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Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media

This paper describes some numerical experiments that were performed on wave propagation in a randomly generated anisotropic heterogeneous elastic media. By comparison with more classical, homogeneous media, several numerical issues arise that are presented in detail. In particular, an appropriate parameterization has to be chosen for the field of mechanical properties, and the Perfectly Matched Layers have to be modified for such media, lest the stability be lost. Some open questions will also be raised. Finally, we will present ongoing research on the characterization of the physical phenomena taking place over long distances depending on the type of random elasticity model used.

Introduction

The isotropic and homogeneous soil models commonly used for the propagation of waves in geophysical media are not compatible with the surface recordings available [START_REF] Aki | Origin of coda waves: source, attenuation and scattering effects[END_REF][START_REF] Margerin | Diffusion multiple des ondes élastiques dans la lithosphère[END_REF][START_REF] Larose | Diffusion multiple des ondes sismiques et expériences analogiques en ultrasons[END_REF]. In particular, the coda of the seismic recordings cannot be reproduced with these simple models. It is therefore desirable to consider heterogeneous anisotropic media, but this possibility is hindered by several numerical difficulties that we address in this presentation.

The first issue concerns the parameterization of the properties of the medium. With a view at identification, this parameterization should at the same time ensure a sufficient heterogeneity, while retaining only a few parameters. Considering one realization (sample) of the random medium yields that goal and a random model of the elasticity tensor will be described in section 2. In that model, the elasticity tensor varies continuously in space, so that special integration schemes should be used within the context of Finite Elements. This point has been considered here only in a crude manner, considering a certain number of integration points per correlation length, after some numerical tests (not presented in this paper). Section 2 concentrates on the construction of the random model of the elasticity tensor, and on the generation of samples of this model. It is worth noticing that in this section only samples of random media will be considered and no real statistical analyses will be performed. However, since the elastic waves are traveling through a statistically homogeneous random media, the wave pattern obtained after several wavelengths and correlation lengths is expected to show common statistical properties weakly dependent on the sample of the random media. In particular, this property has been observed when considering the multiple scattering of seismic wave fields on a random distribution of buildings [START_REF] Clouteau | Modification of the ground motion in dense urban areas[END_REF].

The next issue is that of wave propagation. Since the goal is to characterize the wave propagation pattern in a heterogeneous medium beyond the mean free path, a numerical method is required, that is able to account for several wavelengths and correlation lengths in all spatial directions. Moreover, since the multiple scattering pattern drastically changes between two and three dimensional cases, 3D simulations are targeted. In order to meet both a high efficiency and a controlled numerical error, the Spectral Finite Element Method has been chosen [START_REF] Ainsworth | Dispersive and dissipative behavior of the spectral element method[END_REF]. In particular, the SPEC software developed by the Seismology Group of Institut de Physique du Globe de Paris [START_REF] Festa | The Newmark scheme as a velocity-stress time staggering: an efficient PML for spectral element simulations of elastodynamics[END_REF] has been modified in order to account for anisotropic heterogeneous fields of elastic tensors. Besides the numerical scheme, it is also necessary to choose the type of absorbing boundary conditions of layers that should be used when the computational domain has to be limited. The Perfectly Matched Layers (PMLs) have reached a position of choice in the last decade for this type of problem, but suffer in some particular cases of anisotropic media from instability issues. Unfortunately, for the the type of heterogeneous anisotropic media that we are considering here, the instability eventually always appear so that some special treatment has to be applied. Section 3 will present the instability problem and the patch that we applied.

Finally, we will present in section 4 some attempts at characterizing the type of physics at work in the medium. In particular, we will try to identify the transition form a wave propagation phenomenon to a diffusion behavior. Although this is on-going work, the aim is to be able at some point to use expensive wave propagation models only where necessary and to use simpler diffusion models where possible. This would also require the introduction of appropriate coupling schemes that will not be discussed here. We finish this introduction by the description of the problem at hand and of some of the main notations of this paper.

