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Abstract: This paper is concerned with the optimal control of linear dynamical systems in
the presence of a set of adversary constraints. One of the novelties is the type of constraints
introduced in the receding horizon optimization problem. These constraints can be considered
as adversary by their non convex characteristics which make the convergence of the systems’
dynamics towards the “natural” equilibrium position an impossible task. In this case, the default
equilibrium point has to be replaced by a set of equilibrium points or even to accept the
existence of limit cycles. The present paper proposes a dual-mode control strategy which builds
on an optimization based controller and a fixed constrained control law whenever the adversary
constraints are activated. Furthermore, the method which exhibits effective performance builds
on invariance concepts and proves to be related to the classical eigenstructure assignment
problems. In order to illustrate the benefits of the proposed method, typical applications
involving the control of Multi-Agent Systems are considered.

Keywords: equilibrium point, positive invariance, non convex constraints, constrained MPC,
Multi-Agent Systems

1. INTRODUCTION

In many control engineering problems collision avoidance
represents a fundamental issue that needs to be integrated
in the design strategy (see, for instance, Grundel and
Pardalos [2004] and the references therein). This problem
turns out to be difficult, one of the features being the
non convexity of the associated constraints (see, for details
Prodan et al. [2012]).
Various control methods for solving the collision avoidance
problem are related to the potential field approach Tanner
et al. [2007], graph theory Lafferriere et al. [2005] or other
optimization-based approaches which handle indirectly the
constraints by penalty terms in the cost function. One
shortcoming of all these methods is that the constraints
activation is denied. Furthermore, there are methods based
on Mixed Integer Programming (MIP) (see the compre-
hensive monography Jünger et al. [2009]) which have the
ability to include explicitly non convex constraints and
discrete decisions in the optimization problem. A novel
approach for reducing the number of binary variables used
in MIP formulation, together with an application in the
obstacles avoidance problem is detailed in Stoican et al.
[2011a] and Stoican et al. [2011b].

? The research of Ionela Prodan is financially supported by the
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The problem of the avoidance of convex fixed obstacles
is examined in Rakovic et al. [2007] from a set-theoretic
point of view. The authors propose to deal with the
non convex control problem by considering approximation
procedures which “inner and outer convexify” the exact
capture sets. Furthermore, in Raković and Mayne [2007]
the same problem is tackled by using set computations
and polyhedral algebra. However, in all of these papers
the origin is part of the feasible region. To the best of
the authors knowledge, there does not exists any results
treating the case of constraints which are not satisfied
by the origin (understood as the equilibrium point of the
dynamical system to be controlled).
The goal of the present paper is twofold. In a first stage,
we perform a detailed analysis of the limit behavior for
a linear dynamical system in the presence of adversary
constraints. More precisely, we need to define the fixed
points and the invariance properties for the system state
trajectory while avoiding a convex region containing the
origin in its strict interior. In the context of multi-agent
systems, this region can, in fact, represent an obstacle
(static constraints) but can be extended to the safety
region of a different agent (leading to a parametrization
of the set of constraints with respect to the global current
state).



In a second stage, our interest is to ensure the stability over
the feasible region of the state space using a dual-mode
strategy. The basic principles are those of Model Predictive
Control (MPC) technique (see, for instance, Maciejowski
[2002] for basic notions) including avoidance constraints.
There is a fundamental difference to the classical MPC
which rely on the assumption that the origin is in the
relative interior of the feasible region (see, for example,
Mayne et al. [2005], ?, Bemporad et al. [2002]) or on the
frontier of the feasible region Pannocchia et al. [2003].
In the present paper, we provide necessary and sufficient
conditions for the existence of a stable equilibrium point
having the entire feasible region as a basin of attraction.
The rest of the paper is organized as follows: In Section II
the constrained predictive control problem is formulated.
Section III presents the local constrained control problem
based on invariance concepts, while the designed problem
is developed in Section IV. Discussions based on the
simulation results are presented in Section V and the
conclusions are drawn in Section VI.
The following notations will be used throughout the paper.
The spectrum of a matrix M ∈ Rn×n is the set of its
eigenvalues, denoted by Λ(M) = {λi : i = 1 : n}. A point
xe is a fixed point of a function f if and only if f(xe) = xe
(i.e. a point identical to its own image). Let xt+1|t denote
the value of x at time instant t + 1, predicted upon the
information available at time t ∈ N. We write Q � 0 to
denote that Q is a positive semidefinite matrix.

