Inapproximability proof of DSTLB and USTLB in planar graphs
 Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz

To cite this version:

Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz. Inapproximability proof of DSTLB and USTLB in planar graphs. 2013. hal-00793424v1

HAL Id: hal-00793424

https://centralesupelec.hal.science/hal-00793424v1
Submitted on 22 Feb 2013 (v1), last revised 25 Feb 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inapproximability proof of DSTLB and USTLB in planar graphs

Dimitri Watel Marc-Antoine Weisser Cédric Bentz

February 20, 2013

This document proves the problem of finding a minimum cost Steiner Tree covering k terminals with at most p branching nodes (with outdegree greater than 1), in a directed or an undirected planar graph with n nodes, is hard to approximate within a better ratio than n, even when the parameter p is fixed.

1 Theorem

Definition 1. In a undirected (resp. directed) tree, a branching node is a node whose degree (resp. outdegree) is strictly greater than 2 (resp. 1).

Problem 1. min-(*, p)-USTLB: Given an undirected graph $G=(V, E)$ with n nodes and a non negative cost function ω on its edges, an integer k and a set $X \subset V$ of k terminals, determine, if it exists, a minimum cost tree T^{*} spanning all the nodes of X and containing at most p branching nodes.

Problem 2. min-($*, p)$-DSTLB: Given a directed graph $G=(V, E)$ with n nodes and a non negative cost function ω on its arcs, a node r, an integer k and a set $X \subset V$ of k terminals, determine, if it exists, a minimum cost directed tree T^{*} rooted at r, spanning all the nodes of X and containing at most p branching nodes.

Theorem 1. Let $\epsilon<1$ be a real number. If $P \neq N P$, the $\min -(*, p)-D S T L B$ and the min-(*,p)-USTLB problems with unit costs cannot be approximated within a factor of \mathcal{N}^{ϵ} where \mathcal{N} is the number of nodes in the instance, even if there is a trivial feasible solution.

2 Proof of the theorem

2.1 Reduction

We prove the theorem in the directed case. The proof is similar in the undirected case.

Finding a hamiltonian path starting at a specified node v in a directed planar graph is a NP-complete problem [1].

Let $\mathcal{I}=(G=(V, A), v)$ be an instance of the hamiltonian path problem in a directed planar graph G. We construct a min- $(*, p)$-DSTLB instance $\mathcal{I}_{v}^{\prime}=$ $\left(G_{v}^{\prime}, r, X, \omega\right)$ where G_{v}^{\prime} is a directed planar graph.

The main idea is that G_{v}^{\prime} is divided in three parts. An example is shown in Figure 1. Firstly, a graph $G^{\prime}=\left(V^{\prime}=V \cup W, A^{\prime}\right)$ built from G where each arc of A is divided in two or more arcs. Secondly, a binary tree \mathcal{B} rooted at r with p branching nodes and $p+1$ leaves. We link one of the leaves of \mathcal{B} to v with an arc a_{v}. We define X as the leaves of \mathcal{B} and V. Finally, a graph H and an integer h which ensures the three following properties:

Property 1. Let n, $n_{G^{\prime}}$ and n_{H} be the number of nodes in G, G^{\prime} and H. $n_{G^{\prime}}+n_{H}-n$ is no more than $4 \cdot n^{3} \cdot h$.

Property 2. There exists an elementary path P in $G^{\prime} \cup H$ going through each node of G starting at v.

Property 3. Any elementary path in $G^{\prime} \cup H$ going through each node of G starting at v using a node of H not as endpoint contains at least h nodes of H.

Property 2 ensures the existence of a feasible solution. Properties 1, and 3 ensure an inapproximability gap, described in section 2.2. If h is long enough, Property 3 ensures that any node of H will not be allowed in any approximated solution. We will fix G^{\prime}, H and the value of the parameter h later.

Figure 1: Example of reduction from a graph G with 4 nodes, and $p=3$. Nodes of $W\left(=V^{\prime} \backslash V\right)$ and H, and arcs of G^{\prime} and H do not appear on that figure.

