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Inapproximability proof of DSTLB and USTLB in planar graphs

This document proves the problem of finding a minimum cost Steiner Tree covering k terminals with at most p branching nodes (with outdegree greater than 1), in a directed or an undirected planar graph with n nodes, is hard to approximate within a better ratio than n, even when the parameter p is fixed.

1 Theorem Definition 1. In a undirected (resp. directed) tree, a branching node is a node whose degree (resp. outdegree) is strictly greater than 2 (resp. 1).

Problem 1. min-( * , p)-USTLB: Given an undirected graph G = (V, E) with n nodes and a non negative cost function ω on its edges, an integer k and a set X ⊂ V of k terminals, determine, if it exists, a minimum cost tree T * spanning all the nodes of X and containing at most p branching nodes.

Problem 2. min-( * , p)-DSTLB: Given a directed graph G = (V, E) with n nodes and a non negative cost function ω on its arcs, a node r, an integer k and a set X ⊂ V of k terminals, determine, if it exists, a minimum cost directed tree T * rooted at r, spanning all the nodes of X and containing at most p branching nodes.

Theorem 1. Let < 1 be a real number. If P = NP, the min-( * , p)-DSTLB and the min-( * , p)-USTLB problems in planar graphs with unit costs cannot be approximated within a factor of N where N is the number of nodes in the instance, even if there is a trivial feasible solution.

2 Proof of the theorem

Reduction

We prove the theorem in the directed case. The proof is similar in the undirected case.

Finding a hamiltonian path starting at a specified node v in a 3-connected directed planar graph is a NP-Complete problem [START_REF] Garey | The planar hamiltonian circuit problem is np-complete[END_REF].

Let I = (G = (V, A), v) be an instance of the hamiltonian path problem in a 3-connected directed planar graph G. The 3-connected property is used in Section 2.3. We construct a min-( * , p)-DSTLB instance

I v = (G v , r, X, ω) where G v is a directed planar graph.
The main idea is that G v is divided in three parts. An example is shown in Figure 1. Firstly, a graph G = (V = V ∪ W, A ) built from G where each arc of A is divided in two or more arcs. Secondly, a binary tree B rooted at r with p branching nodes and p + 1 leaves. We link one of the leaves of B to v with an arc a v . We define X as the leaves of B and V . Finally, a graph H and an integer h which ensures the three following properties: Property 1. Let n, n G and n H be the number of nodes in G, G and H. n G -n is no more than n 3 and n G -n + n H is no more than 4 • n 3 • h. Property 2. There exists an elementary path P in G ∪ H going through each node of G starting at v. Property 3. Any elementary path in G ∪ H going through each node of G starting at v using a node of H not as endpoint contains at least h nodes of H.

Property 2 ensures the existence of a feasible solution. Properties 1, and 3 ensure an inapproximability gap, described in section 2.2. If h is long enough, Property 3 ensures that any node of H will not be allowed in any approximated solution. We will fix G , H and the value of the parameter h later. The number of nodes

N in G v is n G + n H + p + (p + 1).

Inapproximability gap

In this part, we fix the parameter h and show the approximability hardness of ( * , p)-DSTLB. Let T * be an optimal solution of I v . It exists because B ∪ P ∪ a v is a feasible solution by Property 2. Let < 1, and suppose it exists a polynomial N -approximation algorithm for min-( * , p)-DSTLB in a planar graph. We will show that in that case, we could use this algorithm to decide whether G has a hamiltonian path starting at v.

If there exists a hamiltonian path in I starting at v, T * contains at most n G + 2p + 1 nodes (the n G nodes of G and the 2p + 1 nodes of B), thus it contains at most n G + 2p arcs. So the approximate solution has a cost c YES ≤ (n G + 2p) • N .

We now discuss the case where there is no hamiltonian path starting at v in I. Then, without H, we cannot build an elementary path going through each node of G.

Lemma 1. Any feasible solution of I v contains an elementary path going through each node of G starting at v.

