
HAL Id: hal-00790421
https://centralesupelec.hal.science/hal-00790421v1

Submitted on 12 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nuclear power plant components condition monitoring
by probabilistic support vector machine
Jie Liu, Redouane Seraoui, Valeria Vitelli, Enrico Zio

To cite this version:
Jie Liu, Redouane Seraoui, Valeria Vitelli, Enrico Zio. Nuclear power plant components condition
monitoring by probabilistic support vector machine. Annals of Nuclear Energy, 2013, 56, pp.23-33.
�hal-00790421�

https://centralesupelec.hal.science/hal-00790421v1
https://hal.archives-ouvertes.fr


 

Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector 

Machine 

Jie Liua, Redouane Seraouib, Valeria Vitellia, Enrico Zioa,c,* 

aChair on Systems Science and the Energetic challenge, European Foundation for New Energy - 

Électricité de France, École Centrale Paris, Chatenay-Malabry, France, and Supelec (École Supérieure 

d'Électricité), Plateau de Moulon, Gif-sur-Yvette, France. 

cEnergy Department, Politecnico di Milano, Milano, Italy 

bEDF R&D, Simulation and information TEchnologies for Power generation System (STEPS) 

Department, Chatou, France 

*Corresponding author: Phone number: +33 1 41 13 19 14 

 

Email: jie.liu@ecp.fr, redouane.seraoui@edf.fr, valeria.vitelli@ecp.fr, enrico.zio@ecp.fr 

 

Abstract 

In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP) 

components is proposed, for the purposes of condition monitoring. It builds on a modified version of 

the Probabilistic Support Vector Regression (PSVR) method, which is based on the Bayesian 

probabilistic paradigm with a Gaussian prior. Specific techniques are introduced for the tuning of the 

PSVR hyerparameters, the model identification and the uncertainty analysis. A real case study is 

considered, regarding the prediction of a drifting process parameter of a NPP component. 
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1. Introduction 

Production systems are becoming increasingly complex and demand sophisticated methods to 

anticipate, diagnose and control abnormal events in a timely manner, as the consequences of 

unexpected faults can bring high economic losses for a company (Venkatasubramanian, 2005).  

For an optimized operation, the conditions of NPP components and systems are usually monitored 

at regular intervals (Condition Monitoring), and a warning is triggered when the monitored signals 

exceed predefined thresholds (Fault Detection) (Zio et al., 2010).The plant operators must identify the 

plant state and the components out of control (Diagnostics), and predict the future development of the 

scenarios (Prognostics) to decide the actions to take to regain safe control of the plant (Zio, 2012). 

Then, while diagnostics aims at identifying the cause of the deviation from normal behavior and at 

determining the state of the parameters critical for the plant operation and safety, prognostics aims at 

the prediction of the Residual Useful Life (RUL) of the components (Zio, 2012).  

In general, two strategies for condition monitoring, detection, diagnostics and prognostics are 

possible: either based on physical models, or based on data-driven approaches (Zio, 2012; Ma and 

Jiang, 2011). In the case of complex systems, physical models can be built only after simplification of 

the physical relations. Then, in most cases, they cannot timely provide the plant operators with a 

sufficiently precise diagnostics of the plant situation (Zio, 2012). On the contrary, data-driven 

approaches are attractive for NPPs, also considering that most components are monitored since the 

commissioning of plants, and, hence, a large amount of measured data is available to drive the tuning 

of the models (Ma and Jiang, 2011). 

A substantial amount of research has concerned the development of data-driven approaches for 

condition monitoring, detection, diagnostics and prognostics. Artificial Neural Network (ANN), 

Support Vector Machine (SVM), Genetic Algorithm (GA) and Auto-Associative Kernel Regression 

(AAKR) are among some of the most studied and applied (Chevalier et al., 2009; Baraldi et al., 2010; 

Baradi et al., 2011; Santosh et al., 2009; Li et al., 2012; Yazikov et al., 2012; Rand et al., 2012a; Rand 

et al., 2012b; Muralidharan and Sugumaran, 2012; Ekici, 2012; Zio and Gola, 2006; Lu and 

Upadhyaya, 2005; Jeong et al., 2003; Zio et al., 2009). These approaches are already mature, 

especially for detection and diagnostics. On the contrary, the amount of research dealing with 

prognostics is limited, especially in the context of NPP components. Some recent references, referring 

to prognostics for engineering systems, are Li and Nilkitsaranont (2009), Niu and Yang (2010) and 

Wang et al. (2004). Support Vector Regression (SVR) is used in Trontl et al. (2007) and Bae et al. 

(2008) to fulfill the point estimation with satisfactory results. In Elnokity et al. (2012), a hybrid 

modeling combined with the Industrial Source Complex (ISC) model and an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) has been used to improve the modeling ability of predicting tracer 

concentrations. SVR method is used in Cai (2012) to predict the critical heat flux, while Fuzzy Neural 



Networks are used in Na et al. (2006) to estimate the collapse moment due to the wall-thinned defects 

of bends and elbows in piping systems. However, uncertainty quantification is not included in the 

previously described data-driven models. In Zio et al. (2010) and Zio and Di Miao (2010), a fuzzy 

similarity analysis is introduced to compare the evolving failure scenario with a library of reference 

patterns describing the multidimensional evolution of monitored process variables. The aim is to find a 

combination of the reference patterns, weighed by their similarity to the observed failure pattern, to 

determine the future evolution of the scenario and to derive the corresponding RUL. However, failure 

patterns in NPP components are rare and thus a “solid” library of references cannot be easily formed. 

