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Abstract

A time point process can be defined either by the statistical properties of the

time intervals between successive points or by those of the number of points in

arbitrary time intervals. There are mathematical expressions to link up these

two points of view, but they are in many cases too complicated to be used

in practice. In this paper we present an algorithmic procedure to obtain the

number of points of a stationary point process recorded in some time intervals

by processing the values of the distances between successive points. We present

some results concerning the statistical analysis of these numbers of points and

when analytical calculations are possible the experimental results obtained

with our algorithms are in excellent agreement with those predicted by the

theory. Some properties of point processes in which theoretical calculations

are almost impossible are also presented.

Some key words. Point processes, renewal processes, lifetime, counting.
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1 Introduction

Point processes (PP) play an important role in probability theory (Cox and

Isham, 1980), physics (Lowen and Teich, 2005), or signal processing (Snyder

and Miller, 1991). In the one-dimensional case, and especially for time PPs,

there are two main methods to describe their properties. The first is by using

the statistical properties of the numbers of points of the process appearing

in non-overlapping time intervals. These numbers are nonnegative discrete

valued random variables (RV). The second is by using the distances between

successive points of the process, sometimes called lifetimes. These quantities

are in general continuous positive RVs. This approach is especially well-suited

to the case of renewal PPs defined by the fact that these lifetimes are inde-

pendent and identically distributed (IID) RVs, in such a way that a stationary

renewal PP is completely defined by the probability distribution common to

all these lifetimes. The relations between these two approaches are the subject

of number of papers (McFadden, 1962; Picinbono, 2004). Even if there exist a

number of theoretical results on this subject, they are often difficult to be used

in practice because of the complexity of the analytical expressions. For exam-

ple, even in the simplest case of renewal PPs, it is often almost impossible to

obtain explicitly the analytical expression of the probabilities of the numbers

of points recorded in some intervals in terms of the distribution function (DF)

of the lifetime which completely defines the process.

One of the objectives of this paper is to overcome this difficulty by intro-

ducing algorithmic procedures allowing the transformation of some properties

of the lifetimes into properties of counting in some intervals. These algorithms

can be used either with simulated data generated by computer or with real

data coming from physical experiments. In the cases of PPs for which the the-

oretical calculations yield relatively simple analytical results, we show that the

experimental results obtained with our method on computer simulated data

are in excellent agreement with the theory, which is a test of the validity of

the algorithms presented in the paper.

It is clear that the problem analyzed hereafter is not new in its principle.

The two possible methods of definitions for PPs appear in almost all the books

on this subject. However the calculations that yield the counting properties in

terms of those of intervals between points are rarely indicated, except in the
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especially important case of renewal processes (Cox and Isham, 1980). The

use of computer methods to study this kind of problem appear in a sequence

of papers of Lewis and the most important references are indicated in (Cox

and Lewis, 1966). However the specific problem presented in this paper was

not analyzed previously and the recent advances in numerical simulation allow

us to introduce procedures that are rapid an precise. Similar procedures have

been already used for the analysis of dead-time problems in PPs (Picinbono,

2007; Picinbono, 2009).

The paper is organized as follows. Section 2 is mainly devoted to count-

ing analysis. We first present an overview of the known theoretical results

concerning the calculations of the counting probabilities of a PP in terms of

the statistical properties of the intervals between points. We note that, even

for the simplest PPs such as renewal process the calculations are often rather

complicated. After a short review of the possible experimental methods for the

determination of the counting statistics, we present the principles of an algo-

rithmic method allowing this determination from a sequence of measurements

of successive intervals between points of the PP. In Section 3 we consider the

same kind of problems appearing when using residual lifetimes. The theoreti-

cal calculations are in general almost impossible, which justifies the simulation

approach presented in this section. In the last section (4) various experimen-

tal results obtained with the algorithms previously described are presented. In

the cases where theoretical results are possible there is a very good agreement

between theory and simulation experiment.

2 Counting Analysis

2.1 Theoretical Considerations

Let Xk be a sequence of N positive random variables and Ti the sequence

deduced from the Xks by T1 = X1 and Tk = Tk−1 + Xk, 1 < k ≤ N . These

Tk constitute an increasing sequence of values which are the random time

instants of a time PP defined by the Xks. The RVs Xk are thus the distances

between successive points called in what follows lifetimes of order one. The

lifetime of order n is the interval between Tk and Tk+n which is clearly equal to

Sn[k] = Xk+1 + Xk+2 + ... + Xk+n often written simply Sn when no confusion
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is possible. Note that the recursion defining the instants Ti yields Tn = Sn[0].

In counting analysis one is interested in the probability distribution of the

number of points appearing in some intervals. There are two main procedures

for counting analysis. In the first we consider time intervals of duration D

beginning at a point of the PP and we study the statistical properties of the

number of points of the PP appearing in such intervals. The condition on the

beginning of the interval leads to the term of triggered counting. If no such

condition is introduced, or if the beginning of the counting interval has no

reason to be a point of the PP, we use the term of relaxed counting.