We consider an unbounded elastic domain Ω, described by an elasticity tensor C, linking the stress tensor σ and the strain tensor ǫ, and the bulk density ρ v . The elasticity tensor is a priori fully anisotropic. The strong formulation of the elastic wave propagation in this medium consists in solving the Navier equation for u ∀t ∈ [0; T ]:

Div C(x)ǫ(u(x; t)) + f (x, t) = ρ v ∂ 2 ∂t 2 u(x; t) (1) 
together with proper boundary and initial conditions. As far as the Spectral Finite Element Method is concerned, the related weak formulation is considered:

find u ∈ V (Ω), ∀t ∈ [0; T ], such that, ∀w ∈ V (Ω): Ω ρ v ∂ 2 u ∂t 2 (t) • w + C * (x)ǫ(u(t)) : ǫ(w) -f (x, t) • w dΩ = 0. (2) 
In this weak formulation, Ω is separated into the computational domain of interest, in which the elasticity tensor C * = C, and a PML domain in which the elasticity tensor is modified (see section 3), and V (Ω) is some appropriate functional space.

Random model of mechanical parameters

We first discuss the modeling issue. Indeed, experimental soil samples show a high level of heterogeneity, but on a given location, the data is usually far too scarce to identify a reasonable heterogeneous model of the mechanical parameters. The same issue is raised with respect to anisotropy, which is apparent in the available data but requires a large dataset to be identified appropriately. We propose here a stochastic model of the elasticity tensor of the soil that is both continuously heterogeneous and anisotropic [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF][START_REF] Ta | Modeling of random anisotropic elastic media and impact on wave propagation[END_REF]. As it is random, its identification is based only on statistical quantities that are usually available over larger regions. Further the mean, the correlation lengths, and the level of anisotropy can be parameterized separately.

In subsection 2.1, we present a random model for a homogeneous elasticity tensor, with no variation in space.

The main points are the introduction of two parameters, δ and δ g , that control the anisotropy and variability levels in the medium. In subsection 2.2, we generalize it to the case of a random field of elasticity tensor, adding the variability in space through a model of correlation controlled by three correlation lengths. In the last subsection 2.3, we discuss the question of generating a sample of this random medium on a parallel computer.

Random elastic tensor

Using Voigt's notation, the 4-rank tensor of elasticity C can be represented by a 2-rank symmetric positivedefinite matrix with 21 independent coefficients for general anisotropic materials. When the material shows local symmetries the number of independent coefficients decreases and reduces to 2 independent coefficients in the isotropic case. Among other choices of that pair of coefficients, the tensor C iso of an isotropic material can be written using the bulk modulus κ and shear modulus µ:

C iso = 3κS + 2µD (3) 
where S and D are respectively the so-called spherical tensor and deviatoric tensor defined as: S = 1 3 I 2 ⊗ I 2 and D = Id 6 -S with I 2 = [1 1 1 0 0 0] T and Id 6 the identity matrix of M 6 (R). Since {S, D} are orthogonal projectors in the space of real symmetric matrices M s 6 (R) (S 2 = S, D 2 = D and SD = 0) and an orthogonal pair for the scalar product associated to the Frobenius norm ( S F = 1; D F = √ 5), equation (3) also reads:

C iso = √ 3κS + 2µD 2 (4) 
Based on equation ( 4), we propose to write a random anisotropic elasticity tensor as:

C(δ, δ g ) = 3κ(δ)S + 2µ(δ)D G(δ g ) 3κ(δ)S + 2µ(δ)D (5) 
in which G(δ g ), κ(δ) and µ(δ) are random variables and (δ, δ g ) a pair of dispersion parameters. This model is detailed in sections (2.1.1-2.1.2).

The anisotropy kernel G

Following [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF], the so-called anisotropy kernel G belongs to the set SG + of all normalized, symmetric, definite-positive real random matrices. This random variable is defined on the probability measure space (A, F, P ), with values in M + 6 (R), parameterized by a unique real positive dispersion parameter δ g . According to [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF], the construction by the maximization of the entropy [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF] leads to the following form of the kernel:

G(δ g ) = L T (δ g )L(δ g ) (6) 
where L is an upper triangular matrix with entries defined as:

L ij (δ g ) =        δ g √ 7 G k , for upper extra-diagonal entries j > i δ g √ 7 2h(G k , α i ), for diagonal entries j = i (7) 
where:

• k is a reindexing : k = (14-i)(i-1) 2 + j -i + 1 • G k for k = 1.
.21 are 21 independent copies of a normalized centered Gaussian random variable G,

• h(•, α i ) is a non-linear iso-probabilistic transformation that maps a Gaussian scalar variable (•) into a Gamma distributed one.