SVR has also been used in Kim et al. (2012) to build Prediction Intervals (PIs) for the same problem. 

However, since the method has been trained on a relatively small amount of data, its generalization 

power is not assured. 

It is well recognized that there exists no prognostic method that is ideal for every situation (Jardine 

et al., 2006; Y-C and Pepyne, 2001). A variety of methods have been developed for specific situations 

or specific classes of systems. In the present work, we propose a method for prediction with 

uncertainty quantification, in the context of NPP components condition monitoring and prognostics. 

We address the problem of predicting process variables under conditions of fault of a NPP component. 

A modified Probabilistic Support Vector Regression (PSVR) is developed and used to provide in 

output the PIs of a process variable. To the author’s knowledge, this is the first time that such 

technique is applied in the specific application context of interest. A real case study is considered, 

related to the condition monitoring of a component of a NPP of Électricité De France (EDF). A main 

challenge arises from the need of building a model based on only one scenario, which is a realistic 

situation given the rarity of faults in NPP components. 

The paper is structured as follows. Section 2 provides a description of the PSVR method for 

prognostics. Section 3 presents the characteristics of the data of the real case study, and the pre-

treatment techniques used to remove the outliers, to reconstruct the missing data points, and to identify 

the most proper model. In Section 4, the results of the application of PSVR for prognostics are 

presented, and comparisons with the standard SVR method and other empirical apporaches are also 

given in this Section. Some conclusions are drawn in Section 5. 

2. Probabilistic Support Vector Regression (PSVR) 

Standard Support Vector Machines (SVMs) (Cortes and Vapnik, 1995; Vapnik et al.; 1996; Boser 

et al., 1992; Drucker et al., 1997; Cristianini and Taylor, 2000) are learning machines implementing 

the Structural Risk Minimization (SRM) inductive principle to obtain good generalization 

performance on a limited number of learning patterns (Gao et al., 2002; Jardine et al., 2006; Poggio 

and Girosi, 1998; Girosi, 1998). However, the parameters need to be specifically tuned for the 



problem at hand and this may be difficult. Another problem related to SVMs is that the classification 

and regression results are provided as point estimates only, while it would be more informative to 

obtain a Prediction Interval (PI) with an associated probability that the true value lies in the interval. 

Also, the distribution of the predicted value is a constructive indicator for practical purposes. 

To overcome these limitations, the Bayesian probabilistic paradigm has been considered in 

combination with SVM (Mackay, 1997; Neal, 1996; Williams, 1997). Recently, it has been shown that 

SVMs can be interpreted as a Maximum A Posteriori (MAP) solution to a Bayesian inference problem 

with Gaussian priors and an appropriate likelihood function. This probabilistic interpretation enables 

Bayesian methods to be employed to determine the regularization parameters in the SVM framework 

(Kim et al., 2012; Sollich, 1999). The method using MAP for SVM estimation is called Probabilistic 

Support Vector Regression (PSVR). Bayesian approaches for SVM can estimate the parameter and 

feature spaces simultaneously by maximizing the evidence function, and they allow obtaining an error 

bar for the prediction (Lin and Weng, 2004). 

2.1 PSVR Using Ɛ-Insensitive Loss Function 

Let us assume that the input data is a 𝑛 -dimensional set of vectors 𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} , 

independently drawn in 𝑹𝑝, and that we also have an independent sample from the target value 𝒀 =

{𝑦1, 𝑦2, … , 𝑦𝑛}, where 𝑦𝑖  ∈ 𝑹, 𝑖 = 1, 2, . . . , 𝑛.  

In regression methods, the final aim is to find an underlying function 𝑎(𝒙): 𝑹𝑝 → 𝑹 describing the 

relation between the input data and the target. We will now briefly state the PSVR approach to the 

estimation of 𝑎(𝒙); further mathematical details on the derivation of the method can be found in the 

Appendix, and in the references therein. 

We make the following assumptions: 

(1) Training data set 𝜞 =  {𝑿, 𝒀}  follows an identical and independent distribution (i.i.d). 

(2) The a priori probability distribution is 𝑃[𝒂(𝑿)] ∝ exp (−
1

2
∥ �̂�𝑎 ∥2) , where ∥ �̂�𝑎 ∥2  is a 

positive semi-definite operator and 𝒂(𝑿) =  (𝑎(𝒙1), 𝑎(𝒙2), … , 𝑎(𝒙𝑛))𝑇. 

(3) The Ɛ -insensitive loss function is chosen as the loss function. 

(4) The covariance function is 𝐾(𝒙, 𝒙′), and 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−
|𝒙𝑖−𝒙𝑗|2

2𝛾2 ), where 𝒙𝑖 , 𝒙𝑗  are the 

input data points in 𝑿. 

The a posteriori probability of 𝒂(𝑿) can be written as 



𝑃[𝒂(𝑿)|𝚪] =  
[𝐺(𝐶,𝜀)]𝑁

√𝑑𝑒𝑡2𝜋𝐾𝑿,𝑿𝑃[𝚪]
exp{−𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) −

1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1 𝒂(𝑋)𝒙𝑖∈𝑿 },                       (1) 

where 𝐺(𝐶, 𝜀) =  
1

2

𝐶

𝐶𝜀+1
, and 𝐾𝑿,𝑿  = [𝐾(𝒙𝑖, 𝒙𝑗)] is the covariance matrix of the data points of 𝑿. 