2. PRELIMINARIES

Consider the discrete time linear time-invariant system:
xt+1 = Axt +But, (1)

where xt ∈ Rn is the state, ut ∈ Rm is the input signal
and A, B are state matrices of appropriate dimensions. It
is assumed that the pair (A,B) is stabilizable.
The minimization of infinite horizon cost function (usually
a quadratic function involving states and inputs) leads
to the linear state-feedback control law characterizing the
optimal unconstrained control:

ut = KLQxt, (2)
with KLQ computed from the solution of the discrete
algebraic Riccati equation.
Consider now the problem of optimal control of the system
state (1) towards the origin while its trajectory avoids a
polyhedral region 1 defined by:

S =
{
x ∈ Rn : hTi x < ki, i = 1 : nh

}
, (3)

with (hi, ki) ∈ Rn × R and nh being the number of half-
spaces. In this paper we focus on the case where ki > 0
for all i = 1 . . . nh, meaning that the origin is contained in
the strict interior of the polytopic region, i.e. 0 ∈ S. Note
that, the feasible region is a non convex set defined as the
complement of (3), namely Rn \ S.
Whenever, (2) is infeasible a corrective control action
needs to be design such that the system’s trajectories
evolve outside the interdicted region (3):

xt /∈ S. (4)
1 Such limitations often arise in control applications and we will dis-
cuss later in the paper the collision or obstacle avoidance problems.

A tractable approach is the recursive construction of an
optimal control sequence u = {ut|t, ut+1|t, · · · , ut+N−1|t}
over a finite constrained receding horizon, which leads to
a predictive control policy:

u∗ = arg
u

min(xTt+N |tPxt+N |t +
N−1∑
i=1

xTt+i|tQxt+i|t+

+
N−1∑
i=0

uTt+i|tRut+i|t), (5)

subject to the set of constraints:{
xt+i+1|t = Axt+i|t +But+i|t,

xt+i|t ∈ Rn \ S, i = 1 . . . N. (6)

Here Q = QT � 0, R � 0 are weighting matrices,
P = PT � 0 defines the terminal cost and N denotes
the length of the prediction horizon.
In the present paper, we propose a dual-mode control
strategy based on a local feedback guaranteeing the stabil-
ity of an equilibrium point outside the interdicted region
(3) and an outer controller design to handle the transitory
behavior.
Besides satisfying the constrains (6), additionally we would
like that the systems’ state approaches a unique equilib-
rium point and avoids the existence of multiple basins
of attraction, cyclic or chaotic behavior. In the general
case the periodic solutions can be considered as optimal
candidates for the limit behavior. In the present paper, the
control objective is to avoid limit cycles and concentrate
on the convergence to a unique fixed point with basin of
attraction Rn \ S.
Remark 1. Usual MPC concerns regarding feasibility or
recursive feasibility are not critical for the problem (5)–
(6) as long as the feasible set is actually unbounded.
Such discussion becomes relevant if additional convex
state/input constraints are to be handled. We refer to
reachability studies in order to deal with these problems
which are out of the scope of the present paper. �

3. LOCAL CONSTRAINED CONTROL

In this section, we first establish conditions for an affine
state-feedback control law to render a half-space positively
invariant. Second, we associate the half-space to an equi-
librium state lying on its boundary. Then, these conditions
are used for the derivation of a control law that transfers
the system’s state as close as possible to the origin, all by
avoiding the interdicted region.

3.1 Equilibrium states

Consider an affine control law of the form:
ut = K(xt − xe) + ue, (7)

with xe ∈ Rn the desired equilibrium state, K ∈ Rm×n
the feedback-gain matrix and ue ∈ Rm the feed-forward
parameter. The resulting closed-loop system is described
by the state equation

xt+1 = Axt +BK(xt − xe) +Bue, (8)
and xt − xe defines its transient behavior.