The number of nodes \mathcal{N} in G_{v}^{\prime} is $n_{G^{\prime}}+n_{H}+p+(p+1)$.

2.2 Inapproximability gap

In this part, we fix the parameter h and show the approximability hardness of $(*, p)$-DSTLB.

Let T^{*} be an optimal solution of \mathcal{I}_{v}^{\prime}. It exists because $\mathcal{B} \cup P \cup a_{v}$ is a feasible solution by Property 2. Let $\epsilon<1$, and suppose it exists a polynomial \mathcal{N}^{ϵ}-approximation algorithm for min- $(*, p)$-DSTLB in a planar graph. We will show that in that case, we could use this algorithm to decide whether G has a hamiltonian path starting at v.

If there exists a hamiltonian path in \mathcal{I} starting at v, T^{*} contains at most $n+2 p+1$ nodes (the n nodes of G, the $2 p+1$ nodes of \mathcal{B}), thus it contains at most $n+2 p$ arcs. So the approximate solution has a cost $c_{\mathrm{YES}} \leq(n+2 p) \cdot \mathcal{N}^{\epsilon}$.

We now discuss the case where there is no hamiltonian path starting at v in \mathcal{I}. Then, without H, we cannot build an elementary path going through each node of G.

Lemma 1. Any feasible solution of \mathcal{I}_{v}^{\prime} contains an elementary path going through each node of G starting at v.

Proof. Let T be a feasible solution. T covers every leaf of \mathcal{B}, as a consequence it covers \mathcal{B} entirely. Because \mathcal{B} contains p branching nodes, all other terminals are covered with elementary paths connected to \mathcal{B}. T covers every nodes of G and a_{v} is the only arc linking \mathcal{B} to a node G. So T contains an elementary path going through each node of G starting at v.

By Lemma 1, without H, we cannot build a feasible solution of \mathcal{I}_{v}^{\prime}. So the approximate solution uses at least one node of H. On of those node is not an endpoint. Indeed, in this case, we can remove them to get a hamiltonian path in G. By Property 3, it uses at least h nodes of H. So it has a cost $c_{\mathrm{NO}}>h$.

If $c_{\text {NO }}>h>c_{\text {YES }}$, then the approximation algorithm can decide whether there is a hamiltonian path starting at v.

Lemma 2. Let h satisfies $h=5^{\frac{\epsilon}{1-\epsilon}}\left(n^{3}+2 \cdot p+1\right)^{\frac{1+\epsilon}{1-\epsilon}}+1$. Then $c_{\mathrm{NO}}>h>c_{\mathrm{YES}}$.
Proof. Notice that $h>1$ for all $\epsilon<1$ and $n \geq 1$. Line 11 is proven by Line 10 and Property 1.

$$
\begin{align*}
h & >5^{\frac{\epsilon}{1-\epsilon}}\left(n^{3}+2 p+1\right)^{\frac{1+\epsilon}{1-\epsilon}} \tag{1}\\
h^{1-\epsilon} & >5^{\epsilon}\left(n^{3}+2 p+1\right)^{1+\epsilon} \tag{2}\\
h & >5^{\epsilon}\left(n^{3}+2 p+1\right)^{1+\epsilon} h^{\epsilon} \tag{3}\\
h & >\left(n^{3}+2 p+1\right)^{1+\epsilon}(5 h)^{\epsilon} \tag{4}\\
h & >\left(n^{3}+2 p+1\right)^{1+\epsilon}(1+4 h)^{\epsilon} \tag{5}\\
h & >\left(n^{3}+2 p+1\right) \cdot(1+4 h)^{\epsilon}\left(n^{3}+2 p+1\right)^{\epsilon} \tag{6}\\
h & >(n+2 p) \cdot(1+4 h)^{\epsilon}\left(n^{3}+2 p+1\right)^{\epsilon} \tag{7}\\
h & >(n+2 p) \cdot\left(\left(n^{3}+2 p+1\right)+4 \cdot\left(n^{3}+2 p+1\right) \cdot h\right)^{\epsilon} \tag{8}\\
h & >(n+2 p) \cdot\left((n+2 p+1)+4 \cdot\left(n^{3}+2 p+1\right) \cdot h\right)^{\epsilon} \tag{9}\\
h & >(n+2 p) \cdot\left((n+2 p+1)+4 \cdot n^{3} \cdot h\right)^{\epsilon} \tag{10}\\
h & >(n+2 p) \cdot\left((n+2 p+1)+n_{G^{\prime}}+n_{H}-n\right)^{\epsilon} \tag{11}\\
c_{\mathrm{NO}}>h & >c_{\mathrm{YES}} \tag{12}
\end{align*}
$$