Proof. Let T be a feasible solution. T covers every leaf of B, as a consequence it covers B entirely. Because B contains p branching nodes, all other terminals are covered with elementary paths connected to B. T covers every nodes of G and a v is the only arc linking B to a node G. So T contains an elementary path going through each node of G starting at v. By Lemma 1, without H, we cannot build a feasible solution of I v . So the approximate solution uses at least one node of H. On of those node is not an endpoint. Indeed, in this case, we can remove them to get a hamiltonian path in G. By Property 3, it uses at least h nodes of H. So it has a cost c NO > h.

If c NO > h > c YES , then the approximation algorithm can decide whether there is a hamiltonian path starting at v.

Lemma 2. Let h satisfies

h = 5 1-(2n 3 +2•p+1) 1+ 1-+1. Then c NO > h > c YES .
Proof. Notice that h > 1 for all < 1 and n ≥ 1. Lines 9 and 13 are proven by Property 1.

h > 5 1-(2n 3 + 2p + 1) 1+ 1- (1) h 1-> 5 (2n 3 + 2p + 1) 1+ (2) 
h > 5 (2n

3 + 2p + 1) 1+ h (3) h > (2n 3 + 2p + 1) 1+ (5h) (4) h > (2n 3 + 2p + 1) 1+ (1 + 4h) (5) h > (2n 3 + 2p + 1) • (1 + 4h) (2n 3 + 2p + 1) (6) h > (2n 3 + 2p + 1) • (1 + 4h) (n 3 + 2p + 1) (7) h > (n 3 + n + 2p + 1) • (1 + 4h) (n 3 + 2p + 1) (8) h > (n G + 2p) • (1 + 4h) (n 3 + 2p + 1) (9) h > (n G + 2p) • ((n 3 + 2p + 1) + 4 • (n 3 + 2p + 1) • h) (10) 
> (n G + 2p) • ((n + 2p + 1) + 4 • (n 3 + 2p + 1) • h) (11) h > (n G + 2p) • ((n + 2p + 1) + 4 • n 3 • h) (12) h > (n G + 2p) • ((n + 2p + 1) + n G + n H -n) (13) c NO > h > c YES (14) 
As a consequence, if P = NP, such an algorithm does not exist.

Existence of G and H

In this section, we explain how to build the graphs G and H.

Construction of G = (V ∪ W, A )

G is built from G where each arc of a is divided into several arcs of A and nodes of W . G is a 3-connected planar graph. As a consequence, we can embed it in R 2 as a convex polygon such that v is on the outer face of G, using for instance the technique of [START_REF] Plestenjak | An algorithm for drawing planar graphs[END_REF]. For a node w ∈ V , we define its coordinates as x w and y w . Lemma 3. It exists an angle α such that the rotation r α (G), of angle α and center v, rotates G so that each node w ∈ V has a unique x-coordinate x w with x v ≤ x w (v is 'on the left').

Proof. Let α m and α M be two angles in [0; 2π] such that for each α ∈ [α m ; α M ], r α (G) places v on the left.

If there is no angle where, after G rotates, each node w ∈ V has a unique xcoordinate x w , for each α ∈ [α m ; α M ], there are two nodes (u, w) with x u = x w and y u < y w . There are at most n 2 such couples. Let α i , i ∈ [1..(n 2 + 1)], be distinct angles in [α m ; α M ], there are two distinct angles for which the same couple of nodes (u, w) verified, after G rotates, x u = x w and y u < y w , which implies a contradiction.

We then sort the list of nodes v i by its x coordinate :

x v = x v1 < x v2 < x v3 < ... < x vn .
We define D i for i ∈ [2.

.n] as the vertical strait lines of abscissa

x i = xv i-1 +xv i 2
. For each arc a = (t, u) of G crossing a line D i , we add a node w to W at the intersection of a and D i and replace a in A by the two arcs (t, w) and (w, u). An example is shown in Figure 2.

As no new arc cross, G is planar.

v v v 2 v 3 v 4 G D 2 D 3 D 4 Figure 2: Example of graph G = (V ∪ W, A
) built from a graph G with 4 nodes. W is the set of dashed nodes.