Consider first the problem of the calculation of the triggered counting prob-

ability. Let N be the number of points of the PP in an interval such [ti, ti +D],

where ti is a point of the PP and D is the counting duration. This number is

a discrete valued RV and we want to calculate its distribution function from

some properties of the RVs Xi.

Let En be the event that there are n points of the PP in the interval

[ti, ti + D]. This event can be written as En = (Sn ≤ D) ∩ (Sn+1 > D), where

Sn and Sn+1 are written for Sn[i] and Sn+1[i] respectively. Its probability

qn = Pr[En] can be expressed in terms of the DFs Fn(x) of Sn. Indeed it

results from the relation

Pr[(Sn ≤ D)] = Pr[(Sn ≤ D)∩ (Sn+1 ≤ D)]+Pr[(Sn ≤ D)∩ (Sn+1 > D)] (1)

and from the fact that Pr[(Sn ≤ D) ∩ (Sn+1 ≤ D)] = Pr[(Sn+1 ≤ D)] because

Sn < Sn+1 that

qn(D) = Fn(D) − Fn+1(D), (2)

with also S0 = 0, which yields q0 = 1 − F1(D), where F1(x) is the DF of the

lifetime of order one Xk. This expression is given for renewal processes on p.

52 of (Cox and Isham, 1980).

Let us now analyze a slightly more complicated case useful for what follows.

Consider two non-overlapping intervals [0, a] and [a, b], with b = a+D and let

pm,n(a, b) be the probability that these two intervals contain m and n points

respectively. A calculation similar to the previous yields

pm,n(a, b) = Fm,m+n(a, b)−Fm+1,m+n(a, b)−Fm,m+n+1(a, b)+Fm+1,m+n+1(a, b),

(3)
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where the functions F (., .) are the DFs defined by

Fm,n(x, y) = Pr[(Sm ≤ x) ∩ (Sn ≤ y)] , (4)

with S0 = 0.

From these probabilities it is possible to study the relaxed counting sta-

tistics which, as seen above, correspond to the random number of points of

the PP in an interval [a, b[ without specifying that a is a point of the PP. The

corresponding probability is

pn(a, b) =
∞
∑

m=0

pm,n(a, b), (5)

where pm,n(a, b) is given by (3). When the PP is stationary and under general

ergodicity conditions, pn(a, b) tends to a limit when a tends to infinity in such

a way that

pn(D) = lim
a→∞

pn(a, D). (6)

This relation can also be interpreted in another way. Instead of making a → ∞,

it is possible to take a → −∞ while b remains finite. Physically this means that

the origin of the PP is removed to the infinity in the past, which corresponds

to the idea of stationarity. Equation (6) means that the effect of the initial

state at the infinity in the past does not have any effect on the present.

The triggered and relaxed counting probabilities qn(D) and pn(D) given

by (2) and (6) respectively are quite different. We shall verify this point in

the forthcoming computer experiments. Furthermore it is clear that the mean

value of the random number of points in relaxed counting is equal to λT , where

λ is the density of the PP, while this expression has no reason to be valid for

the triggered counting. We shall also verify this point experimentally.

The practical use of the previous expressions is not always simple. The

main problem comes from the fact that the analytic expressions of the various

DFs appearing in (2) or (3) are rarely known. Consider the simplest case of

a renewal PP. This means that RVs Xk are IID. Thus the PP is completely

defined by the DF F (x) common to all these variables. Even with this as-

sumption, the calculation of pn or qn can remain rather complicated. The DFs

Fn(x) appearing in (2) are the DFs of sums of IID random variables. The

probability density functions (PDF) of such sums are a multiple convolutions

of the PDFs common to all the RVs Xk and can in some cases have a rather
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simple expression. But this is not always so and for example in the very simple

situation where the RVs Xk are uniformly distributed in a finite interval, the

analytical expression of the convolutions becomes extremely complicated for

n > 5. The problem becomes still more difficult for the calculation of the

relaxed counting probabilities even with renewal PPs. Indeed it is necessary

to calculate the DF Fm,n(x, y) defined by (4). It results from the definition

of the sums Sn that Sm+n = Sm + S̄n−m where S̄n−m is still of a sum of RVs

Xk. If the PP is a renewal PP the RVs Sm and S̄n−m are independent, which

strongly simplifies the calculation of the DF Fm,n(x, y). The problem is then

reduced to the calculation of the DF of IID random variables and the difficulty

is the same as for the triggered counting probabilities.

When the PP is no longer a renewal PP it is almost impossible to use the

previous equations because the calculation of the DF of sums of correlated RVs

is in general very tedious. This explains why an experimental approach seems

of great interest.