• α i are the parameters of h(•, α i ) satisfying:

α i = 7 2δ 2 g -i-1 2
The dispersion of the random matrix G(δ g ) explicitly depends on δ g (see [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]):

E G(δ g ) -Id 6 2 6 = δ 2 g (8)

Random isotropic elasticity moduli

As far as random isotropic elasticity moduli are concerned, the bulk and shear moduli have been chosen since they are the eigenvalues of the elasticity tensor (see for instance [START_REF] Helbig | Foundations of anisotropy for exploration seismics[END_REF][START_REF] Basser | Spectral decomposition of a 4th-order covariance tensor[END_REF]) and thus lead to a diagonal representation. These moduli are then modeled as independent random variables of strictly positive real value.

Applying the maximum entropy principle with given mean values (κ, µ) and mean logarithm, leads to two Gamma distributed random variables. In addition, they can be modeled using transforms of 2 independent copies of the Gaussian scalar variable G. It should be noted that, the Gaussian G is the same as the one constituting the entries of G. Hence, by extending the k-subscription used in equation ( 7) beyond k = 21, we can write the 2 elasticity moduli as follows:

κ(δ) = δκh(G 22 , δ) and µ(δ) = δµh(G 23 , δ) (9) 
It is worth noticing that other probability laws such as lognormal could have been chosen, together with correlations between these two gaussian germs.

Properties of matrix-valued random variable C

Thanks to the knowledge of κ(δ), µ(δ) and G(δ g ), the random elastic tensor C(δ; δ g ) defined in equation ( 5) has the following properties (see [START_REF] Ta | Modeling of random anisotropic elastic media and impact on wave propagation[END_REF] for more details):

(i) C(δ; δ g ) has an isotropic mean given by:

C = 3κS + 2µD, (10) 
(ii) C(δ, δ g ) is a second order random variable:

E C(δ, δ g ) 2 F ≤ +∞ (11) 
(iii) C -1 (δ, δ g ) is a second order random variable when δ 2 < 1 2 and δ 2 g < 7
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(iv) The anisotropy level is linearly controlled by δ g :

I a = 19 21 δ g . (12) 
(v) The global fluctuation of the norm of C(δ, δ g ) depends explicitly on δ g and δ as:

δ 2 |C| = E C -C 2 F C 2 F = δ 2 + δ 2 g 7 1 + tr 2 (C) C 2 F ( 13 
)
Finally, property (v) is obtained using the expression of the 4th-order tensor of covariance of G(δ g ) given in [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF].

REMARK 1

The anisotropy level that is used at (iv) is based on decomposition [START_REF] Basser | Spectral decomposition of a 4th-order covariance tensor[END_REF], and is defined as the mean square distance between G(δ g ) and its projection C(δ g ) = S ⊗ S + D ⊗ D/5 G(δ g ) on the isotropic subspace of M + 6 (R): normalized by the square of the norm of the mean value of G:

I a = E G -C 2 F 6 ( 14 
)
This anisotropy index is somewhat different from other, more usual definitions [START_REF] Arts | Étude de l'élasticité anisotrope générale dans les roches par propagation de sondes[END_REF][START_REF] Carcione | Wave fields in real media: wave propagation in anisotropic, anelastic, porous and eletromagnetic media[END_REF], based on the distance in the Frobenius norm between the elasticity tensor C and the closest isotropic one C iso eqv , defined as C iso eqv = (S ⊗ S + D ⊗ D/5) C:

I a = C -C iso eqv 2 F C 2 F . ( 15 
)
The analytical relation ( 12) is a direct consequence of that choice of a definition.

REMARK 2 When I a = 0 the material is almost surely isotropic. When δ = 0, the results on the general random anisotropic tensor given in [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] are retrieved.