Construction of H

We first prove three intermediate lemmas :

Lemma 4. Any arc of G starting at a vertical strait line D i goes to the left, or goes above, below, from or to v i .

Proof. Let a be an arc of G crossing a vertical strait line D i at a node u. If a goes to the left, the lemma is verified. Else, if a do not go above, below, from and to v i , there is a node t ∈ V with a = (u, t) or a = (t, u) and

x t ∈ [x i , x vi [. If t ∈ V , by definition of D i , x i > x t which implies a contradiction. If t ∈ W , there is a strait line D j with x t = x j ∈ [x i , x vi [ which also implies a contradiction.
We can similarly prove the following lemma :

Lemma 5. Any arc of G going above, below, from or to v i goes to the right of

v i or cross D i . Lemma 6. For each node v i ∈ V , i ∈ [2.
.n], we can add to H a node v i,l on D i and an arc (v i,l , v i ) such that the graph G ∪ H remains planar.

Proof. Let a m and a M be respectively the lowest arc of G going above v i and the highest arc going below or to v i , going from or to the left of v i . An example is shown in figure 3.

If a m and a M do not exist, by Lemma 4, there is no arc crossing D i going to or from the right (the graph is then disconnected). We can add v i,l on D i anywhere there is no node of W .

If only a m exists, the arc cross D i at a node t m by Lemma 5. We can add v i,l on D i anywhere below t m where there is no node of W .

If only a M exists, the arc cross D i at a node t M by Lemma 5. We can add v i,l on D i anywhere above t M where there is no node of W .

If a m and a M exists, they cannot cross at a point of abscissa x ∈ [x i ; x vi ]. If they do, either G is not planar which is not true, or G contains a node t ∈ [x i ; x vi ]. Like in the proof of lemma 1, this would imply a contradiction. So we can add v i,l on D i anywhere above t M and below t m where there is no node of W .

D i v i t m t M a m aM v il Figure 3: Example of insertion of v il Similarly, for each node v i ∈ V , i ∈ [2.
.n]we can add to H a node v i,r on D i+1 and an arc (v i , v i,r ) such that the graph G ∪ H remains planar.

Finally, for i ∈ [2.

.n], we sort the nodes of abscissa x i by increasing ycoordinate (those nodes are nodes of G or nodes of H). For each couple (u, t) of consecutive nodes we add to H a path of h nodes going from u to t and a path from t to u through the same h nodes. An example is shown in Figure 4. of G and 2 + h

• (1 + m) nodes of H. n G ≤ (n -1) • m (15) n G ≤ n 3 (16) n G + n H -n ≤ (n -1) • ((1 + m)(h + 1) + 1) (17) 
n G + n H -n ≤ n(1 + m)(h + 1) + (n -1) -(1 + m)(h + 1) (18) 
.

Because n ≤ m in a connected graph and h ≥ 0, we now that (n -1) < (1 + m)(h + 1). Thus n G + n H -n ≤ n(1 + m)(h + 1) < n • (2m) • (2h) < 4n 3 h. Property 1 is verified. If the graph G is not connected, there is no solution to the hamiltonian path problem.

The path P starting at v, going to v 1,r , from v i-1,r to v i,l through D i and to v i for i ∈ [2..n] goes through each node of G. Property 2 is verified.

Let P be an elementary path going through every nodes of G and one node of H not as endpoint. As only the nodes v i-1,r and v i,l , i ∈ [2..n] are linked to a node of G. If P contains a node of H, it exists a node t and i ∈ [2.

.n] such that t = v i-1,r or t = v i,l is in P . As t is linked to only one node not in D i , P goes out of D i (or enters D i ) through an other node of D i and P contains at least h nodes of D i . Property 3 is verified.
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 1 Figure 1: Example of reduction from a graph G with 4 nodes, and p = 3. Nodes of W (= V \V ) and H, and arcs of G and H do not appear on that figure.
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 74 Figure 4: Example of graph G ∪ H built from a graph G with 4 nodes. Thick nodes are v ir and v il . Dashed nodes are W . Each vertical arc is actually a path with h nodes.