2.2 Experimental Methods for Counting Statistics

The first experimental method for counting analysis of a PP is by using a

counting linear filter. To any time PP, or random sequence of time instants

Ti, we can associate a signal S(t) called shot noise of the PP and defined by

S(t) =
∑

i

h(t − Ti), (7)

where h(t) is an arbitrary impulse response of a stable linear filter. If h(t) is

a rectangular function equal to 1 for 0 < t < D and 0 otherwise, the signal

S(t) is equal to the number of points of the PP appearing in the interval

(t − D, t). Note that S(t) is a continuous time signal taking only integer

values. The statistical analysis of S(t) can in particular yield the relaxed

counting probabilities pn defined above. For obtaining the triggered counting

probabilities we must take into consideration the values of S(t) at the times

instants Tk +D. Note that the values of S(t) at times t and t+τ are in general

correlated. For example in the case where the Tis are points of a stationary

Poisson process, the covariance function of S(t) is a triangular function in the

interval [−D, +D] in such a way that S(t) and S(t + τ) are independent when

τ > D. This means that if one wants to make a statistical analysis of S(t)
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with independent samples S(θi) it is necessary to take |θi − θj| > D.

The second method consists in the use of electronic counters, as described

in p. 101 of (Cox and Isham, 1980). In such systems a window is open

at time instants θi and remains open till θi + D and the counter counts the

number of points Ti appearing in this interval. During the interval of counting

[θi, θi + D] the counter cannot open a new window, which introduces thinning

effect analyzed in (Cox and Isham, 1980). When the number of points used

for the statistical analysis of the counts is very great, this thinning effect does

not yield important effect on the precision of the results.

2.3 Algorithms for Counting Statistics

Starting from a realization xk, 1 ≤ k ≤ N , of a sequence of positive random

variables Xi, considered as lifetimes of a PP, we want to deduce an estimation

of the counting probabilities previously introduced. We assume that Xi is

stationary and ergodic, in such a way that expectation values can be estimated

by averaging with respect to the variable k corresponding to the discrete time.

The terms xk of the starting sequence can be real data obtained from a physical

experiment or simulated data obtained from a computer program. The number

N which plays a central role in the precision of the results must be as large

as possible and in most of our experiments it is of the order of 107. When

analytical results are available, the comparison between theory and experiment

yields an idea of the precision of the methods introduced.

Let us begin with triggered counting which requires relatively simple meth-

ods. The problem is to estimate the terms such as Fn(T ) appearing in (2),

where Fn(.) is the DF of the random sums Sn introduced above. The solution

appears in two steps: calculation of the sum and estimation of the probability

that Sn ≤ T . For the calculation of the sum it is appropriate to use a recursive

method. Indeed we have sn[i] = xi+1 +xi+2 + ...+xi+n valid for 1 ≤ i ≤ N −n.

This can be written recursively in the form sn[i] = sn−1[i] + xi+n. From this

term we introduce the quantity yn[i] = u{T − sn[i]}, where u(x) is the unit

step function equal to 1 if x ≥ 0 and to 0 otherwise. It is clear that yn[i] is

a realization of a Bernoulli RV Yn[i] taking only the values 0 and 1 and such

that Pr{Yn[i] = 1} = Pr{Sn[i] ≤ T} = Fn(T ). As for a Bernoulli RV we have

E{Yn[i]} = Pr{Yn[i] = 1}, we therefore deduce that Fn(T ) is simply the mean
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value of the RVs Yn[i] directly deduced from the sums sn[i] by time averaging

and thus from the data xi. This operation must be realized for the values of

n satisfying 1 ≤ n ≤ Q, where Q corresponds to the number of probabilities

qn that we want to estimate.

Consider now the case of relaxed counting. The sequence of algorithms

that follow is a numerical realization of the procedures used in some electronic

counters discussed above. We start again from a realization {xk} of the se-

quence of RVs Xk. It could be possible to introduce a method similar to the

one used just above in order now to determine the DFs appearing in (3). The

problem, however, is much more complicated and furthermore the use of (5)

would require the calculation of an infinite number of terms. It is then more

appropriate to avoid this step by using a method directly introducing the cal-

culation of the number of points of the PP used for obtaining the counting

probability. For this purpose we shall use a method similar to those intro-

duced in (Picinbono, 2007) and (Picinbono, 2009) for the study of dead time

effects in PPs.

The aim of the algorithm is to associate with a sequence of values xk

defining the set of points tk of the PP by the same procedure as the one

introduced above for passing from Xi to Ti, another sequence ni of nonnegative

numbers which are the numbers of points of the PP appearing in intervals such

that [ti + a, ti + a + D[, where the tis are some points of the PP. For this we

introduce an intermediary signal σj defined by the recursion

σi = σi−1 + xi , (8)

with σ1 = x1.

This signal is always increasing because the xi are positive, and increases

from x1 to
∑

i xi. It is clearly related with the number of points of the PP in

some time intervals. For example, the number of points tk appearing in the

interval [α, β[ is equal to the number of values of σi satisfying α ≤ σi < β.

As we are interested in intervals such as [ti +a, ti+b[, with b = a+D, we do

not take into account the values of σi greater than b and it is then convenient

to limit the possible values of σi to the interval [0, b[. For this purpose we

replace this signal by

ri = u(b − ri−1)(ri−1 + xi), (9)
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where u(.) is again the unit step function and with the initial condition r1 = x1.