Stochastic field of elasticity tensor

Up to now, only the variability of the elasticity tensor at a given point has been accounted for. In order to introduce the spatial variability of this mechanical property, the present section discusses the construction of a model of the stochastic field of elasticity tensor based on the probabilistic model developed in the previous section. Let Ω = {x|x ∈ R 3 } be the physical domain, equipped with a Cartesian reference frame {i 1 , i 2 , i 3 }, and occupied by an inhomogeneous elastic material. The associated stochastic field model of elasticity tensor {C(δ; δ g ; ℓ)|x ∈ Ω}, defined on the probability measure space (A, F, P ), indexed on Ω, with values in M + 6 (R), can then be formulated as follows:

C(x;δ, δ g ; ℓ) = 3κ(x; δ; ℓ)S + 2µ(x; δ; ℓ)D G(x; δ g ; ℓ) 3κ(x; δ; ℓ)S + 2µ(x; δ; ℓ)D a.s. ( 16 
)
where ℓ = (ℓ 1 , ℓ 2 , ℓ 3 ) is a vector of correlation lengths in the three spatial directions. The evolution from equation [START_REF] Basser | Spectral decomposition of a 4th-order covariance tensor[END_REF] to equation ( 16) is done by replacing, in the formulation of the kernel G and of the isotropic elastic modulus κ, µ, the 23 independent copies G k |k ∈ {1, 2, ..., 23} of a Gaussian normalized random variable by 23 independent copies G k (x; ℓ)|x ∈ Ω; k ∈ {1, 2, ..., 23} of a stochastic Gaussian field {G(x; ℓ)|x ∈ Ω} indexed on Ω with values in R. This germ Gaussian field is of second-order, homogeneous with a correlation structure defined by the following correlation function (see, [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF][START_REF] Arnst | Inversion of probabilistic structural models using measured transfer functions[END_REF][START_REF] Popescu | Stochastic variability of soil properties: data analysis, digital simulation, effect on system behavior[END_REF], for more details):

R G (η; ℓ) = E {G(x; ℓ)G(x + η; ℓ)} = ρ(η 1 , ℓ 1 )ρ(η 2 , ℓ 2 )ρ(η 3 , ℓ 3 ) (17) 
where ρ(η; ℓ) is chosen as a squared cardinal sine:

ρ(η; ℓ) = 4ℓ 2 π 2 η 2 sin 2 πη 2ℓ (18) 
This stochastic field {C(x; δ, δ g ; ℓ)} is mean-square continuous with almost surely continuous samples. Following [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF], it can be shown that taking the restriction of this field on a bounded domain leads to a second order solution of the related stochastic boundary value problem.

EXAMPLE 1 As an example, a soil cube filling the physical domain

{x ∈ Ω 0 ⊂ Ω| -200m ≤ x 1 , x 2 ≤ 200m; -400m ≤ x 3 ≤ 0m} is considered now. The material has a constant bulk density ρ v = 2000kg/m 3 .
The mean model consists in a homogeneous isotropic elastic material with compression wave velocity v p = 1730 m/s and shear wave velocity v s = 1000 m/s. A simulation by the spectral representation approach (see below) is then performed. The mapping of term C 11 of a sample of the field C(x; δ, δ g ; ℓ) with δ = 0.6 ; δ g = 0.15 ; ℓ 1 = ℓ 2 = 50m and ℓ 3 = 20m is shown in (Figure 1-a). The shorter correlation length along the vertical axis is clearly visible on this chart. In Figure1-b, a good match between the theoretical unidimensional correlation function given by equation [START_REF] Komatitsch | A perfectly matched layer absorbing boundary condition for the second order seismic wave equation[END_REF] and the ones obtained by spatial mean is observed. Another remark is that despite the isotropic mean behavior, the elastic tensor is anisotropic almost everywhere. For instance, the elasticity tensor at the point {x 1 = x 2 = x 3 = 0} of the given field sample is: We now consider two samples of a random media having the same: mean homogeneous isotropic elastic properties, fluctuation level δ |C| and correlation length vector ℓ, but different values for the dispersion parameters δ and δ g in order to observe the influence of these parameters on the wave propagation pattern.

C(0, ...) =         6 
        [×10 9 Pa] (19) 

EXAMPLE 2

The domain of interest is such that -1500m ≤ x 1 , x 2 ≤ 1500m and -400m ≤ x 3 ≤ 0m.

