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Inapproximability proof of DSTLB and USTLB
in planar graphs

Dimitri Watel Marc-Antoine Weisser Cédric Bentz

February 25, 2013

This document proves the problem of finding a minimum cost Steiner Tree
covering k terminals with at most p branching nodes (with outdegree greater
than 1), in a directed or an undirected planar graph with n nodes, is hard to
approximate within a better ratio than n, even when the parameter p is fixed.

1 Theorem

Definition 1. In a undirected (resp. directed) tree, a branching node is a node
whose degree (resp. outdegree) is strictly greater than 2 (resp. 1).

Problem 1. min-(x, p)-USTLB: Given an undirected graph G = (V, E') with
n nodes and a non negative cost function w on its edges, an integer k£ and a set
X C V of k terminals, determine, if it exists, a minimum cost tree T* spanning
all the nodes of X and containing at most p branching nodes.

Problem 2. min-(x,p)-DSTLB: Given a directed graph G = (V, E) with n
nodes and a non negative cost function w on its arcs, a node r, an integer k and
aset X C V of k terminals, determine, if it exists, a minimum cost directed tree
T* rooted at r, spanning all the nodes of X and containing at most p branching
nodes.

Theorem 1. Let € < 1 be a real number. If P # NP, the min-(*,p)-DSTLB
and the min-(x,p)-USTLB problems in planar graphs with unit costs cannot be
approximated within a factor of N where N is the number of nodes in the
instance, even if there is a trivial feasible solution.

2 Proof of the theorem

2.1 Reduction

We prove the theorem in the directed case. The proof is similar in the undirected
case.

Finding a hamiltonian path starting at a specified node v in a 3-connected
directed planar graph is a NP-Complete problem [1].



Let T = (G = (V, A),v) be an instance of the hamiltonian path problem
in a 3-connected directed planar graph G. The 3-connected property is used
in Section 2.3. We construct a min-(*,p)-DSTLB instance Z) = (G, r, X,w)
where G is a directed planar graph.

The main idea is that G/ is divided in three parts. An example is shown in
Figure 1. Firstly, a graph G’ = (V' = VU W, A’) built from G where each arc
of A is divided in two or more arcs. Secondly, a binary tree B rooted at r with
p branching nodes and p + 1 leaves. We link one of the leaves of B to v with
an arc a,. We define X as the leaves of B and V. Finally, a graph H and an
integer h which ensures the three following properties:

Property 1. Let n, ng: and ng be the number of nodes in G, G' and H.
ng —n is no more than n® and ng: —n + ng is no more than 4 -n - h.

Property 2. There exists an elementary path P in G' U H going through each
node of G starting at v.

Property 3. Any elementary path in G' U H going through each node of G
starting at v using a node of H not as endpoint contains at least h nodes of H.

Property 2 ensures the existence of a feasible solution. Properties 1, and 3
ensure an inapproximability gap, described in section 2.2. If h is long enough,
Property 3 ensures that any node of H will not be allowed in any approximated
solution. We will fix G’, H and the value of the parameter h later.
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Figure 1: Example of reduction from a graph G with 4 nodes, and p = 3. Nodes
of W (= V'\V) and H, and arcs of G’ and H do not appear on that figure.

The number of nodes N in G is ng: +ng +p+ (p+ 1).

2.2 Inapproximability gap

In this part, we fix the parameter h and show the approximability hardness of
(*,p)-DSTLB.

Let T* be an optimal solution of Z/. It exists because BU P U q, is a
feasible solution by Property 2. Let ¢ < 1, and suppose it exists a polynomial
N¢-approximation algorithm for min-(*,p)-DSTLB in a planar graph. We will



show that in that case, we could use this algorithm to decide whether G has a
hamiltonian path starting at v.

If there exists a hamiltonian path in Z starting at v, T* contains at most
ng + 2p + 1 nodes (the ng: nodes of G’ and the 2p + 1 nodes of B), thus
it contains at most ngs + 2p arcs. So the approximate solution has a cost
cyes < (ngr +2p) - N

We now discuss the case where there is no hamiltonian path starting at v in
Z. Then, without H, we cannot build an elementary path going through each
node of G.