We find the maximum of Equation (1) using the so-called MAP. This requires finding the minimum of 

the following function 

 𝑅𝐺𝑆𝑉𝑀(𝑎) =  𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) +
1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1 𝒂(𝑿)𝒙𝑖∈𝑿  (2) 

We can see that the risk of Gaussian SVMs is equivalent to the standard SVM. Following the 

discussion in Mackay (1997), Tikhonov and Arsenin (1997), Girosi (1998) and Burges (1998), we can 

write the solution of the minimization problem associated to Equation (2) in the following form 

 𝑎∗(𝒙) =  ∑ 𝛽𝑖𝐾(𝒙𝑖 , 𝒙)𝒙𝑖∈𝑿  (3) 

where 𝛽𝑖 =  𝑎𝑖 − 𝑎𝑖
∗  is a combination of the Lagrange Multipliers associated to the optimization 

problem (Smola and Scholköpf, 2004). The 𝑎𝑖 and 𝑎𝑖
∗ can be determined by a Quadratic Programming 

approach. According to Smola and Scholköpf (2004), ∀ 𝑖 = 1, . . . , 𝑛, 𝑎𝑖 and 𝑎𝑖
∗
 lie in the interval [0, 𝐶], 

and 𝛽𝑖 consequently lies in the interval [−𝐶, 𝐶], which is the domain of the optimization problem. See 

Na et al. (2006) for more details on the implementation. 

2.2 Hyperparameters 

According to the description of the PSVR method given in the previous Section, we shall now 

detail a strategy to determine the three hyperparameters 𝐶, 𝜀, 𝛾, before the optimization algorithm is 

initialized. 

Parameter 𝐶 is the penalty factor. It controls the trade-off between complexity and the proportion 

of non-separable samples, and must be selected by the user (Vladimir et al., 1998). If it is too large, it 

will induce a high penalty for non-separable points, hence we may store too many support vectors and 

go towards over fitting. If it is too small, it may result in underfitting (Alpaydin, 2004). For what 

concerns the optimization process, 𝐶 influences the computational burden of the regression: the bigger 

𝐶 is, the heavier the computational burden is.  

Parameter 𝜀 controls the sparsity of the data. It has an effect on the smoothness of the SVM 

response and it affects the number of support vectors, so both the complexity and the generalization 

power of the network depend on its value (Horváth, 2001). By inspecting the 𝜀 -insensitive loss 

function (see the details in the Appendix), we see that data points inside a tube of radius 𝜀 surrounding 



the predicted values, are not considered in training the regression model. This is graphically 

exemplified in Figure 1. 

 

 

Fig.1 A picture of the 𝜀-insensitive loss-function behavior. 

Finally, parameter 𝛾 influences the width of the kernel, and hence the accuracy of the prediction 

and its variability.  

There are already some methods in the literature to determine these hyperparameters, e.g. VC-

theory in Vapnik (1995), Bayesian method in Mackay (1991), AIC in Akaike (1974), NIC in Murata et 

al. (1994) and Maximizing Evidence Function in Kim et al. (2012). In this paper, an interpolation 

method based on an innovative criterion is used to obtain the best values of these three parameters. 

The details are illustrated in Section 4, directly in relation to the case study. 

2.3 Error Bar Estimation 

        In a Bayesian treatment of the prediction problem, error bars arise naturally from the predictive 

distribution. They are made up of two terms, one due to the a posteriori uncertainty (the uncertainty of 

𝑎(𝒙)), and the other due to the intrinsic noise in the data (Kim et al., 2012). Suppose that 𝒙 is a test 

input vector, and that the corresponding value of the target is the random variable 𝑦, obtained adding 

to 𝑎(𝒙) an unknown noise 𝛿 with zero mean; then 

 𝑃[𝚪|𝒂(𝑿)] ∝ exp (−𝐶 ∑ 𝑙(𝛿𝑖)𝑛
𝑖=1 ). (4) 

We can also obtain the density of the noise 𝛿 

                        𝑃[𝛿] =  
𝐶

2(𝐶𝜀+1)
exp (−𝐶𝑙𝜀(𝛿)),                                                     (5) 

and the noise variance 



 𝜎𝛿
2 =  

2

𝐶2 +
𝜀2(𝐶𝜀+3)

3(𝐶𝜀+1)
.                (6) 

The conditional probability distribution of 𝑎(𝒙) given 𝚪 can instead be written as 

𝑃[𝑎(𝒙)|𝚪] =  
1

√2𝜋𝜎𝑡
exp {−

(𝑎(𝒙) − 𝑎∗(𝒙))2

2𝜎𝑡
2 },                                            (7) 

with 

𝜎𝑡
2(𝒙) =  𝐾(𝒙, 𝒙) −  𝐾𝑿𝑀,𝒙

𝑇 𝐾𝑿𝑀,𝑿𝑀

−1 𝐾𝑿𝑀,𝒙.                                          (8) 

Consequently, the error bar width of the prediction corresponding to the test input point 𝒙 is  

𝜎2(𝒙) =  𝜎𝛿
2 + 𝜎𝑡

2(𝒙) =  
2

𝐶2 +
𝜀2(𝐶𝜀+3)

3(𝐶𝜀+1)
+  𝐾(𝒙, 𝒙) −  𝐾𝑿𝑀,𝒙

𝑇 𝐾𝑿𝑀,𝑿𝑀

−1 𝐾𝑿𝑀,𝒙.                (9) 

The conditional probability distribution and the error bar are given in Equations (7) and (9). See 

Na et al. (2006) for more details on the calculations.  

3. Case Study Description 

A set of data from the Reactor Coolant Pump (RCP) of one of EDF’s NPPs is used to test the 

efficiency and the accuracy of the PSVR modeling approach developed in our work. In the following, 

we describe the data and illustrate the pre-processing steps. 