A state xe is an equilibrium state for the closed-loop
system (1) if:

xe = Axe +Bue. (9)
Therefore, only the points xe belonging to the preimage
through the linear map (In − A), of the linear subspace,
spanned by the columns of matrix B, can represent equi-
librium states.
Remark 2. The geometrical locus of the equilibrium states
is independent of K. Consequently, the states that can
be equilibria are defined by the dynamics of the unforced
system and are completely specified by ue. �

Illustrative example: As previously mentioned, the set
of equilibrium points xe ∈ Rn is the image of matrix
(In−A)−1B in the case when (In−A) is non-singular. The
particular characteristics of the dynamics (state and input
dimensions) define the shape of the subspace of states that
can be equilibria. Figure 1 depicts a 2-dimensional system
with a scalar input. It can be seen that the geometrical
locus of the fixed points is in fact, a straight line which
trespasses the origin.
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Fig. 1. Interdicted region and geometrical locus of equilib-
rium states.

3.2 Positive invariance conditions

We can further concentrate on one of the key issues for
the control design: the controlled invariance with respect
to an affine control law (7) and subsequently, the closed-
loop stability. For solving this problem, the following
lemma provides algebraic invariance conditions. Note that
this result is a particular case of a more general result
established in Bitsoris and Truffet [2011].
Lemma 3. The half-space defined by the inequality vTx ≤
γ is a positively invariant set of the affine system xt+1 =
Mxt + c, if and only if there exists a positive real number
g such that:

vTM = gvT , (10)
and

gγ + vT c ≤ γ. (11)
�

Remark 4. From Lemma 3, it is clear that
vTM = gvT (12)

and
− gγ − vT c ≤ −γ (13)

are necessary and sufficient conditions for the opposite
half-spaces defined by inequality vTx ≥ γ to be positively

invariant with respect to system xt+1 = Mxt + c. Note
however that (10)–(11) is not equivalent to (12)–(13). �

The next result exploits the invariance properties and
relates the algebraic conditions to the equilibrium states.
Theorem 5. If xe ∈ Rn is an equilibrium state of the
closed-loop system (1) lying on the hyperplane vTx = γ,
then a necessary and sufficient condition for this hyper-
plane to partition the state-space into two positively in-
variant half-spaces is that vT ∈ R1×n to be left eigenvector
of the closed-loop matrix A+BK ∈ Rn×n associated to a
positive eigenvalue λ 6= 1. �

Proof: See Appendix.
Illustrative example: The above results can be depicted for
a 2-dimensional system xt+1 = Mxt + c with scalar input.
In Figure 2 the straight line which separates the state
space into two invariant half-spaces and the trajectories
converging to the equilibrium point are shown.
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Fig. 2. Invariant half-spaces for an affine system

3.3 Eigenstructure assignment analysis

As seen above, the eigenvector of a closed-loop matrix
can be seen as the normal to a hyperplane. Under mild
assumptions, this hyperplane can partition the space into
two complementary and invariant half-spaces. In the con-
text of control design we are interested in the converse
problem: Given a hyperplane, does there exist a certain
structural constraint on the gain matrix K which makes
the resulting closed-loop matrix to have the normal to the
hyperplane as an eigenvector? If not, which is the closest
approximation possible (in the sense of the infinity norm)?
These questions lead to an eigenstructure assignment
analysis. Starting with the set of hyperplanes defining the
polyhedral interdicted region (3), we search for the gain
matrices of the control laws which assure stability and
assign a left eigenvector as close as possible to the normal
to a frontier of S in (3). Additionally, we show this to be
optimal for some a priori given cost matrices (e.g., as in a
Riccati equation setting).
In the following, we will derive necessary and sufficient
conditions for the existence of a gain matrix K which
assigns a prescribed eigenvector and the associated eigen-
value.
Proposition 6. Given a controllable pair (A,B) and the
pair (λ, v) ∈ R × Rn the following relations hold:



1. If (λ, vT ) is the eigenvalue/left eigenvector pair as-
sociated to the matrix A + BK, then K ∈ Rm×n
satisfies

KT z = w, (14)
with w = (λIn −A)T v ∈ Rn and z = BT v ∈ Rm.

2. If (λ, v) is the eigenvalue/right eigenvector pair as-
sociated to the matrix A + BK, then K ∈ Rm×n
satisfies

Kv = w̃, (15)
with w̃ ∈ Rm the solution of (A− λIn)v = −Bw̃.