This signal is always increasing except when ri−1 > b in which case it comes

back to the value 0 at the index (or time) i.

There are other values of ri that are without interest in our counting prob-

lem. There are those corresponding to ri < a. This leads to introduce the

signal yi defined by

yi = u(ri − a). (10)

It is clear that yi is a Bernoulli signal taking only the values 0 or 1. Further-

more, it contains all the information necessary to count the number of points ti

appearing in the interval [tj +a, tj + b[. It remains to extract this information.

For this it should be noted that if the signal yi takes successively n times

the values 1 before coming back to the value 0, this means that there are n−1

points of the PP defined by the xis in the interval [tj + a, tj + b[. In order to

count this number it suffices to calculate the sum of the successive values of

yi, which is realized by the recursive algorithm

zi+1 = (zi + yi+1)yi+1. (11)

This signal is equal to 0 when yi = 0 or increases by steps of value 1 when

yi = 1, and comes back to 0 with the signal yi. The number of points recorded

in the interval under consideration is thus the maximum value of the signal ζi

which is obtained by the recursion

ζi = ziu(zi − zi+1). (12)

This signal is a sequence of zeros and nonzero integers. It is clear that if ζi = n,

n > 0, then there are n − 1 points in the interval of measurements.

In order to understand more precisely the behaviour of this set of algo-

rithms, we present in Table 1 an example of processing of a sequence of 40

successive values xi of a random signal Xk. The parameters of the algorithms

are a = 5 and D = 1, which yields b = 6.

Table I. Principle of the working of the algorithms.

Successive values of the signal xi
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i 1 2 3 4 5 6 7 8 9 10
xi 0.2938 0.8587 0.7187 1.9908 0.8075 0.1889 0.5914 0.4089 1.7414 0.7652
i 11 12 13 14 15 16 17 18 19 20
xi 0.6689 0.8693 1.2778 0.7848 0.9106 3.4896 0.3908 2.5792 0.9050 1.7570
i 21 22 23 24 25 26 27 28 29 30
xi 1.0001 0.3945 0.2926 1.3201 1.0460 0.6134 0.5438 1.3064 0.2787 0.3313
i 31 32 33 34 35 36 37 38 39 40
xi 0.3396 0.2055 1.3729 0.7775 1.8647 0.4704 0.7418 0.6884 1.7139 1.9120
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Successive values of the signal ri
i 1 2 3 4 5 6 7 8 9 10
si 0.2938 1.1526 1.8713 3.8621 4.6696 4.8585 5.4500 5.8589 7.6002 0
i 11 12 13 14 15 16 17 18 19 20
si 0.6689 1.5383 2.8161 3.6009 4.5115 8.0010 0 2.5792 3.4841 5.2412

i 21 22 23 24 25 26 27 28 29 30
si 6.2412 0 0.2926 1.6127 2.6587 3.2720 3.8158 5.1222 5.4009 5.7322

i 31 32 33 34 35 36 37 38 39 40
si 6.0717 0 1.3729 2.1504 4.0151 4.4855 5.2273 5.9157 7.6296 0

Successive values of the signal ζi
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ti 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0
i 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
ti 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 3 0

We have indicated in the same table the values of ri and those between 5 and

6 are written in boldface. The number of such values is the number of points

of the PP generated by the xi of the first table in intervals [ti + a, ti + a + T [.

We see that these numbers are 2, 0, 1, 3 and 2. It is exactly what appears from

the table giving the values of the signal ζi by using the relation ni = ζi − 1.

It is important to note that in this operation we obtain 5 values of the

numbers of points in intervals from a sequence of 40 values of the initial signal

xi. There is thus an important loss of information, of the order of 10 %, but

when we are using, as in our experiments, a set of approximately 107 values of

xi, there remains a set of approximately 106 values of the numbers of points

in intervals of measurements, which is quite sufficient to reach results with a

fairly good degree of precision.

More generally the signal ζi is a sequence of N nonnegative values. Those

equal to zero have no interest for our analysis. It is appropriate to delete all

these values; this yields a sequence of N ′ positive values mi. The number N ′

is not known in advance and depends on the sequence of values xi analyzed.

The numbers ni of points of the PP interesting for our statistical analysis is

thus ni = mi − 1.

Note that the procedure for passing from the lifetimes xi to the number of

points nj is similar to the on used in electronic counters where the thinning

effect yields a loss of points for the statistical analysis. On the other hand this

introduces an advantage indicated above which is the diminution of the corre-

lation between samples of points analyzed. For example in the case where the

RVs Xi are exponentially distributed, which implies that the corresponding PP

is a Poisson process, then the values Nj deduced from the Xis are independent

RVs, which is an advantage for the statistical analysis.
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Indeed the last step is to evaluate some statistical properties of the random

numbers ni obtained by this procedure. The simplest result that can easily be

obtained is the mean value and the variance. For some experiments it is the

only interesting feature that can be extracted from the counting experiment. In

some more advanced studies the interest lies in counting probabilities pn(a, b)

defined by (5). For this purpose it is sufficient to use a normalized histogram

of the experimental numbers ni. Note that the algorithms presented above

avoid the step involving the calculation of the series appearing in (5).