3.1 Data Description 

The dataset includes the measurements of the RCP of a NPP, with increasing leak flow in the first 

seal (a variable denoted with IntVar 9). The dataset contains the values of seventeen different variables 

recorded by seventeen different sensors along a period of 406 days. The variables whose 

measurements concern sensors inside the RCP are hereafter called internal variables; the others are 

called external variables. The description of all the internal and external variables and their physical 

meanings are given in Table 1. 

There are nine internal variables and eight external variables. Each of the variables is observed 

hourly for a period of more than 13 months, about 9200 observation points. The evolution of four of 

the variables is shown in Figure 2: from left to right, and from top to bottom, ExtVar 2, ExtVar 6, 

ExtVar 7 and IntVar 9. At the 5700th observation instance, we observe the fault, manifested by the 

variable IntVar 9 going out of control. We note that: all the variables are time-dependent, and there are 

seventeen variables in total, hence leading to a multivariate problem; each variable is measured hourly, 

giving 9205 measurements for each variable, and hence making computations challenging; all the 

variables show a nonlinear behavior, hence requiring a nonlinear model; the data need pre-processing, 



because there are many outliers and missing observations. Missing data are due to the absence of 

sensors recording during some time instances, while outliers correspond to bad (extremely high or low) 

sensor recordings. Concerning internal variables, the total number of missing data is 377 in IntVar 1, 

415 in IntVar 2, 512 in IntVar 3, IntVar 4, IntVar 5 and IntVar 6, 493 in IntVar 7, 462 in IntVar 8 and 

409 in IntVar 9. In the time series of external variables, there are 434 missing data in ExtVar 1, 409 in 

ExtVar 2, 422 in ExtVar 3, 428 in ExtVar 4, 372 in ExtVar 5, 453 in ExtVar 6, 512 in ExtVar 7, and 

500 in ExtVar 8. 

Tab.1 Physical meaning of each internal and external variable. 

Internal variables External variables 

Name  Physical meaning Name  Physical meaning 

IntVar 1 T cold leg loop 1 [WR] ExtVar 1 T by-pass hot leg loop 3 

IntVar 2 T water seal #1 051PO ExtVar 2 T seal injection line 

IntVar 3 T stator winding motor 051PO ExtVar 3 P primary amount file B [GL] 

IntVar 4 T motor lower bearing 051PO ExtVar 4 Debit general file A 

IntVar 5 T lower thrust bearing 051PO ExtVar 5 Debit general file B 

IntVar 6 T motor upper bearing 051PO ExtVar 6 T aval exchanges file A 

IntVar 7 T motor upper thrust bearing 051PO ExtVar 7 T aval exchanges file B 

IntVar 8 Flow seal injection supply RCP051PO ExtVar 8 Debit refrigeration GMPP 051PO 

IntVar 9 Seal leak flow #1 RCP051PO   

 

3.2 Data Pre-processing 

Since the dataset we are going to analyze contains both missing data and outliers, we have to deal 

with both these issues. First of all, we will remove anomalous data, since their extreme values would 

affect the results of the analysis. Outliers can be easily detected by deciding some constraints, e.g. the 

limits 𝑥 ̅ ± 3 ∗ 𝜎𝑥 where 𝑥 ̅ is the mean of all the data points and 𝜎𝑥 is their standard deviation. These 

limits are needed to detect the outliers, selected as those data points bigger than 𝑥 ̅ + 3 ∗ 𝜎𝑥 or smaller 

than𝑥 ̅ − 3 ∗ 𝜎𝑥, and subsequently removed. Note that we used such constraints, rather than the usual 

ones based on the median and the InterQuartile Range (IQR), to be more conservative in the outlier 

selection, due to the dependence among data. 



 

Fig.2 The evolution of four of the variables included in the dataset: from left to right, and from top 

to bottom, the measurements of ExtVar 2, ExtVar 6, ExtVar 7 and IntVar 9. On the   axis, time 

measured in hours. 

Secondly, we want to reconstruct missing data. Note that, after the outlier selection and 

elimination procedure, the number of missing data has increased. A possible way to deal with the 

reconstruction of missing data is the local polynomial regression fitting (Masry and Mielniczuk, 1999). 

This local least squares regression technique estimates effectively the values of the internal and 

external variables when there are missing data points. Moreover, it can also be used to perform the 

smoothing of the available observations, in order to reduce noise. We will thus use this technique both 

to reconstruct data where missing, and to obtain a smoother and less noisy time series in all remaining 

time instances. 

Precisely, if we denote by 𝑡0 a generic time instance, we execute the following steps to perform 

local polynomial regression: 

(1) Find the 𝑘-nearest neighbors of 𝑡0, which constitute a neighborhood 𝑁(𝑡0): this means finding 

the 𝑘 time instances in the time series which are closest to 𝑡0. The number 𝑘 is determined by 

setting it equal to a selected percentage (called span) of the data; note that the span can be 

eventually different for each variable to allow flexibility. In the case of our application, three 

different values of the span have been selected, according to a trial-and-error procedure: 0.5% 

(high), 0.2% (medium) and 0.08% (low). For each of the variables, the most proper value of 

the span (high, medium or low) has been selected to be the most suited to the noise level of 

the variable. 
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(2) Calculate 𝐷(𝑡0) = max 𝑑(𝑡, 𝑡0) over 𝑡 ∈ 𝑁(𝑡0), where 𝑑  is the Euclidean distance between 

the data at time 𝑡 and 𝑡0. 