�

Proof: See Appendix.
Remark 7. Note that Theorem 6 provides a constraint
on the gain K which depends on the placement of a
single pair (eigenvalue/eigenvector). No assumption or
particular implications are made with regards to the rest
of the closed-loop matrix A+BK eigenstructure. Rather,
the structural constraints (14) or (15) will be added
further in a design procedure, to construct a gain which
ensures, additionally to a particular invariance property,
the stability of the unconstrained closed-loop system. �

The aforementioned theorem offers the framework for the
following design procedure.
————————————————————————-
Description: An optimization problem can be formulated
in order to find a stable eigenvalue associated to a left/right
eigenvector which corresponds to a normal of a given hy-
perplane v. Concomitantly, a vector of parameters w ∈ Rn
or w̃ ∈ Rm and implicitly the linear structural constraint
on the feedback gain K as in (14) or (15) is obtained.
————————————————————————-
Input: The controllable pair (A,B) describing the system
(1) and the normal vector v ∈ Rn to a given hyperplane.
————————————————————————-
Output: A structural (linear) constraint (14) or (15) on
the feedback gain ensuring the invariance property and the
stability of the respective eigenvalue.
1.

min δ
δ,λ,w

(16)

s.t.: − 1δ ≤ vT (A− λIn) + wT ≤ 1δ
δ ≥ 0, 0 < λ < 1;

2.
min ε
ε,λ,w̃

(17)

s.t.: − 1ε ≤ (A− λIn)v +Bw̃ ≤ 1ε,
ε ≥ 0, 0 < λ < 1.

————————————————————————

In the case when the optimal solution of the optimization
problem (16) is δ∗ = 0, the vector vT can be used
for the separation of invariant half-spaces (as detailed in
Lemma 3 and Theorem 5) with respect to the closed-
loop dynamics. Moreover, the conditions imposed on the
associated eigenvalue assure the contractiveness of the
respective eigenvector.

The optimal argument w∗ ∈ Rn of the LP problem (16) or
w̃∗ ∈ Rm of the LP problem (17), will be instrumental in
the control design problem through a structural constraint
on the fixed gain matrix as in (14) or (15).

3.4 Affine parametrization of the feedback policies

As it can be seen from the eigenstructure assignment
approach described above, the main difficulty for proving
the stability in the neighborhood of xe is imposed by the
structural constraint on the gain matrix inherited from
the invariance desideratum. This imposes a reformulation
of the local control problem in order to identify the design
parameters. In the following, we will derive an affine
parametrization of the feedback policies such that a fixed
gain matrix K can be used for feedback, while respecting
the constraint (14) or (15).
Theorem 8. Consider the stabilization of system (1).
1. A stabilizing feedback gain K satisfying (14) exists if

and only if the pair (A + BΓT , BΨT ) is stabilizable
with Γ ∈ Rn×m and Ψ ∈ R(m−1)×n defined as:

Γ =
[
0n×(m−1) wz̃

−1] , Ψ =
[
I(m−1) −ẑz̃−1] , (18)

with z = [ẑ z̃], z̃ ∈ R∗, ẑ ∈ Rm−1 and w ∈ Rn as in
(14).

2. A stabilizing feedback gain K satisfying (15) exists
if and only if the following system is output stabiliz-
able 2 (through ut = K̆yt):

xt+1 =
(
A+BΓ̃

)
xt +But,

yt = Ψ̃xt,
(19)

with Γ̃ ∈ Rm×n and Ψ̃ ∈ R(n−1)×n defined as:
Γ̃ =

[
0m×(n−1) w̃ṽ

−1] , Ψ̃ =
[
I(n−1) −v̂ṽ−1] , (20)

with v = [v̂ ṽ], ṽ ∈ R∗, v̂ ∈ Rn−1 and w̃ ∈ Rm as in
(15).

�

Proof: See Appendix.
Remark 9. Note that for m = 1 in (39), the gain matrix
is directly imposed by Γ = wz̃−1 since for this particular
case the subspace defining K̃ is null. The same remark can
be extended for n = 1 in (42), where the gain matrix is
given by Γ̃ = w̃ṽ−1. �

Illustrative example: We propose here an illustrative ex-
ample of the reasoning leading to equations (39)–(18)
(note that is similar in the case of (42)–(20)) and the
subsequent values of the matrices involved. In this sense,
let us consider a matrix K ∈ R2×2 which respects the
constraint (14). Then, we can write:[

k11 k12
k21 k22

] [
z1
z2

]
=
[
w1
w2

]
,

which is equivalent to:[
k11 k12
k21 k22

]
︸ ︷︷ ︸
KT∈R2×2

=
[

0 w1z
−1
2

0 w2z
−1
2

]
︸ ︷︷ ︸

Γ∈R2×2

+
[
k11
k21

]
︸ ︷︷ ︸
K̃T∈R2

[
1 − z1z

−1
2
]︸ ︷︷ ︸

Ψ∈R1×2

.

