u ∈ V such that

(1)

∫

Ω

{(∆w)(∆v) − (1− ν)[w, v]} dx =

∫

Ω

fv dx ∀ v ∈ V,

where V = {v ∈ H2(Ω) : v = 0 on ΓC ∪ ΓS and ∂v/∂n = 0 onΓC}, ν ∈ (0, 1
2
) is

the Poisson ratio, and

[w, v] =
(∂2w

∂x2
1

)(∂2v

∂x2
2

)

+
(∂2w

∂x2
2

)(∂2v

∂x2
1

)

− 2
( ∂2w

∂x1∂x2

)( ∂2v

∂x1∂x2

)

is the Monge-Ampère bilinear form.
Here u is the vertical displacement of the middle surface of the plate, f ∈ L2(Ω)

is the vertical load density divided by the flexural rigidity of the plate, and ΓC

(resp. ΓS and ΓF ) is the clamped (resp. simply supported and free) part of ∂Ω.
We assume |ΓC|+ |ΓS| > 0 so that (1) is well-posed.

In order to obtain high order convergence, the computational domain of a finite
element method for (1) must approximate Ω to a high order. For second order
problems this can be accomplished by the isoparametric approach [6, 9, 4]. But
the construction of C1 finite element methods on non-polygonal domains is much
more complicated [14, 15, 12, 10, 11, 13].

We have shown in [3] that by combining isoparametric finite element spaces for
second order problems with the C0 interior penalty methodology [8, 5, 2], it is
possible to solve the plate bending problem (1) efficiently. In this approach the
discrete problem is obtained by the following procedure.

We construct a curvilinear polygon Ωh whose corners belong to ∂Ω such that Ωh

is the union of the triangles in a quasi-uniform triangulation Th. We assume that
Ωh is a good approximation of Ω so that ∂Ωh is the union of the disjoint closed
subsets ΓC,h, ΓS,h and ΓF,h that approximate ΓC , ΓS and ΓF respectively. Each of
the triangles in Th can have at most one curved edge and only those triangles with
more than one vertex on ∂Ω can have a curved edge. We assume that each triangle