The mean wave velocities are v p = 1730m/s and v s = 1000m/s. Free surface boundary conditions are applied on top x 3 = 0 and PML conditions on the other sides of the box. A point source is located at point x o = (-1400, 0, 0) on the free surface. The time history of the force is a Ricker with a characteristic frequency equal to 10Hz. The three correlation lengths are equal to 100m. As a consequence, the dominant wavelength is of the order of the correlation length and the domain characteristic size is about ten times the wavelength. As far as the amplitude of the fluctuation is concerned, the global fluctuation level on the elastic tensor is set to δ |C| = 0.49. The dispersion parameters are set to δ = 0; δ g = 0.6 for the first model, which corresponds to the original model proposed in [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF]. These parameters are set to δ = 0.47; δ g = 0.17 for the second model which corresponds to the upper limit of the anisotropic index observed in geophysics [START_REF] Vernik | Velocity anisotropy in shales: a petrophysical study[END_REF]. The amplitudes of the particle velocity on the free surface are shown in (Figure 2) for three different time steps and for the two models. Although δ |C| is the same in the two cases, the wave propagation patterns are very different. In the case of a high anisotropic level (δ g = 0.6) the diffusion pattern corresponds to a strong diffusion of the wave field whereas in the weakly anisotropic case (δ g = 0.17) the wave field seems much more localized in space and in time. Scattering at given locations can be observed. These results indicate that these two models lead to different propagation regimes which have to be charaterized in more details. (upper figures) δ = 0; δ g = 0.6, (lower figures) δ = 0.47; δ g = 0.17.

Generation of a realization of the stochastic field of elasticity tensor

We address here the issue of generating a sample of the random field of elasticity tensor. As we wish to propagate the waves over large distances, we are required to use a cluster of computers with distributed memory. Further, in the case that interests us, the correlation length is of the order of magnitude of the wavelength, which controls the size of the finite elements, for accuracy reasons. Hence, the elasticity tensor evolves significantly over the size of an element, and it has to be sampled at all Gauss-Lobatto-Legendre points. As an example, the number of space points at which the elasticity tensor is sampled is of the order of magnitude of several tens of millions (for run presented in Figure 2). This means an order of magnitude of 10 9 values to be computed and stored (21 coefficients per space points).

The main goal of such an operation over a cluster with distributed memory consists in performing as much work as possible over each thread independently, while retaining the global continuity of the elasticity tensor (see Figure 3). We chose here to use the spectral representation method (see, [START_REF] Shinozuka | Simulation of multi-dimensional Gaussian stochastic fields by spectral representation[END_REF], for instance). For this method, and when using a homogeneous grid (all machines are the same), only the seed of the pseudorandom generator has to exchanged between the threads (for example, through the main parameter file). When using a heterogeneous grid, the values of the random germs (the size of which is usually much smaller than 10 9 ) have to be exchanged.

More specifically, each thread executes, only over its own space domain, and for each of the 23 germs

{G k (x; λ c ) | 1 ≤ k ≤ 23}
, the following formula:

G k (x; λ c 1 , λ c 2 , λ c 3 ) = 2 π λ 1 π λ 2 π λ 3 κ∈supportH G H G 1 H G 2 H G 3 Y(κ|a) cos(2πZ(κ|a) + κ • x), (20) 
where the H G i are related to the Fourier spectrum of the correlation structure ρ(η; ℓ) chosen for the random field of elasticity tensor, and the a emphasize the quantity that has to be exchanged, depending on the heterogeneity of the cluster over which the computation is run. Note that these sums can be very efficiently implemented and computed using the Fast Fourier Transform, for which parallel implementations exist on large clusters.