2 The system (19) is output stabilizable if the control law ut = K̆yt

is stable, that is, xt+1 =
(

A + BΓ̃ + BK̆Ψ̃
)

xt is stable.



where each of the vectors/matrices corresponds with the
notation in (39)–(18). A similar decomposition can be
applied to another particular case, i.e. for K ∈ R3×3:[

k11 k12 k13
k21 k22 k23
k31 k32 k33

]
︸ ︷︷ ︸

KT∈R3×3

=

[
0 0 w1z−1

3
0 0 w2z−1

3
0 0 w3z−1

3

]
︸ ︷︷ ︸

Γ∈R3×3

+

[
k11 k12
k21 k22
k31 k32

]
︸ ︷︷ ︸

K̃T∈R3×2[
1 0 −z1z−1

3
0 1 −z2z−1

3

]
︸ ︷︷ ︸

Ψ∈R2×3

.

3.5 Local controller synthesis

Theorem 8 states that the controllability of system (1)
with the gain matrix subject to a condition of type (14),
(15), respectively, is equivalent with the controllability
of a reduced order dynamical system. Specifically, in the
case 1 of Theorem 8, the usual controllability tests (e.g.
the gramian of controllability, controllability matrix) and
design of gain matrix apply (e.g., pole placement, Linear
Quadratic Regulator (LQR) or solving a Riccati equation).
In the present paper we choose to construct the controller
K̃ in (41) with a LQ design using the solution of the
discrete algebraic Riccati equation

ÃTP + PÃ− PB̃R−1B̃TP +Q = 0, (21)
where we denote Ã = A+BΓ and B̃ = BΨT . Furthermore,
assuming the system (41) is controllable and a suitable
gain matrix K̃ = R−1BTP is obtained, it is simple to
introduce it in (39) and to obtain the stabilizing K for the
original dynamics (1) which additionally provide certain
invariance properties with respect to a given hyperplane.
In the case 2 of Theorem 8, several design approaches can
be proposed. Here we propose a solution close to the ideas
in Crusius and Trofino [1999], based on a LMI conditions.

Proposition 10. Given the matrices Γ̃,B, Ψ̃, with B full
column rank, any feasible solution in terms of matrices
G = GT � 0, M , N for

[
−G

(
A + BΓ̃

)T
G + Ψ̃T NT BT

G
(

A + BΓ̃
)

+ BNΨ̃ −G

]
≺ 0,

BM = GB.
(22)

provides a gain matrix K̆ = M−1NΨ̃ stabilizing the
system (19). �

Proof: See Appendix.

Subsequently, the matrix K̆ can be replaced in (42) to
obtain the desired state feedback gain matrix K.
Illustrative example: Figure 3 resumes the theoretical
details discussed in this section by a graphical illustration.
Therefore, S ∈ R2 is the interdicted region defined as in
(3). All the equilibrium states lie on the hyperplane which
trespass the origin (see, (9) and Remark 2). Solving the
optimization problem (16), we find an eigenvector which
approximates the normal to one of the frontiers of the
interdicted region. Moreover, the hyperplane partition the
space into invariant half-spaces (see Lemma 3).

S
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Fig. 3. Interdicted region and equilibrium point lying on
the boundary of the feasible region

4. THE GLOBAL DESIGN PROBLEM

The goal of this paper is, ultimately, to define a control law
which, given the system dynamics described by (1) and the
interdicted region (3), transfers all the possible trajectories
asymptotically to an equilibrium point lying as close as
possible to the origin while respecting the constraints (6).
With the results obtained in the previous sections, a local
linear control feedback gain is available such that xe, a
point on the frontier of S, is an attractor for the closed-
loop unconstraint trajectories. In the constrained case, the
condition xt /∈ S is assured only for a half-space, described
by one of the supporting hyperplanes of S.
In the present section we will describe the procedure to
ensure the stability of xe by the use of a receding horizon
optimal control procedure. Its design principles are related
to the dual-mode control:

- a generic optimization-based control integrating col-
lision avoidance constraints;

- its equivalence with the unconstrained feedback law
(7) over an invariant region containing xe;

- guarantees of convergence in finite time towards this
invariant region.