As a consequence, if $P \neq N P$, such an algorithm does not exist.

2.3 Existence of G^{\prime} and H

In this section, we explain how to build the graphs G^{\prime} and H.

2.3.1 Construction of $G^{\prime}=\left(V \cup W, A^{\prime}\right)$

G^{\prime} is built from G where each arc of a is divided into several arcs of A^{\prime} and nodes of W.

We first embed G in \mathbb{R}^{2} such that v is on the outer face of G. For a node $w \in V$, we define its coordinates as x_{w} and y_{w}.

Lemma 3. It exists an angle α such that the rotation $r_{\alpha}(G)$, of angle α and center v, rotates G so that each node $w \in V$ has a unique x-coordinate x_{w} with $x_{v} \leq x_{w}$ (v is 'on the left').

Proof. Let α_{m} and α_{M} be two angles in $[0 ; 2 \pi]$ such that for each $\alpha \in\left[\alpha_{m} ; \alpha_{M}\right]$, $r_{\alpha}(G)$ places v on the left.

If there is no angle where, after G rotates, each node $w \in V$ has a unique xcoordinate x_{w}, for each $\alpha \in\left[\alpha_{m} ; \alpha_{M}\right]$, there are two nodes (u, w) with $x_{u}=x_{w}$ and $y_{u}<y_{w}$. There are at most n^{2} such couples. Let $\alpha_{i}, i \in\left[1 . .\left(n^{2}+1\right)\right]$, be distinct angles in $\left[\alpha_{m} ; \alpha_{M}\right]$, there are two distinct angles for which the same couple of nodes (u, w) verified, after G rotates, $x_{u}=x_{w}$ and $y_{u}<y_{w}$, which implies a contradiction.

We then sort the list of nodes v_{i} by its x coordinate : $x_{v}=x_{v_{1}}<x_{v_{2}}<$ $x_{v_{3}}<\ldots<x_{v_{n}}$.

We define D_{i} for $i \in[2 . . n]$ as the vertical strait lines of abscissa $x_{i}=$ $\frac{x_{v_{i-1}}+x_{v_{i}}}{2}$. For each arc $a=(t, u)$ of G crossing a line D_{i}, we add a node w to W at the intersection of a and D_{i} and replace a in A^{\prime} by the two arcs (t, w) and (w, u). An example is shown in Figure 2.

As no new arc cross, G^{\prime} is planar.

Figure 2: Example of graph $G^{\prime}=\left(V \cup W, A^{\prime}\right)$ built from a graph G with 4 nodes. W is the set of dashed nodes.

2.3.2 Construction of H

We first prove three intermediate lemmas :

Lemma 4. Any arc of G^{\prime} starting at a vertical strait line D_{i} goes to the left, or goes above, below, from or to v_{i}.

Proof. Let a be an arc of G^{\prime} crossing a vertical strait line D_{i} at a node u. If a goes to the left, the lemma is verified. Else, if a do not go above, below, from and to v_{i}, there is a node $t \in V^{\prime}$ with $a=(u, t)$ or $a=(t, u)$ and $x_{t} \in\left[x_{i}, x_{v_{i}}[\right.$. If $t \in V$, by definition of $D_{i}, x_{i}>x_{t}$ which implies a contradiction. If $t \in W$, there is a strait line D_{j} with $x_{t}=x_{j} \in\left[x_{i}, x_{v_{i}}\right.$ [which also implies a contradiction.