Boundary conditions: PMLs

We consider in this section the truncation of the space domain over which the computation is run. Indeed, in homogeneous media, it has become quite common to use either absorbing boundaries or layers to reduce the size of the domain over which the computation is run. Both these general approaches (that incorporate many different methods) aim at absorbing the outgoing waves through the imposition of a particular boundary condition (absorbing boundaries) or by the addition of some absorbing material around the computational domain (absorbing layers). When schemes have shown to behave very well. In particular, the Perfectly Matched Layer method [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetics waves[END_REF] has taken a place of choice for applications in electromagnetism [START_REF] Teixera | Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates[END_REF][START_REF] Collino | The perfectly matched layer in curvilinear corrdinates[END_REF], acoustics [START_REF] Liu | The perfectly matched layer (PML) for acoustic waves in absorptive media[END_REF] and elastodynamics [START_REF] Hastings | Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation[END_REF][START_REF] Collino | Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[END_REF][START_REF] Komatitsch | A perfectly matched layer absorbing boundary condition for the second order seismic wave equation[END_REF][START_REF] Festa | Slip imaging by isochron back projection and source dynamics with spectral element methods[END_REF].

However, in a heterogeneous domain, some energy might be reflected inside the computational domain by a heterogeneity located outside of it. Hence the absorption of the outgoing waves actually decreases the energy inside the computational domain. The development of equivalent boundary conditions in such media is still a pending question to the authors' knowledge, and will not considered here. In this section we describe, respectively, the implementation of the PMLs for elastodynamics, the instability arising in heterogeneous anisotropic media, and a possible patch for that problem.

PMLs in elastodynamics

The absorbing property of the PML is represented mathematically by the modification of the divergence operator in the strong formulation of the elastodynamics equation: This modified divergence operator Div is written

Divσ + f v = ρ v ü. (21) 
Div = 1 S x e x ∂x + 1 S y e y ∂y + 1 S z e z ∂z, (22) 
with S i the stretching function along the direction e i . As in [START_REF] Festa | The Newmark scheme as a velocity-stress time staggering: an efficient PML for spectral element simulations of elastodynamics[END_REF] for the simplest case of a boundary of normal n j , this function can be chosen in the frequency domain as:

S i = 1 -i β i (x i ) ω δ ij , (23) 
with δ ij the Kronecker symbol and β i (x i ) a real function of the distance to the interface between the physical and absorbing domains. This is chosen strictly positive and starting at zero to ensure the continuity of the material at the interface.

The modified divergence operator Div can also be seen as a change of coordinates

x i = x i - i ω x i 0 β i (s)ds. (24) 
Physically the modified divergence operator implies that there is an exponential attenuation within the PMLs. Indeed a PML region perpendicular to e x transforms (see [START_REF] Collino | Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[END_REF], for instance) a plane wave

Φ(x, y, z, t) = Φ 0 e i(ωt-kxx-kyy-kzz) (25) 
into the wave Φ(x, y, z, t) = Φ 0 e i(ωt-kxx-kyy-kzz) e -kx ω x 0 βx(s)ds [START_REF] Shannon | A mathematical theory of communication[END_REF] which has been attenuated by a factor of e -kx ω x 0 βx(s)ds .

Instability of PMLs in heterogeneous anisotropic media

Although PMLs behave very well, it has been shown that they become unstable, in the case of anisotropic media, for certain relations of the group velocity and the orientation of the layer [START_REF] Bécache | Stability of perfectly matched layers, groups velocities and anisotropic waves[END_REF] (see Figure 4). Unfortunately, this situation always occurs when considering heterogeneous and anisotropic media. This section describes this instability.

For elastic waves, there are two equivalent ways to implement the PMLs: by decomposing waves into potential energies of compression and shear, as in [START_REF] Hastings | Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation[END_REF], or through a stress-velocity formulation, as in most application in elastodynamics [START_REF] Festa | The Newmark scheme as a velocity-stress time staggering: an efficient PML for spectral element simulations of elastodynamics[END_REF]. This approach is followed here, and the system of equations to be solved is:

       ρ v ( vm i + β m v m i ) = ∂σ ij ∂x j δ jm σm ij + β m σ m ij = C ijkl ∂v k ∂x l δ lm (27) 
To simplify the notations, and understand the concepts, we choose a PML perpendicular to i 1 (i.e. the damping in the PML is activated only along the direction i :

β 1 = 0):        ρ v ( vm i + δ 1m β m v m i ) = ∂σ ij ∂x j δ jm σm ij + δ 1m β m σ m ij = C ijkl ∂v k ∂x l δ lm (28) 
The system (28) can be assembled in the form of the first-order differential equation:

Ψ = A 1 ∂Ψ ∂x 1 + A 2 ∂Ψ ∂x 2 + A 3 ∂Ψ ∂x 3 -BΨ ( 29 
)
where Ψ is a 27-components-vector 

Ψ = σ (1) 11 σ (1) 22 σ (1) 33 σ (1) 12 σ (1) 13 σ (1) 23 v (1) 1 v (1) 2 v (1) 3 .. 