Consider the system (1), the receding horizon optimization
problem to be solved is formulated as:

u∗ =arg
u

min((xt+N |t − xe)TP (xt+N |t − xe)+ (23)

+
N−1∑
i=1

(xt+i|t − xe)TQ(xt+i|t − xe)+

+
N−1∑
i=0

(uTt+i|t −Kxe − ue)R(ut+i|t −Kxe − ue)),

s.t.:
{
xt+i+1|t = Axt+i|t +But+i|t,

xt+i|t ∈ Rn \ S, i = 1 : N, (24)

with u = {ut|t, . . . , ut+N−1|t}. The parameters xe, ue and
K, are determined in the previous section (see (7)–(9),
(14)–(41)). Applying the first component of the optimal
formulation (23)–(24) and reiterating the optimization
using the new state xk, considered measurable, we dispose
of a global control law with the following properties
(formulated here without the formal proofs which can be
derived without difficulties based on the classical results in
Mayne et al. [2000] and Chmielewski and Manousiouthakis
[1996]):



- the optimization problem is recursively feasible (as
consequence of the unbounded feasible domain);

- it is tractable (finite number of constraints);
- the matrices P,Q,R can be tuned upon inverse op-
timality principles to ensure the equivalence between
the unconstrained optimum and the feedback control
action (7), ut = K(xt − xe) + ue;

- reachability analysis can be used to determine the
minimal horizon N such that the predicted state
trajectory

vTxt+N ≥ γ,∀xt ∈ (Rn \ S).
In order to avoid the difficulties of the reachability analysis
in the choice of the prediction horizon N , one can use the
following receding horizon formulation:

u∗ =arg
u

min((xt+N |t − xe)TP (xt+N |t − xe)+ (25)

+
N−1∑
i=1

(xt+i|t − xe)TQ(xt+i|t − xe)+

+
N−1∑
i=0

(uTt+i|t −Kxe − ue)R(ut+i|t −Kxe − ue)),

s.t.:


xt+i+1|t = Axt+i|t +But+i|t,

xt+i|t ∈ Rn \ S, i = 1 : N,
xt+N |t ∈ vTxt ≤ γ.

(26)

Note that the last constraint ensures the invariance and
the contractivity of the domain of attraction of the corre-
sponding closed-loop feasible states for (26). Furthermore,
in this formulation the adding of constraints on the input
can be handled, the direct consequence being the reduction
of the feasible domain.
The former construction depends explicitly upon cost
matrices P,Q,R. In usual designs, the same matrices are
used to provide (via the Ricatti equation) the optimal gain
K. Here however, we already have a proposed value for
the gain, based upon invariance assumptions. Thus, an
inverse optimality reasoning becomes necessary. Having
the control law ut = Kxt + ue, we deduce (see, Larin
[2003] for further details) a triplet of cost matrices P,Q,R
for which the matrix K would be the solution of the
corresponding Ricatti equation.
On a more general note, a last aspect which need to be
pointed out is that, under some reasonable assumptions
it is always possible to define a so-called “viability kernel”
(the interested reader is referred to Definition 4.4.1, p. 140,
Aubin et al. [2011]) to which a trajectory can be steered
in a finite time whilst satisfying the constraints (see, for
extensive details Aubin et al. [2011]). In practical terms,
this means that there exists a finite value of the prediction
horizon such that the trajectory can be guaranteed to
reach a terminal region and thus assure the feasibility of
the scheme.

5. COLLISION AVOIDANCE EXAMPLES

A number of commonly found situations in the control
related to Multi-Agent Systems imply a cost function that
has to be minimized, while in the same time, the agent
avoids collision with obstacles and other agents. To solve
this problem, there exists various methods. Arguably, they

can be gathered in methods which penalize through the
cost function as the violation of the constraints (e.g. Poten-
tial Field Method Tanner et al. [2007], Navigation Func-
tions Rimon and Koditschek [1992], and methods which
impose hard constraints that may not be broken. The
latter group usually employs receding horizon techniques
as they naturally take into account constraints Richards
and How [2005].
Example 1: In the first illustrative example, we will
describe the limit behavior of an agent in the presence of
adversary constraints. More precisely, the convergence to
the relative position “zero” is impossible for the agent since
a fixed convex obstacle contains the equilibrium position.
As a practical application, we consider a linear system
(vehicle, pedestrian or agent in general form), whose
dynamics is described by:

A =
[
−0.78 0.33
−0.85 1.08

]
, B =

[
1 1
−5 2

]
(27)

The components of the state are the position coordinates
of the agent. Note that the pair (A,B) is stabilizable.
The state constraints as described in (3) are illustrated
in Figure 4 by the red polytope. Solving the optimization
problem (16), we obtained an affine parametrization of

the gain matrix K =
[
−0.17 −0.09

0.74 −0.38

]
as in (39) with

K̃ = [−0.17 − 0.09], Γ =
[

0 0.86
0 −0.31

]
and Ψ = [1 0.70].