(3) For each point 𝑡 ∈ 𝑁(𝑡0), calculate its weight 𝑊(𝑡) =  (1 − |
𝑡− 𝑡0

𝐷(𝑡0)
|3)3 with a tri-cube weight 

function. 

(4) Calculate the weighted least square fit of 𝑡0 on the neighborhood 𝑁(𝑡0). 

By repeating these steps for all time instances, all the variables are smoothed and reconstructed. 

Some examples of the so obtained time series are shown in Figure 3: they are the smoothed and 

reconstructed data corresponding to the variables in Figure 2. For the variables shown in Figure 3, the 

span parameter has been fixed to 0.5%. 

 

 

Fig.3 The smoothing and reconstruction of the evolution of the four variables whose raw 

observations are shown in Figure 2. 

3.3 Model Identification 

In order to select the most proper variables to be included as inputs in the PSVR model for 

improved prediction accuracy and reduction of the computational burden, a correlation analysis is 

carried out between the target variable IntVar 9 and the other internal and external variables. The 

inputs are chosen to be the variables maximizing their correlations with the target IntVar 9. 

Correlations are measured by the classical Pearson correlation coefficient (Rodgers and Nicewander, 

1988). Table 2 shows the results of the analysis. 
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Tab.2 Correlations of the target variable with other internal and external variables. 

Correlations 
Internal variables 

IntVar 1 IntVar 2 IntVar 3 IntVar 4 IntVar 5 IntVar 6 IntVar 7 IntVar 8 

IntVar 9 0.03128 0.48797 0.55268 0.50926 0.50701 0.58884 0.48164 0.19193 

Correlations 
External variables 

ExtVar 1 ExtVar 2 ExtVar 3 ExtVar 4 ExtVar 5 ExtVar 6 ExtVar 7 ExtVar 8 

IntVar 9 -0.44992 0.50569 0.12352 -0.24375 0.24569 0.43695 0.37322 -0.03361 

 

Three external variables are the most related to the target: ExtVar 2, ExtVar 6 and ExtVar 7, 

corresponding to a correlation of 50.5%, 43.7% and 37.3%, respectively (see Table 2). Some of the 

internal variables have also a strong correlation with the target, with a correlation of more than 48%: 

IntVar 2, IntVar 3, IntVar 4, IntVar 5, IntVar 6 and IntVar 7. Hence, these six most related internal 

variables, and the three most related external variables, are included as inputs in the prediction model. 

IntVar 8 is also chosen as input, as suggested by expert judgment. The results are given in the next 

Section.  

Historical values of the target can also be exploited as inputs to improve the accuracy of the 

prediction. In order to determine the most proper temporal horizon of the target for prediction 

purposes, i.e. the number of previous values to be used in the model, an autocorrelation analysis is 

carried out on the time series of the target values. The results of this analysis are reported in Figure 4, 

where the empirical partial autocorrelation function is plotted against the corresponding temporal lag 

(a multiple of one hour). It is evident that the correlations decrease with lag, and after a lag of three 

time steps (i.e. three hours) they are no longer significantly different from zero. Indeed, the dashed 

horizontal lines in the plot are the limits of the region of acceptance for a statistical test with null 

hypothesis being zero partial autocorrelation. Hence, only the first three historical values of the target, 

i.e. three hours before, are added as inputs to the three most correlated external variables. 



 

Fig.4 Empirical partial autocorrelation function of the time series of the target values (IntVar 9) 

with respect to time laps (multiples of hours) 

4. Case Study Results 

        In this Section, we describe the results obtained using the PSVR method to give the prediction 

intervals for the target of interest in the context of condition monitoring of NPP components. The 

target is the variable IntVar 9, observed in its “out-of-control” regime after a fault occurred, and we 

focus on short-term (1-hour ahead) prediction. Assuming that we are at time 𝑡 and we want to predict 

the target value at time 𝑡 + 1, we use as inputs the historical values of the target itself till three time 

steps before 𝑡, the values of the three most correlated external variables at time 𝑡 and the values of the 

six most correlated internal variables at time 𝑡. We select a portion of the scenario under fault to apply 

PSVR for prediction: from the 5600th to the 8000th observed data. In this Section, 200 data points 

(5600th-5800th observations) are used for training and the rest for testing. 

4.1 Tuning of the Hyperparameters 

        In order to achieve good prediction performance, we need to select the values of the 

hyperparameters 𝐶, 𝜀 and 𝛾. The values of the hyperparameters influence the results of PSVR but a 

unifying method to determine their values has not yet been established. We propose a novel method 

which gives promising results. A comparison with two alternative methods is also conducted. 

        The method proposed in the present paper to determine the best values for the three 

hyperparameters is a simple but effective iterative search based on interpolation. Each parameter is 

initially selected within a given interval. The best values are to be found by minimizing the following 

criterion 



𝐶1 ∑ 𝜎𝑖
𝑛
𝑖=1 +  𝐶2 ∑ |𝑦𝑖

∗ −  𝑦𝑖|𝑛
𝑖=1                                                        (10) 

where 𝜎𝑖  is the error bar width, 𝑦𝑖
∗ =  𝑎∗(𝒙𝑖) the predicted value and 𝑦𝑖  the target value of the 𝑖𝑡ℎ 

input data point. 𝐶1 and 𝐶2 are the two weights of the two parts of the objective function (Equation 

(10)), the error bar width and the bias of the prediction. If 𝐶1 is smaller than 𝐶2, it means that we pay 

more attention to the variance of the prediction (error bar width) than to the accuracy in the prediction 

(distance between target and predicted values), and vice versa for 𝐶1  bigger than 𝐶2 . We fix            

𝐶 ∈ [10, 105], 𝛾 ∈ [10−7, 103], 𝜀 ∈ [10−3, 10−1], 𝐶1 = 4  and 𝐶2 = 5  by a trial-and-error process. 