Lemma 1. Any feasible solution of I! contains an elementary path going
through each node of G starting at v.

Proof. Let T be a feasible solution. T covers every leaf of B, as a consequence
it covers B entirely. Because B contains p branching nodes, all other terminals
are covered with elementary paths connected to B. T covers every nodes of G
and a,, is the only arc linking B to a node G. So T contains an elementary path
going through each node of G starting at v. O

By Lemma 1, without H, we cannot build a feasible solution of Z!. So the
approximate solution uses at least one node of H. On of those node is not an
endpoint. Indeed, in this case, we can remove them to get a hamiltonian path
in G. By Property 3, it uses at least h nodes of H. So it has a cost cxo > h.

If exno > h > cygs, then the approximation algorithm can decide whether
there is a hamiltonian path starting at v.

1+

Lemma 2. Let h satisfies h = 57-< (2n342-p+1) 1=

i»—1—1. Then cno > h > cyEs.-

Proof. Notice that h > 1 for all e < 1 and n > 1. Lines 9 and 13 are proven by
Property 1.



h> 575 (20 4 2p 4+ 1) T« (1)
h1=¢ > 5¢(2n° + 2p + 1)1Fe (2)
h>5%(2n° + 2p + 1) tehe (3)
h > (2n® + 2p + 1)1 T¢(5h)¢ (4)
h > (2n® 4 2p 4+ 1)'7¢(1 + 4h)° (5)
h> (20 +2p+1) - (1 +4h)(2n° + 2p + 1)° (6)
h> (202 +2p 4+ 1) - (1 +4h)*(n® + 2p + 1)° (7)
h>@n*+n+2p+1)- (1+4h)(n® +2p+1)° (8)
h > (ng +2p) - (1 +4h)(n® + 2p + 1)° 9)
h> (ng +2p)- (n®+2p+1)+4-(n®+2p+ 1) h)° (10)
h>(ng +2p)-(n+2p+1)+4-(n*+2p+1)-h)° (11)
h> (ng +2p)- (n42p+1)+4-n°- h)e (12)
h>(ng +2p)-((n+2p+1)+ng +ng —n)° (13)
(14)

—
N

CNO > h > CYES

As a consequence, if P # NP, such an algorithm does not exist.

2.3 Existence of G’ and H
In this section, we explain how to build the graphs G’ and H.

2.3.1 Construction of G' = (VUW, A")

G’ is built from G where each arc of a is divided into several arcs of A’ and
nodes of W.

G is a 3-connected planar graph. As a consequence, we can embed it in R?
as a convex polygon such that v is on the outer face of G, using for instance the
technique of [2]. For a node w € V', we define its coordinates as x,, and y,.

Lemma 3. It exists an angle « such that the rotation r(G), of angle a and
center v, rotates G so that each node w € V' has a unique x-coordinate x,, with
Xy < Ty (v is ‘on the left’).

Proof. Let a,, and apy be two angles in [0; 27] such that for each a € [aun; aar],
ro(G) places v on the left.

If there is no angle where, after G rotates, each node w € V has a unique x-
coordinate ., for each o € [a; ang], there are two nodes (u,w) with x, =
and y, < y,. There are at most n? such couples. Let oy, i € [1..(n? + 1)],
be distinct angles in [au,; apr], there are two distinct angles for which the same



couple of nodes (u,w) verified, after G rotates, z, = x,, and y, < Y, which
implies a contradiction. O

We then sort the list of nodes v; by its x coordinate : x, = x,, < Ty, <
Ty < oo < Ty, -

We define D; for i € [2..n] as the vertical strait lines of abscissa z; =
Zvici T For each arc a = (t,u) of G crossing a line D;, we add a node
w to W at the intersection of a and D; and replace a in A’ by the two arcs
(t,w) and (w,u). An example is shown in Figure 2.

As no new arc cross, G’ is planar.

i \@4

G Dy D3 Dy

Figure 2: Example of graph G’ = (V U W, A’) built from a graph G with 4
nodes. W is the set of dashed nodes.