3 Residual Lifetime

3.1 Theoretical Considerations

Consider again a PP defined from an arbitrary origin t0 by a sequence of

stationary positive RVs Xi, i ≥ 1, such that the distance between successive

random points Ti is Ti − Ti−1 = Xi. Let a be a positive number. Suppose

that the interval [0, a[ contains n points of the process and let T
[a]
n+1 be the first

point of the PP posterior to a. Let Z (a,n)
c be the RV defined by Z(a,n)

c = T
[a]
n+1−

a. This is called the constrained residual lifetime of the PP. The expression

“constrained” comes from the fact that there are n points in [0, a[. On the

other hand, the residual lifetime Z(a) is simply the distance between a and the

first point of the PP posterior to a. The calculation of the DFs of Z (a,n)
c and of

Z(a) is very tedious and their expressions in terms of the DFs of the lifetimes

introduced above are very complicated for finite values of a.

There is, however, a simple and interesting result concerning the asymptotic

situation when a tends to infinity. Indeed it is shown on pps. 8 and 54 of (Cox

and Isham, 1980) that, under very general conditions, the PDF of the residual

lifetime Z(a) takes for a → ∞ the form

f(z) =
1

mX

[1 − F1(z)], (13)

where F1(z) is the DF of the RVs Xi already used previously and mX its mean

value.

3.2 Algorithms for Lifetimes Statistics

The numerical methods for lifetimes statistics are a direct extension of those

used for counting analysis. We start from a realization xi of a sequence of
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positive RVs Xi. The main idea is to calculate, as previously, a recursive sum

of these data xi, but returning to zero when this sum becomes greater than a.

This is given by

s̄i+1 = u(a − s̄i)(s̄i + xi+1), (14)

analog to (9) used above for counting analysis. We must now eliminate all the

values smaller than a and preserve the one which is immediately greater than

a. This is obtained by the signal ȳi defined by

ȳi = u(s̄i − a)s̄i (15)

It is clear that ȳi is always equal to 0 except for the indices i specifying that

the sum becomes greater than a. Indeed let i be the first index such that

ȳi > 0 after a sequence of zeros. This means that s̄i > a. According to (14)

this implies that s̄i+1 = 0, which generates a new sequence of ȳi equal to 0,

and so on. After elimination of the samples ȳi equal to 0 we get a sequence of

nonzero ȳi and the quantity q̄i = ȳi − a yields samples of residual lifetime that

can be analyzed.

The simplest results that can be obtained is the mean and the variance of

the residual lifetime. But it is also of great interest to study the PDF of this

residual lifetime and especially to see how this PDF tends to the limit given

by (13) when a increases. For this it suffices to use normalized histograms of

the values q̄i.

4 Experimental Results

4.1 Erlang Point Processes

These PPs are renewal processes characterized by the fact that the RVs Xi

describing the distance between successive points are IID and defined by the

PDF p(x) = 4λ2x exp(−2λx). The corresponding mean value is 1/λ and λ

is then the density. They can be defined from Poisson processes of density

µ = 2λ in which one point out of two has been regularly deleted. From this

property it is possible to calculate all the quantities introduced above in the

theoretical considerations.

According to a method presented in the Appendix, the counting probabil-

ities qn of triggered counting in an interval [0, D] and defined by (2) are given
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by

qn = exp(−µD)[1 + µD/(2m + 1)](µD)2n/(2n)!. (16)

The corresponding mean value is

Md = λD − (1/4)(1 − e−4λD). (17)

This mean value is always smaller than λD because of the fact that the count-

ing interval is open by a point of the PP. It tends however to λD when D → ∞.

On the other hand the relaxed counting probabilities are given by more

complicated expressions. In particular we have

pm0(a, a + D) = e−µ(a+D)

[

(µa)2m

(2m)!
(1 + µD) +

(µa)2m+1

(2m + 1)!

]

(18)

and after a sum on the variable m we get

p0(a, a + D) = e−µ(a+D)[(1 + µD) cosh(µa) + sinh(µa)]. (19)

When a → ∞ we obtain

p0(D) = e−µD(1 + µD/2) = e−2λD(1 + λD). (20)

Similarly, for n > 0, we obtain

pn(D) = (1/2)e−µD (µD)2n−1

(2n − 1)!

[

1 +
µD

n
+

(µD)2

2n(2n + 1)

]

. (21)

It is easy to verify that
∑

pn(D) = 1 and that the corresponding mean value

is µD/2 = λD. There is thus a clear difference with respect to the case of

triggered counting given by (17).

The simulation of RVs Xi corresponding to an Erlang processes is easy.

Indeed it is clear that these lifetimes can be considered as a sum of two IID

positive RVs with an exponential PDF, which corresponds to the construction

from a Poisson process. In the experiments presented below we assume that

µ = 2, which yields λ = 1.