We can similarly prove the following lemma:
Lemma 5. Any arc of G^{\prime} going above, below, from or to v_{i} goes to the right of v_{i} or cross D_{i}.

Lemma 6. For each node $v_{i} \in V, i \in[2 . . n]$, we can add to H a node $v_{i, l}$ on D_{i} and an arc $\left(v_{i, l}, v_{i}\right)$ such that the graph $G^{\prime} \cup H$ remains planar.

Proof. Let a_{m} and a_{M} be respectively the lowest arc of G^{\prime} going above v_{i} and the highest arc going below or to v_{i}, going from or to the left of v_{i}. An example is shown in figure 3.

If a_{m} and a_{M} do not exist, by Lemma 4, there is no arc crossing D_{i} going to or from the right (the graph is then disconnected). We can add $v_{i, l}$ on D_{i} anywhere there is no node of W.

If only a_{m} exists, the arc cross D_{i} at a node t_{m} by Lemma 5 . We can add $v_{i, l}$ on D_{i} anywhere below t_{m} where there is no node of W.

If only a_{M} exists, the arc cross D_{i} at a node t_{M} by Lemma 5 . We can add $v_{i, l}$ on D_{i} anywhere above t_{M} where there is no node of W.

If a_{m} and a_{M} exists, they cannot cross at a point of abscissa $x \in\left[x_{i} ; x_{v_{i}}\right]$. If they do, either G^{\prime} is not planar which is not true, or G^{\prime} contains a node $t \in\left[x_{i} ; x_{v_{i}}\right]$. Like in the proof of lemma 1 , this would imply a contradiction. So we can add $v_{i, l}$ on D_{i} anywhere above t_{M} and below t_{m} where there is no node of W.

Similarly, for each node $v_{i} \in V, i \in[2 . . n]$ we can add to H a node $v_{i, r}$ on D_{i+1} and an $\operatorname{arc}\left(v_{i}, v_{i, r}\right)$ such that the graph $G^{\prime} \cup H$ remains planar.

Finally, for $i \in[2 . . n]$, we sort the nodes of abscissa x_{i} by increasing y coordinate (those nodes are nodes of G^{\prime} or nodes of H). For each couple (u, t) of consecutive nodes we add to H a path of h nodes going from u to t if $v_{i-1, r}$ is before u in the list, from t to u otherwise. An example is shown in Figure 4.

Lemma 7. G^{\prime}, H and h verify Properties 1, 2 and 3.
Proof. $n_{G}^{\prime}+n_{H}-n$ is the number of arcs in H and W, in other words, the nodes of all the lines D_{i}. For each vertical line D_{i}, we create at most m nodes of G^{\prime}, and $2+h \cdot(1+m)$ nodes of H. So $n_{G}^{\prime}+n_{H}-n \leq n \cdot(1+m) \cdot(h+1)$. Thus $n_{G}^{\prime}+n_{H}-n<n \cdot(2 m) \cdot(2 h)<4 n^{3} h$. Property 1 is verified.

The path P starting at v, going to $v_{1, r}$, from $v_{i-1, r}$ to $v_{i, l}$ through D_{i} and to v_{i} for $i \in[2 . . n]$ goes through each node of G. Property 2 is verified.

Figure 3: Example of insertion of $v_{i l}$

Figure 4: Example of graph $G^{\prime} \cup H$ built from a graph G with 4 nodes. Thick nodes are $v_{i r}$ and $v_{i l}$. Dashed nodes are W. Each vertical arc is actually a path with h nodes.

Let P be an elementary path going through every nodes of G and one node of H not as endpoint. As only the nodes $v_{i-1, r}$ and $v_{i, l}, i \in[2 . . n]$ are linked to a node of G. If P contains a node of H, it exists a node t and $i \in[2 . . n]$ such that $t=v_{i-1, r}$ or $t=v_{i, l}$ is in P. As t is linked to only one node not in D_{i}, P goes out of D_{i} (or enters D_{i}) through an other node of D_{i} and P contains at least h nodes of D_{i}. Property 3 is verified.

References

[1] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman and Company, New York, 1979.