For each parameter, a geometric sequence included in the corresponding interval is considered. In this 

applicative context, geometric sequences are better than arithmetic ones, since the parameter’s 

influence on the objective function (Equation (10)) is highly non-linear. For 𝐶, 𝜀 and 𝛾, geometric 

sequences of size 4, 10 and 4 are formed respectively. Note that for different training data sets, the best 

values of the parameters can change: hence, the tuning of the parameters in a feasible computational 

time is a relevant issue. In this case, the optimization of the objective function (Equation (10)) leads to 

the following choice for 𝐶, 𝜀 and 𝛾: (6309.6, 0.0032, 7). 

        The results obtained via PSVR where the tuning of the hyperparameters is conducted according 

to the method proposed by the authors are compared with two alternative methods based on, 

respectively: the minimization of the objective function of the PSVR (Equation (2)) and the widely 

used minimization of the Mean Square Error (MSE) between the predicted value and the target of the 

training data set. The best combinations of 𝐶, 𝜀 and 𝛾 determined by these last two approaches are                  

(398.1072, 0.3162, 2.5119) and (6309.6, 0.001, 3), respectively. A comparison of the results obtained 

with each of these strategies will be shown in the next Section. 

4.2 PI for the Target and Conditional Predictive Distribution 

        The results of the application of PSVR are shown below. Figure 5 depicts the prediction of the 

target, with the corresponding Prediction Interval (PI) with a confidence level of 95%, obtained by 

tuning the hyperparmeters according to the novel strategy proposed by the authors. The solid line is 

the target, the dash-dot line is the point prediction, while the two dashed lines are the upper and lower 

bounds of the 95% PI computed according to the predictive distribution. Hence, for each test point 𝒙, 

the PI bounds are the values 𝐿(𝒙) and 𝑈(𝒙) corresponding to a 95% confidence that 𝑦(𝒙) lies in the 

interval [𝐿(𝒙), 𝑈(𝒙)]. In particular, the PI corresponding to the test point 𝒙 is [𝑎∗(𝒙) −

2𝜎(𝒙), 𝑎∗(𝒙) + 2𝜎(𝒙)], where 𝑎∗(𝒙) is the predicted value according to Equation (3) and 𝜎(𝒙) is the 

variance associated to the prediction (error bar) and given by Equation (9). We remark that the 

predictive distribution in 𝒙 is a Gaussian with mean 𝑎∗(𝒙) and variance 𝜎(𝒙). Figure 6 shows the 

predictive distribution associated to the 7500th target data point according to Equation (7). The circle 

in Figure 6 is drawn in correspondence to the target value. 



 

 

Fig.5 Point prediction and associated PIs for the target of interest (both the training and testing data 

points) using PSVR with hyperparameters tuning according to the proposed method. 

 

Fig.6 Predictive distribution associated to the 7500th target data point (circle), and obtained by using 

the PSVR with hyperparameters tuning according to the proposed method. 

        The prediction interval empirical coverage estimated on the whole testing set is 91.50%. The 

MSE is 5.4332*10-5. The relative error is smaller than 4%. If the model is trained using a bigger 

training data set, the relative error and absolute error will decrease.  
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        The results of the application of PSVR (prediction of the target and 95% confidence PIs) with 

tuning of the hyperparameters according to the objective function (Equation (2)) and the MSE are 

shown in Figure 7 and Figure 8, respectively. Moreover a comparison of the three methods used for 

determining the values of the hyperparameters in terms of average width of PIs, mean relative error 

and mean absolute error is offered in Table 3. It is obvious that the proposed method is the best both in 

terms of prediction accuracy and precision. It is reasonable that the objective function of PSVR gives 

the worst results, because the objective function (Equation (2)) is used as a criterion to determine the 

weights of the support vectors in PSVR, and thus it is not expected to be suited also for determining 

the values of the hyperparameters. The results obtained via MSE are a little worse than the ones 

obtained by using the method proposed by the authors. This is mainly caused by the fact that MSE 

looks only to prediction accuracy and not at PIs width. 

 

 

Fig.7 Point prediction and associated PIs for the target of interest (both the training and testing data 

points) using PSVR with hyperparameters tuning according to the objective function. 
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Fig.8 Point prediction and associated PIs for the target of interest (both the training and testing data 

points) using PSVR with hyperparameters tuning according to MSE. 

 

Tab.3 Comparison of the results of different methods for determining the values of hyperparameters 

Methods Average Weights of PIs Mean Relative Error Mean Absolute Error 

Proposed Method 0.0099 0.0093 0.0059 

Objective Function of PSVR 0.1903 0.5613 0.3318 

Mean Square Error 0.0671 0.0183 0.0114 

 

4.3 Comparisons with other empirical approaches 

        In this Section, a comparison of the results obtained by PSVR and by other standard empirical 

approaches to short term prediction is illustrated. The empirical approaches we are going to consider 

are Auto-Associative Kernel Regression (AAKR) method, a well-established benchmark empirical 

approach to condition monitoring and prognostics, and Standard SVR, which corresponds to PSVR in 

a non-Bayesian framework.  