In Table 2 we present experimental measurements of triggered counting in

an interval of duration D = 2. The line “TH” indicates the theoretical values

given by (16) with λ = 1 and D = 2. The line “EXP” presents experimental

results and we observe an excellent agreement between these two lines.
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Table 2. Triggered Counting Probabilities.

q0 q1 q2 q3 q4 q5 q6 q7 q8 Sum Mean
TH 0.0916 0.3419 0.3517 0.1637 0.0430 0.0072 0.0008 0.0001 0.0000 1 1.7501
EXP 0.0916 0.3416 0.3521 0.1637 0.0429 0.0072 0.0008 0.0001 0.0000 1.0000 1.7499

In Table 3 we present theoretical and experimental results concerning re-

laxed counting probabilities with λ = 1, a = 10, and D = 2. Here also the

agreement between the two lines is excellent. We have verified that the results

remain unchanged when a > 5. On the other hand for smaller values of this

parameter a we are no longer in the asymptotic situation and other theoretical

and more complicated expressions must be used

Table 3. Relaxed Counting Probabilities.

p0 p1 p2 p3 p4 p5 p6 p7 p8 Sum Mean
TH 0.0549 0.2808 0.3712 0.2121 0.0662 0.0129 0.0017 0.0002 0.0000 1 2
EXP 0.0549 0.2805 0.3717 0.2122 0.0661 0.0128 0.0017 0.0001 0.0000 1.0000 1.9998

These results in a case where the theory is available can be considered as

a test of the good performance of the algorithms previously introduced and

analyzed.

Let us now present results concerning lifetimes measurements. They appear

in Fig. 1. As indicated above the PDF of the lifetime of an Erlang Process of

density λ is p(x) = 4λ2 exp(−2λx). Applying (13) we deduce that the PDF

of the residual lifetime is p(z) = λ(1 + 2λz) exp(−2λz). In the framework of

our algorithms the first is obtained with a = 0 and the latter for a → ∞. We

have verified that the measurements of PDFs yield the same result as soon

as a > 3. In Fig. 1 we present in the continuous line the curves representing

these two PDFs and the points correspond to experimental results obtained by

using the algorithms of the previous section with a = 0 and a = 5 respectively.

We observe that these points are located with a very good degree of precision

on the theoretical curves, which is an illustration of the correct behaviour of

our analysis method.

4.2 Renewal Process with Uniformly Distributed

Lifetime

Consider now a renewal PP such that the lifetimes are IID RVs uniformly

distributed between 0 and 2. Their mean value is 1, which is also the value of
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the density λ of the PP. In Table 4 we present results concerning probability

of counting measurements in an interval of duration D = 2. It is interesting to

compare these results with those obtained for a Poisson process with the same

density. The theoretical values of these probabilities are given in the first line

of the table. Experimental values of triggered (qn) and relaxed (pn) counting

probabilities are given on lines 2 and 3. The values of a and D are the same

as in the experiments presented in the previous section (a = 10, D = 2). As

expected, we see that these probabilities are almost the same and correspond

with a very good degree of approximation to those appearing in line 1. Similar

results for the renewal PP with uniformly distributed lifetime appear in the

last two lines. In this case there is a clear difference between triggered and

relaxed counting probabilities, which also yields a clear difference between the

mean values and the variance. Furthermore the mean value of the relaxed

counting is, as expected, equal to λD = 2.

Table 4. Triggered and Relaxed Counting Probabilities.

n 0 1 2 3 4 5 6 7 8
Poisson
THpn 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009
EXPqn 0.1351 0.2709 0.2710 0.1801 0.0903 0.0361 0.0119 0.0035 0.0008
EXPpn 0.1353 0.2712 0.2705 0.1798 0.0904 0.0363 0.0119 0.0035 0.0009
Uniform Sum Mean Variance

qn 0.0000 0.4980 0.3347 0.1255 0.0334 0.0069 0.0012 0.0002 0.0000 1.0000 1.7209 0.7655
pn 0 0.3330 0.4174 0.1828 0.0525 0.0118 0.0021 0.0003 0.0000 1.0000 2.0003 0.8742

Results of residual lifetime measurements appear in Fig. 2. They are

presented as in Fig. 1. The lifetime PDF defining the renewal process is equal

to 1/2 in the interval [0, 2] and to 0 otherwise. It is obtained for a = 0 and this

clearly appears in the figure where the points (. or +) represents experimental

results. In the asymptotic situation, for a → ∞, Eq. (13) shows that the

PDF f(z) of the residual lifetime is a triangular function in [0, 2], or equal to

1 − z/2 for 0 ≤ z ≤ 2 and 0 otherwise. We observe that the experimental

points obtained for a = 5 correspond perfectly to this equation. Finally we

observe for a = 0.5 and a = 1 how the PDF of the residual lifetime tends to

its asymptotic value.