2.3.2 Construction of H
We first prove three intermediate lemmas :

Lemma 4. Any arc of G’ starting at a vertical strait line D; goes to the left,
or goes above, below, from or to v;.

Proof. Let a be an arc of G’ crossing a vertical strait line D; at a node u. If a
goes to the left, the lemma is verified. Else, if a do not go above, below, from
and to v;, there is anode t € V' with a = (u,t) or a = (¢t,u) and z; € [z;, 2y, [ If
t € V, by definition of D;, x; > x; which implies a contradiction. If ¢ € W there
is a strait line D; with z; = z; € [z;, x,, [ which also implies a contradiction. [

We can similarly prove the following lemma :

Lemma 5. Any arc of G’ going above, below, from or to v; goes to the right of
v; or cross D;.

Lemma 6. For each node v; € V, i € [2..n], we can add to H a node v;; on
D; and an arc (v;g,v;) such that the graph G' U H remains planar.

Proof. Let ay, and ajps be respectively the lowest arc of G’ going above v; and
the highest arc going below or to v;, going from or to the left of v;. An example
is shown in figure 3.



If a,, and ap; do not exist, by Lemma 4, there is no arc crossing D; going
to or from the right (the graph is then disconnected). We can add v;; on D;
anywhere there is no node of W.

If only a,, exists, the arc cross D; at a node t,, by Lemma 5. We can add
v;,; on D; anywhere below ¢, where there is no node of W.

If only aps exists, the arc cross D; at a node tj; by Lemma 5. We can add
v;; on D; anywhere above tj; where there is no node of W.

If a,, and aps exists, they cannot cross at a point of abscissa © € [z;; 2, ].
If they do, either G’ is not planar which is not true, or G’ contains a node
t € [x4;,,]. Like in the proof of lemma 1, this would imply a contradiction. So
we can add v;; on D; anywhere above tjs and below ¢, where there is no node
of W. O

Figure 3: Example of insertion of v;

Similarly, for each node v; € V, i € [2..n]we can add to H a node v;, on
D, 11 and an arc (v;, v; ) such that the graph G’ U H remains planar.

Finally, for i € [2..n], we sort the nodes of abscissa x; by increasing y-
coordinate (those nodes are nodes of G’ or nodes of H). For each couple (u,t)
of consecutive nodes we add to H a path of h nodes going from u to t and a
path from ¢ to uw through the same h nodes. An example is shown in Figure 4.

Lemma 7. G', H and h verify Properties 1, 2 and 3.

Proof. ni; —n and ny are the number of arcs in W and H, in other words, the
nodes of all the lines D;. For each vertical line D;, we create at most m nodes
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Figure 4: Example of graph G’ U H built from a graph G with 4 nodes. Thick
nodes are v;;,- and v;;. Dashed nodes are W. Each vertical arc is actually a path
with A nodes.

of G" and 2+ h - (1 +m) nodes of H.

ng<(n—1)-m (15)
ng < n? (16)
ng+ng—n<n—1)-(1+m)(h+1)+1) (17)
ng+ng—n<nl+m)(h+1)+(n—-1)—(1+m)(h+1) (18)

Because n < m in a connected graph and h > 0, we now that (n — 1) <
(14+m)(h+1). Thus ny +ng —n < n(l+m)(h+1) <n-(2m)-(2h) < 4n3h.
Property 1 is verified. If the graph G is not connected, there is no solution to
the hamiltonian path problem.

The path P starting at v, going to vy ,, from v;_; , to v;; through D; and
to v; for i € [2..n] goes through each node of G. Property 2 is verified.

Let P be an elementary path going through every nodes of G and one node
of H not as endpoint. As only the nodes v;_1, and v;, ¢ € [2..n] are linked to
a node of G. If P contains a node of H, it exists a node ¢ and i € [2..n] such



that t = v;_1, or t =v;; is in P. As t is linked to only one node not in D;, P
goes out of D; (or enters D;) through an other node of D; and P contains at
least h nodes of D;. Property 3 is verified. O
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