Modified (stable) PMLs for heterogeneous anisotropic media

We present here a modified version of the PMLs that remains stable and reflects very little energy in the case of heterogenous and anisotropic media. Another option consists in using a multiaxial damping [START_REF] Meza-Fajardo | A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis[END_REF], which stabilizes the PMLs, but this creates some undesired reflection at the interface between the physical and absorbing domains.

From the geometrical interpretation of the instability issue in the previous section, one remark can be drawn right away: an isotropic material is naturally stable with respect to the PML because the slowness surfaces are spheres. Therefore we will adapt the PML by considering an isotropic equivalent material instead of the original anisotropic material. This isotropic equivalent material is defined as the projection of the elasticity tensor over the space generated by the spherical and deviatoric tensors (see section 2). However, to limit the influence of the loss of "perfect match" between the physical domain and the PML, we only introduce this isotropic equivalent material at some distance from the interface (see Figure 5). The effect of this modification is hence a reduction of the instability issue (in practice, the energy explodes at later times) while keeping the undesired reflections at low levels.

EXAMPLE 3

We then present a study of the influence of the relative size of the modified PML on the evolution of the total energy inside the physical domain (Figure 6). Let us consider a cube of inhomogeneous soil modeled by a 3D-stochastic anisotropic elasticity tensor field of isotropic mean model (represented by the P-speed and S-speed respectively equal to 1730 m/s and 1000 m/s). δ and δ g are chosen such that the whole fluctuation δ |C| is equal to 50% of the mean. The three correlation lengths are all taken equal to 50m. This physical domain of size 500m × 500m × 450m is almost surrounded by 50m-layer-PMLs except for the top side where a free surface boundary condition is applied. Both of these domains (i.e. physical and absorbing) are discretized in hexahedral spectral finite elements of size 50m × 50m × 50m. A GLL-grid of order 8 is used for local collocation points. The relative size of the modified PML layer is evaluated in number of GLL points at which the anisotropy behavior is replaced by a isotropic equivalent one. A Ricker point-like source is located at the center of the free surface. 7 random simulations corresponding to these PML configurations are then performed in which the physical domain sample is unchanged from one to another. We observe that in average, the larger the isotropic domain, the further in time the explosion time is sent. Note, however, that this property is not necessarily true for each sample independently because the media that we are considering are realizations of a random medium. x 10 -15 1GLL_Iso 2GLL_Iso 3GLL_Iso 4GLL_Iso 5GLL_Iso 6GLL_Iso 7GLL_Iso 

Wave propagation vs. diffusion

In this section, we discuss very briefly a first step in a new direction of research for the observation of wave propagation in random media over long distances. The general motto is that, in some cases, the observation of the velocity field at long distances is not meaningful, and that the observation of energy levels is more important. This is obvious in Figure 2 where a diffusion behavior is observed on the upper graphs. An interesting approach would therefore consist in solving, for long distances, an equation of diffusion for the energy (the coefficients of which can be derived theoretically [START_REF] Ryzhik | Transport equations for elastic and other waves in random media[END_REF]), rather than the wave equation for the velocity field. The former would require much less computational power because its features are much smoother. Besides the construction of the appropriate coefficients for the diffusion equation, this research direction would require the construction of appropriate excitation given the real excitations of the wave equation. In the longer run, two interesting options would be to couple wave propagation with diffusion some distance away from the excitation, and/or to construct new types of PMLs, that would allow to launch back at the computational domain the appropriate energy, based on the diffusion equation. This last point would address the unsolved problem of PML for heterogeneous media, hinted at in section 3.