4.3 Point Processes with Correlated Lifetimes

For some applications the assumption of independence between the succes-

sive lifetimes Xk, which is the basis of the concept of renewal processes, is
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too restrictive and it is interesting to present statistical models in which this

assumption is not introduced. Among the various possible solutions, one of

the simplest is the exponential autoregressive model of order one [EAR(1)]

introduced by (Jacobs and Lewis, 1977) and discussed in details in (Cox and

Isham, 1980). It is a natural extension of Poisson processes in which the life-

times Xk have an exponential PDF, as for Poisson processes, but are no longer

independent.

In this model the RVs Xk satisfy the recursion

Xk = αXk−1 + BkZk, (22)

where Bk and Zk are two independent sequences of IID RVs. Furthermore

Bk is a Bernoulli RV taking only the values 0 or 1 with probabilities α and

1 − α respectively, while Zk is a positive RV with an exponential PDF. It is

then easy to verify that Xk and Bk have the same exponential PDF. If α = 0,

Xk = Zk, and the corresponding PP becomes a Poisson process. This is the

reason why the PP defined by the Xk of (22) is considered as an extension

of Poisson processes as indicated in p. 62 of (Cox and Isham, 1980). It is

not Poisson because the Xk are correlated and the corresponding covariance

function is γp = σ2
Xα|p|. where σ2

X is the variance of Xk.

The computer simulation of the sequence Xk given by (22) is especially

simple. There are however no experimental results published on the PPs as-

sociated with these lifetimes and our purpose is then to use the algorithms

introduced above to study some of their properties and in particular to clarify

their difference with Poisson processes. It is clear that the theoretical calcu-

lations of counting probabilities or of residual lifetime are almost impossible,

which justifies a simulation approach.

The first point however is to verify the correlation properties of the Xk

generated by the recursion (22). For this purpose we generate by computer

a sequence of approximately 107 values xi that are outcomes of positive RVs

Xi given by (22) and with the PDF pX(x) = exp(−x). By using standard

procedures of measurements of the covariance functions we obtain the first ten

values γ̂i of the covariance function γi of Xk for various values of the parameter

α of (22). The results are displayed in Table 5. The values chosen for α are 0,

0.3, 0.5, and 0.7. They appear in the table for γ1 since γ1 = α. We see in line 2

that the samples xi for α = 0 are uncorrelated with a very good precision. For
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the other values of α the experimental values γ̂i are in quite good agreement

with their theoretical values γi.

Table 5. Theoretical and Experimental Values of the Covariance

Function of Xk.

i 0 1 2 3 4 5 6 7 8 9
γi 1 0 0 0 0 0 0 0 0 0
γ̂i 1.0007 0.0001 0.0002 0.0002 −0.0004 −0.0008 0.0003 −0.0006 0.0003 −0.0001

γi 1.0000 0.3000 0.0900 0.0270 0.0081 0.0024 0.0007 0.0002 0.0001 0.0000
γ̂i 0.9998 0.3004 0.0905 0.0268 0.0082 0.0031 0.0010 0.0005 0.0002 0.0002

γi 1.0000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020
γ̂i 1.0014 0.5013 0.2512 0.1263 0.0640 0.0326 0.0169 0.0094 0.0053 0.0032

γi 1.0000 0.7000 0.4900 0.3430 0.2401 0.1681 0.1176 0.0824 0.0576 0.0404
γ̂i 1.0001 0.6998 0.4902 0.3435 0.2407 0.1688 0.1183 0.0825 0.0578 0.0407

Let us now consider counting experiments for which we have no theoretical

results except for α = 0 where the PP defined by (22) becomes a Poisson

process.

Some results are displayed in Table 6, where we list measurements of trig-

gered and relaxed counting probabilities qn and pn for various values of α. The

part A corresponds to 0 ≤ n ≤ 9 and the part B to 10 ≤ n ≤ 15. We also

present the sum of these measured values and the corresponding mean value.

The values of the other parameters are λ = 1, D = 1.

For α = 0 the PP becomes a Poisson process for which qn = pn =

exp(−m)mn/n! with m = λD. These theoretical values appear on the first

line of the table and the corresponding experimental values of qn and pn ap-

pear on the second and third line. The agreement between these three lines

is quite good. Furthermore we verify with a high degree of precision that the

mean value is equal to λD = 1.

When α increases, i.e. when the correlation between successive intervals

between points increases, we observe that q0 increases while p0 decreases, and

the inverse situation appears for q1 and p1. Furthermore the mean value asso-

ciated with qn varies, while the one corresponding to pn remains approximately

equal to 1, according to the theoretical considerations.
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Table 6. Triggered and Relaxed Counting Probabilities

for the EAR(1) Point Process.