This makes the closed-loop matrix to have a hyper-
plane of the interdicted region as an eigenvector. Fur-
thermore, we obtained ue = [0.09 1.29] and the equilib-
rium point xe = [0 10.1], illustrated as a green dot in
Figure 4. The tuning parameters of the optimization prob-

lem (23) are: P =
[

0.59 −0.04
−0.04 0.50

]
, Q =

[
0.11 0.30
0.30 0.21

]
,

R =
[

0.54 −0.30
−0.30 0.65

]
and the prediction horizon N = 2.

Finally, Figure 4 depicts three different state trajectories
converging to a unique equilibrium point when the predic-
tive control law (23) is applied.
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Fig. 4. The interdicted region and different agent state
trajectories which converge to a fixed point.

Example 2: The method presented in the present paper
can also be extended to solve collision or obstacles avoid-
ance problems for multiple agents. This implies at the
modeling stage a compact representation of the obstacles



and/or a safety region for an agent in terms of (3). Con-
sequently, a safety region can be associated to each agent
and imposes that the inter-agent dynamics do not overlap
each individual restriction. It is important to assure that
a control action will not lead to a cycling behavior which
implies energy consumption. Formally, the fact that a set
of agent remains in (or arrives to) a unique configuration,
as a result of some suitable control strategy, is equivalent
with saying that in an extended space, there exists and
it is unique a point which can be made fixed through the
same control strategy.
Without entering into an exhaustive presentation, we will
make use of the techniques presented in Prodan et al.
[2011] and Stoican et al. [2011b], where the collision avoid-
ance problem in the context of multi-agent formations is
studied in detail. Consequently, here we will only illustrate
that, by using the proposed method the agents converge to
a unique configuration (i.e., to a unique equilibrium point
in an extended state space). Figure 5 depicts the evolu-
tion of two heterogeneous agents with different associated
safety regions (the blue and the red polytopes described
as in (3)) and different initial positions.
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Fig. 5. The evolution of the agents with different initial
positions at three different time steps.

6. CONCLUSIONS

A finite horizon predictive optimization problem formu-
lation was proposed in order to describe the evolution
of a linear system in the presence of a set of adversary
constraints. This type of constraints are particular, as they
make the convergence of the system trajectory to origin
an infeasible task. We propose a dual-mode control law
which switches between an unconstrained optimum con-
troller and a local solution which handles the constraints
activation, when necessary. Simple algebraic conditions for
the existence and uniqueness of a stable fixed point on
the boundary of the feasible region represent the main
result of this paper, completed with an optimization based
control for the global attractivity. The analyzed cases are
presented through some illustrative examples and collision
avoidance simulation results. Future work will focus on col-
lision avoidance in the context of multi-agent formations
and the stabilization of multiple agents around a limit
cycle.
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APPENDIX

Proof of Theorem 5:
Applying Lemma 3 to system (8) leads to:

xt+1 = (A+BK)xt +B(ue −Kxe) (28)
and considering Remark 4 the invariance yields the follow-
ing algebraic conditions:

vT (A+BK) = λvT , (29)
λγ + vTB(ue −Kxe) ≤ γ, (30)
− λγ − vTB(ue −Kxe) ≤ −γ, (31)
λ ≥ 0. (32)

Equation (29) directly proves that (λ, vT ) is a eigen-
value/left eigenvector pair. From (30) and (31) we have

λγ + vTB(ue −Kxe) = γ, (33)
which can be rewritten as:
λγ+vT ((A+BK)xe+B(ue−Kxe))−vT (A+BK)xe = γ.