        AAKR is a well-known and established method suited both for reconstruction and for prediction 

purposes. It is an empirical modeling technique in which the prediction is found as a weighted sum of 

the previous values of the target variable. In order to determine the weights, AAKR makes use of 

historical observations of all signals to compute a global similarity measure, typically based on a 

Gaussian kernel, at each time. Further details on the method can be found in Baraldi et al. (2010). The 

main difference of this approach from both PSVR and SVR is the lack of a model for prediction: 
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internal and external variables are used by AAKR just to compute the weights, but their patterns are 

not further exploited in the prediction process. On the contrary, both PSVR and SVR aim at finding 

the best non-linear empirical model relating the input variables (internal and external variables, and 

historical values of the target) to the future value of the target. 

        The comparison with AAKR has been carried out for three different training datasets, which 

correspond to the measurements intervals [6800th, 6950th], [6900th, 7050th] and [7000th, 7150th]. The 

bandwidth of the Gaussian kernel used in AAKR has been tuned for each dataset by a trial-and-error 

process, and the resulting best values are 2, 2 and 1, respectively. We show in Figure 9 the results 

obtained by AAKR on the second training dataset, [6900th, 7050th], where we trained AAKR on the 

same signals (internal and external variables) used as inputs in both PSVR and SVR models: the solid 

line in the Figure is the target and the dashed line is the prediction given by AAKR. Note that the data 

normalization strategy used in the AAKR procedure is different from the one used in PSVR and SVR: 

in the former case, data have been normalized to have zero mean and standard deviation equal to 1, 

while in the latter case they have been forced to lie in the interval [0,1]. 

        It is evident from Figure 9 that AAKR method does not give satisfactory results. Actually these  

poor results should be expected, since AAKR is in general proficiently used for condition monitoring 

and fault detection, but it is not a proper method for prognostics: it is capable of effectively 

reconstructing the operational behavior of a signal, but since it computes only a weighted average of 

the signals in the training set, its generalization power is low in the case of out-of-control signals.  

        For what concerns the comparison of PSVR with SVR, the SVM-Toolbox of Matlab is used. The 

comparison is carried out for the same three training datasets considered for the comparison with 

AAKR. Using the same values for the hyperparameters selected for PSVR, the result of SVR on the 

training dataset [6900th, 7050th] is shown in Figure 10, where the solid line is the target and the dashed 

line is the predicted value. 



 

Fig.9 Point prediction for the target of interest (for both the training and testing data points) using 

AAKR (the bandwidth of the Gaussian kernel is set equal to 2). 

 

 

Fig.10 Point prediction for the target of interest (for both the training and testing data points) using 

standard SVR (with Matlab Toolbox). 



        Differently from the case of AAKR, the prediction obtained with SVR is quite accurate. Hence, 

to obtain a more precise comparison, in Table 4 the values of the Mean Square Errors obtained for the 

three training data sets with SVR and PSVR are reported. From inspection of the Table, it can be 

noticed that PSVR and standard SVR give comparable results, since the result of PSVR is slightly 

better for the first and third training data sets, but it is slightly worst for the second one. This is 

probably due to the empirical nature of the nonlinear regression methods we are using. On the other 

hand, standard SVR can only give a point estimate, while PSVR can also provide the uncertainty 

quantification, e.g. the PIs for the target and the predictive distribution.  

 

Tab.4 Comparison of the results of PSVR and standard SVR 

 SVR PSVR 

[6800th, 6950th] 3.3353*10-4 2.2267*10-5 

[6900th, 7050th] 1.4105*10-5 5.3534*10-5 

[7000th, 7150th] 1.9787*10-4 2.8867*10-5 

 

5. Conclusion 

In this paper, an approach is proposed for prediction of parameters of NPP components under 

fault conditions. It includes pre-processing for data reconstruction and model selection, and PSVR for 

estimation of the prediction interval and conditional predictive distribution of the target of interest. 

The results of the application to a real case study of leak flow in the first seal of a RCP are satisfactory. 

The coverage of the prediction interval is 91.50% with a confidence level of 95%. The conditional 

predictive distribution provides the probability distribution of the values of the target. These two 

indicators, the PI and the predictive distribution, are very informative for the NPP operators in case of 

accident.  

The future work will focus on the development of a method to extend condition monitoring to 

prognostics, by computing the NPP components RUL on the basis of the prediction of its evolving 

parameters. This entails propagating the uncertainties in the prediction, due to both the observed data 

and the model itself. 
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Appendix A 

Let us assume that the input data is a 𝑛 -dimensional set of vectors  𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} , 

independently drawn in𝑹𝑝, and that we also have an independent sample from the target value 𝒀 =

{𝑦1, 𝑦2, … , 𝑦𝑛}, where 𝑦𝑖  ∈ 𝑹, 𝑖 = 1, 2, . . . , 𝑛.  

In regression methods, the final aim is to find an underlying function describing the relation 

between the input data and the target. Here, this function will be indicated as an element of the generic 

space 

𝐹 = {𝑎(𝒙): 𝑹𝑝 → 𝑹}.                                               (1) 

Moreover, we assume that the training set 𝜞 =  {𝑿, 𝒀}   has been drawn from the probability 

distribution 𝑃(𝒙, 𝒚): 𝑹𝑝+1 → 𝑹, which is not known. The Maximum A Posteriori (MAP) method 

consists in finding the 𝑎(𝒙) which minimizes the risk 

 𝑅𝐸𝑅𝑀(𝒙) =  ∫ 𝑙(𝑎(𝒙)  −  𝑦)𝑑𝑃(𝒙, 𝑦), (2) 

where 𝑙(𝒙, 𝑦) is the loss function. There are many possible choices for the loss functions, e.g. square 

loss function, 1-norm loss function, Huber’s loss function, etc. In this paper, we adopt one of the most 

common choices, the 𝜀-insensitive loss function 

 𝑙(𝑥) =  {
0                   𝑖𝑓 |𝒙| < 𝜀
|𝑥| − 𝜀       𝑖𝑓|𝑥| ≥ 𝜀

. (3) 

The 𝜀-insensitive loss function has a good sparseness property, because all the data points whose 

margin between the predicted and target values is smaller than 𝜀, are not used in the estimation process. 