A

n 0 1 2 3 4 5 6 7 8 9
α = 0
TH 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0 0
qn 0.3678 0.3679 0.1841 0.0612 0.0153 0.0031 0.0005 0.0001 0.0000 0.0000
pn 0.3679 0.3686 0.1829 0.0621 0.0147 0.0032 0.0005 0.0001 0.0000 0.0000

α = 0.3
qn 0.3847 0.3209 0.1574 0.0746 0.0344 0.0158 0.0070 0.0030 0.0013 0.0005
pn 0.3686 0.4124 0.1322 0.0503 0.0210 0.0091 0.0037 0.0015 0.0007 0.0003

α = 0.5
qn 0.4184 0.3031 0.1332 0.0657 0.0348 0.0193 0.0109 0.0062 0.0036 0.0020
pn 0.3684 0.4369 0.1123 0.0408 0.0193 0.0101 0.0052 0.0030 0.0017 0.0010

α = 0.7
qn 0.4657 0.2994 0.1061 0.0435 0.0274 0.0181 0.0127 0.0082 0.0056 0.0038
pn 0.3655 0.4565 0.1015 0.0355 0.0164 0.0085 0.0051 0.0037 0.0023 0.0015

B

n 10 11 12 13 14 15 Sum Mean
α = 0
TH 0 0 0 0 0 0 1 1
qn 0 0 0 0 0 0 1 1
pn 0 0 0 0 0 0 1 0.9991

α = 0.3
qn 0.0002 0.0001 0 0 0 0 1 1.1571
pn 0.0001 0.0001 0 0 0 0 1.0000 0.9999

α = 0.5
qn 0.0012 0.0007 0.0004 0.0002 0.0001 0 0.9999 1.1865
pn 0.0006 0.0003 0.0002 0.0001 0.0001 0 0.9999 1.0000

α = 0.7
qn 0.0027 0.0019 0.0013 0.0010 0.0007 0 0.9992 1.1419
pn 0.0010 0.0007 0.0004 0.0003 0.0003 0.0002 0.9996 0.9972

It remains now to present measurements of residual lifetimes. If α = 0,

which means in the case of a stationary Poisson process of density λ, we have

verified that the PDF of the residual lifetime is λ exp(−λz) irrespective of the

value of the parameter a introduced in the theoretical considerations. This

corresponds to the properties of a stationary Poisson process characterized by

the fact that the past and the future are independent. The situation is quite

different when α 6= 0. In this case the PDF of the residual lifetime is still

exponential for a = 0, which is simply the lifetime Xk, and we find again the

same situation when a → ∞, according to (13). The situation, however, is

rather different from the experiments presented in Section IV. Indeed, because

of the correlation between successive values of Xk, it is necessary to take greater

values of a in order to reach the asymptotic form of the PDF given by (13).

For example when α = 0.6, this asymptotic structure appears only for a > 10,

while a > 5 was sufficient for renewal processes, as seen in Figs. 1 and 2.

Results of computer experiments on life time measurements are reported in
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Figures 4 and 5. In Fig. 4 we study the influence of the parameter a introduced

above on the PDF of the residual life time. As pX(x) = exp(−x), it results

from (13) that the PDF f(z) is also exp(−z). This function is indicated in

continuous line in the figures 3A, 3B, and 3C. These three figures are obtained

for α = 0.7 and a = 0 for 3A, a = 1 for 3B, and a = 20 for 3C. The points

represent the experimental results of PDF measurements. As expected these

points are very precisely located on the exponential curve for the extreme cases

corresponding to figures 3A and 3C. On the other hand the experimental values

of the PDF of the residual waiting time for a = 1, which is almost impossible

to calculate theoretically, is clearly not exponential, as it appears on Fig. 3B.

This figure also indicates that the corresponding PDF f(z) presents a cross-

ing point with the curve exp(−z) obtained in the two extreme cases of Figs.

3A and 3C. This crossing effect appears for z = 0.7, value of the product aα.

Various other experiments confirm this fact. For a better understanding of

this point we present in Fig. 4 results of measurements of PDFs of residual

lifetime for aα = 1/2 and a = 0.7, a = 1, and a = 1.5 for curves 1, 2, and

3 respectively. We observe that the crossing with the curve exp(−z) appears

precisely for z = 1/2. We have up to now no way to find a proof of this

experimental result.

Appendix : Calculations concerning Erlang processes

In order to calculate the counting probabilities of an Erlang process of

density λ we start from a Poisson process of density µ = 2λ in which one

point out of two has been regularly deleted (periodic deterministic thinning).

Consider the interval [0, D] and suppose that there is a non-erased point of the

Poisson process at the time 0. The event that there in n points of the Erlang

process in the interval [0, D[ is realized if there are either 2n or 2n + 1 points

of the Poisson process in this interval. The probability of this event is clearly

(16) valid for any integer n ≥ 0. After simple algebra this yields the mean

value (17). The same procedure is applied to obtain Eqs. (18) to (21)
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Figure 1: Probability density functions p(z) of lifetime (a = 0) and residual
lifetime (a = 5) for an Erlang process of density λ = 1. Points: experiment,
continuous curves: theory.
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Figure 2: Probability density functions p(z) of residual lifetime of a renewal
process of uniform lifetime and unit density λ for various values of a. Points:
experiment, continuous curves: theory.
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Figure 3: Probability density functions of residual lifetime for EAR(1) process
and various values of a: A: a = 0, B: a = 1, and C: a = 20.
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Figure 4: Probability density functions of residual lifetime for EAR(1) process
for αa = 1/2. 1: a = 0.7, 2: a = 1, 3: a = 1.5.
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