The first point of that research program, which is the only one that we will consider here, consists in identifying the emergence of diffusion of energy within the framework of the wave equation. In particular, several authors [START_REF] Papanicolaou | Stability of the P-to-S energy ratio in the diffusive regime[END_REF][START_REF] Margerin | Monte Carlo simulation of multiple scattering of elastic waves[END_REF][START_REF] Larose | Diffusion multiple des ondes sismiques et expériences analogiques en ultrasons[END_REF] have shown that diffusion of energy is necessarily accompanied by an equipartition of the compressional wave energy

E P = ρ v v 2 P × E (Div u) 2 (37) 
and the shear wave energy

E S = ρ v v 2 S × E -→ Rot u 2 (38) 
of the form

E P E S = v 3 P 2v 3 S . (39) 
Indeed, this equipartition can be observed in the simulations that we have performed. However, this equipartition appears after long distances of propagation, and at long times, so that some work still has to be performed in lowering the computational cost of the solution of the full wave propagation equation over long distances. The main issue with this characterization of diffusion in that manner is that the definition of the compressional wave and shear wave energies is not well defined for anisotropic media. In the example below, we show that the convergence does take place towards the expected value for both isotropic and mildly anisotropic media. However, for more strongly anisotropic media, the convergence does take place but leads to a different value of the ratio of energies. Further investigations are required on that topic.

EXAMPLE 4

We consider here two different cubes of dimensions 3000m × 3000m × 450m with heterogeneous materials with global variability δ |C| = 0.1 and correlation lengths in all directions 100 m. The material of the first is isotropic, with δ = 0.1 and δ g = 0 and that of the second one is anisotropic with δ = 0 and δ g = 0.1374. In both cases, the domains are discretized in hexahedral spectral finite elements of size 50m × 50m × 50m. A GLL-grid of order 8 is used for local collocation points. In both cases, no PMLs are implemented and Neumann boundary conditions are used all over. This is done so as to contaminate the energy inside the domain through undesired reflections and/or undesired loss. On Figure 7, the convergence of the ratio of the energies towards the expected value can be observed.

Figure 1 :

 1 Figure 1: A sample of stochastic elasticity tensor field: (a) Mapping of C 11 . (b) Theoretical (solid lines) and observed (circles) correlation structures in i 1 -(black) and i 3 -(gray) directions.

Figure 2 :

 2 Figure 2: Time evolution (from left to right) of wavefronts on the free surface for δ |C| = 0.49: (upper figures) δ = 0; δ g = 0.6, (lower figures) δ = 0.47; δ g = 0.17.

Figure 3 :

 3 Figure 3: Example of fields generated by sub-domains (one sub-domain per thread): geometry of the subdomains (left figure) and one realization of the component C 44 of the elasticity tensor (right figure).

Figure 4 :

 4 Figure 4: Instability issue with PMLs in anisotropic medium.

Figure 5 :

 5 Figure 5: Schematic presentation of the introduction of the isotropic equivalent material in the PML.

Figure 6 :

 6 Figure 6: Influence of the relative size of the modified PML on the evolution of the total energy inside the physical domain. The right figure is a (strong) zoom on the left figure.

Figure 7 :

 7 Figure 7: Observation of the equipartition of energy at the theoretical level over long distances of propagation and time for an isotropic model (blue stars) and a mildly anisotropic one (red line).

  .369 0.461 0.880 0.671 -0.303 -0.178 -3.949 1.403 0.039 -0.405 -0.513

	----	--(sym.) -	4.394 -0.142 -0.152 -0.662 -3.091 -1.072 -0.081 -2.036 0.224 ----2.047

A 1 , A 2 , A 3 are matrices depending on the mechanical properties C ijkl and ρ v , and B is a diagonal matrix characterizing the absorbing property of the PML:

The equation ( 29) is associated to a hyperbolic equation that describes the physical domain:

and accepts plane wave solutions Ψ 0 e i(ωt-κ•x) when (κ, ω) satisfy the dispersion relation:

Coming back to system (29), it accepts plane wave solutions when the following dispersion relation is met:

Following [START_REF] Bécache | Stability of perfectly matched layers, groups velocities and anisotropic waves[END_REF], the solutions Ψ are stable when the imaginary part of ω is positive. This implies that:

Geometrically, the condition (36) implies that the instability of the PML occurs almost surely for long times if the slowness surfaces of the material shows at least one concave part towards the PML. A schematic view of that interpretation is presented in Figure 4.