In SVM, the Empirical Risk Minimization (ERM) is used to solve the optimization problem in 

Equation (2), where 𝑑𝑃(𝒙, 𝑦) is replaced by 
1

𝑛
, recalling that 𝑛 is the number of input data points. This 

means assuming that all the data points follow an identical and independent distribution (i.i.d), and 

using their empirical sample distribution. However, according to Tikhonov and Arsenin (1977), this is 

an ill-posed approach, whose generalization property is not good.  

The Structural Risk Minimization (SRM) is formulated to solve the problem. A positive semi-

definite operator ∥ �̂�𝑎 ∥2 is added to the ERM, and the so obtained new risk functional, called SRM, is 

given by 

 𝑅𝑆𝑅𝑀(𝒙) = 𝐶 ∑ 𝑙(𝑎(𝒙𝒊) − 𝑦𝑖) +  
1

2
∥ �̂�𝑎 ∥2

𝒙𝑖
. (4) 



The operator P̂ maps the space F into a dot-product space, and the kernel kernel 𝐾 =  (�̂� 𝑇�̂� )−1  is 

derived after the Gaussian Process (GP) is introduced as a prior into the regression problem. 

Indicating with 𝒂(𝑿) =  (𝑎(𝒙1), 𝑎(𝒙2), … , 𝑎(𝒙𝑛))𝑇  the vector of function values, 𝑃[𝒂(𝑿)|𝚪] is 

the conditional probability of 𝒂(𝒙) given the training set 𝚪. 𝑃[𝚪|𝒂(𝑿)] is the likelihood of 𝑿 having 

been originated by the corresponding target 𝒀 given the underlying function 𝑎(𝒙). 𝑃[𝒂(𝑿)] is the a 

priori probability of the underlying function 𝑎(𝒙). 𝑃[𝚪] is the evidence. 

Applying the Bayesian Rule, we can derive the relation 

 𝑃[𝒂(𝑿)|𝚪] =  
𝑃[𝚪|𝒂(𝑿)]𝑃[𝒂(𝑿)]

𝑃[𝚪] 
 (5) 

We make the following assumptions: 

(1) Training data are i.i.d. 

(2) The a priori probability distribution is 𝑃[𝒂(𝑿)] ∝ exp (−
1

2
∥ �̂�𝑎 ∥2). 

(3) The ε-insensitive loss function is chosen as the loss function. 

(4) The covariance function is 𝐾(𝒙, 𝒙′), and 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−
|𝒙𝑖−𝒙𝑗|2

2𝛾2 ), where 𝒙𝑖 , 𝒙𝑗  are the 

input data points in 𝑿. 

Following Equation (6), the a posteriori probability of 𝒂(𝑿) can be written as 

 𝑃[𝒂(𝑿)|𝚪] =  
[𝐺(𝐶,𝜀)]𝑁

√𝑑𝑒𝑡2𝜋𝐾𝑿,𝑿𝑃[𝚪]
exp{−𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) −

1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1 𝒂(𝑋)𝒙𝑖∈𝑿 } (6) 

where 𝐺(𝐶, 𝜀) =  
1

2

𝐶

𝐶𝜀+1
, and 𝐾𝑿,𝑿  = [𝐾(𝒙𝑖, 𝒙𝑗)]  is the covariance matrix of the data points of 𝑿. 

We find the maximum of Equation (7) using the so-called MAP. This requires finding the minimum of 

the following function 

 𝑅𝐺𝑆𝑉𝑀(𝑎) =  𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) +
1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1 𝒂(𝑋)𝒙𝑖∈𝑿  (7) 

We can see that the risk of Gaussian SVMs is equivalent to the standard SVM. Following the 

discussion in Mackay (1997), Tikhonov and Arsenin (1997), Girosi (1998) and Burges (1998), we can 

write the solution of the minimization problem associated to Equation (8) in the following form 

 𝑎∗(𝒙) =  ∑ 𝛽𝑖𝐾(𝒙𝑖 , 𝒙)𝒙𝑖∈𝑿  (8) 



where 𝛽𝑖 =  𝑎𝑖 − 𝑎𝑖
∗  is a combination of the Lagrange Multipliers associated to the optimization 

problem (Smola and Scholköpf, 2004). The 𝑎𝑖 and 𝑎𝑖
∗ can be determined by a Quadratic Programming 

approach. According to Smola and Scholköpf (2004), ∀ 𝑖 = 1, . . . , 𝑛, 𝑎𝑖   and 𝑎𝑖
∗
 lie in the interval 

[0, 𝐶], and 𝛽𝑖  consequently lies in the interval [−𝐶, 𝐶] , which is the domain of the optimization 

problem. 

There are different medium-scale and large-scale algorithms that can be used for optimizing 

under constraints the objective function in Equation (8). An active set algorithm which focuses on the 

solution of the Karush-Kuhn-Tucker (KKT) equations is used in this paper. The KKT equations are 

both necessary and sufficient conditions for obtaining a global solution point when the problem is a 

convex programming problem. Sequential Quadratic Programming (SQP) method is used to compute 

directly the Lagrange multipliers which balance the deviations in magnitude of the objective function 

and constraint gradients.  

 