(34)
Then, relation (34) becomes λγ + vTxe − λvTxe = γ or
(1−λ)vTxe = (1−λ)γ. Considering the hypothesis λ 6= 1,
we obtain vTxe = γ, thus proving the sufficiency.
Conversely, the invariance of the half-space vTx ≤ γ is
equivalent to:

vT (A+BK) = λvT , (35)
λγ + vTB(ue −Kxe) ≤ γ. (36)

Condition (35) is satisfied by the eigenstructure properties.
In the same time, xe is an equilibrium state of the closed-
loop system (28) lying on the hyperplane vTx = γ.
Then, xe satisfies relation (9) and vTxe = γ. Exploiting
these facts, condition (36) becomes λγ + vTxe − vT (A +
BK)xe ≤ γ and is equivalent to λγ + γ − λvTxe ≤ γ.
Finally, we have that vTxe ≥ γ, which is trivially verified
as long as vTxe = γ. Similar manipulations provides the
invariance properties for the opposite half-space vTx ≥ γ
thus, proving the necessity. �

Proof of Proposition 6:
1) For the dynamics described by (1) and a given vector
v ∈ Rn, under controllability assumptions, there exists
a matrix K ∈ Rm×n such that the pair (λ, vT ) is an

eigenvalue/left eigenvector of matrix (A + BK) and K
verifies the linear constraint:

vTB ·K = wT , (37)
with w ∈ Rn and wT , vT (λIn − A). The equation (14)
is obtained from (37) by considering z = BT v under full-
column rank hypothesis, concerning the matrix B.
2) Similarly, let K ∈ Rm×n such that the pair (λ, v) is an
eigenvalue/right eigenvector of matrix (A+BK):

(A+BK)v = λv. (38)
If we rewrite (38) in the form (A − λIn)v = −BKv we
obtain the linear constraint (15) with w̃ ∈ Rm, a solution
of the system of equations: (A− λIn)v = −Bw̃. �

Proof of Theorem 8:
1) We start by decomposing z ∈ Rm in (14) into two
elements z = [ẑ z̃] such that the element z̃ ∈ R∗ (a non-
zero scalar) and ẑ ∈ Rm−1. Then, decomposing KT ∈
Rn×m similarly into K̂T ∈ Rn×1 and K̃T ∈ Rn×(m−1) we
can express after simple algebraic manipulations K̂T as a
function of w, ẑ and z̃−1. Furthermore, introducing this
into the original equality (14) we obtain an affine relation
with KT :

KT = Γ + K̃T ·Ψ (39)
with Γ ∈ Rn×m and Ψ ∈ R(m−1)×n defined as in (18).
Using the above parametrization, relation (39) can be
introduced into the closed-loop matrix as follows:
A+BK = A+B

(
ΓT + ΨT K̃

)
=
(
A+BΓT

)
+BΨT K̃.

(40)
This leads to a reformulation of the original dynamics (1):

xt+1 =
(
A+BΓT

)
xt +BΨT K̃xt (41)

and complete the equivalence between the original con-
strained stabilization problem and the controllability of
the pair (A+BΓT , BΨT ).
2) Similarly, v ∈ Rn in (15) can be decomposed into
two elements v = [v̂ ṽ] such that the element ṽ ∈ R∗
and v̂ ∈ Rn−1. As in the previous case, we obtain an
affine description of K ∈ Rm×n using the independent
parameters contained in K̆ ∈ Rm×(n−1):

K = Γ̃ + K̆ · Ψ̃, (42)
with Γ̃ ∈ Rm×n and Ψ̃ ∈ R(n−1)×n defined in (20). Using
the parametrization (42) we obtain:
A+BK = A+B

(
Γ̃ + K̆ · Ψ̃

)
=
(
A+BΓ̃

)
+BK̆Ψ̃. (43)

This leads to a reformulation of the original dynamics (1)
into a novel formulation as described in (19). �

Proof of Proposition 10:
If B is full column rank, then it follows from BM = GB
that M is also full rank, and thus invertible. This allows
to obtain B = GBM−1. Furthermore, the desire control
law has the structure ut = −M−1NΨ̃xt. Exploiting these
facts, from the first condition we obtain that[

−G ((A + BΓ̃) + BK̆)T G

G((A + BΓ̃) + BK̆) −G

]
≺ 0, (44)

or equivalently using Schur complement:
−G+ ((A+BΓ̃) +BK̆)TG((A+BΓ̃) +BK̆) ≺ 0,

which proves that system (19) is stabilizable via the
proposed state feedback. �


