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ABSTRACTThis paper deals with the numerical simulation of combingdec fatigue (CCF),

which is characterized by two periodic loads, whose fregigmare very different one from the
other. Rather than using classical fatigue life estimasioa time transient evolution model is
solved using a periodic time homogenization method. Thisrlés based on the assumption
that the time scales associated with the two periodic loadslacoupled. Different results on
academic as well as industrial examples are presented. #emsion of the proposed method
up to three time scales is eventually proposed in order tedpg the numerical simulations.

RESUME.On considére ici la simulation numérique de la fatigue a egctombinés (CCF),
caractérisée par deux chargements périodiques de frégsen@s différentes. Plutét que
d'utiliser les méthodes classiques de durée de vie en fatign souhaite utiliser un mo-
dele temporel d’évolution dont I'exploitation numériqugt eendue possible par une méthode
d’homogénéisation périodique en temps. Cette méthodeseepar une hypothése de sépara-
tion des échelles de temps liées aux deux chargements ioéiesd Différents résultats sur
des exemples académiques et industriels sont présentésextiension de la méthode a trois
échelles de temps est enfin proposée afin d’accélérer entaréeg calculs.

KEYWORDSperiodic homogenization, time multiscale, combined cfatigue, dynamics.

MOTS-CLES :homogénéisation périodique, multiéchelles en tempguata cycles combinés,
dynamique.
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1. Introduction

This paper aims at the numerical simulation of combinedecyatigue (CCF),
which is characterized by two periodic loads acting on thelisd structure. Usually
the frequencies associated with these two loads are vdgrdaift one from the other.
Since the classical fatigue life estimations do not allowdourately take into account
the chronology of the applied cycles, or the inertia effestsociated with the fast cy-
cles, it seems more relevant to use a time transient evalatiodel describing how
internal variables such as plastic strain evolve with respetime. Because of the
significant difference between the two loading frequenaash a numerical simula-
tion would be too costly as is. Therefore a periodic time hgerszation strategy was
proposed in (Guennouat al., 1986; Guennouni, 1988) in the case of quasistatic prob-
lems. This strategy was inspired from classical schemes insgpace homogeniza-
tion (Bensoussaat al, 1978; Sanchez-Palencia, 1980). Since then, similar gisce
have independently emerged: 'Oscillatory StroboscogB&khman, 1994) or mul-
tiple scales homogenization (Chenhal,, 2001) and have led to various applications.
For example, extensions to the estimation of damage ratherplasticity have also
been proposed in (Oskay al, 2004; Devuldeet al,, 2010). More recently, whereas
the other references only dealt with quasistatic studiestime homogenization strat-
egy presented here has been extended in dynamics, andiedlataacademic exam-
ples (Aubryet al,, 2010). The aim here is to apply this strategy on an actu@lisyEn
geometry, whose number of degrees of freedom (DOFs) is \ughy The specimen
proposed here comes from the European project PREMECCYndeaith CCF in
aeronautics.

2. Basis of the time homogenization method

The time homogenization method aims at the effective nwsaksimulation of
a structure under a high number of loading cycles, when thecéated material be-
havior is described by a time transient model. Even if, sinfylto (Guennounet
al., 1986; Guennouni, 1988), this method is briefly presented hethe case of a
generic viscoplastic behavior, it is described in its egien to dynamics, proposed
in (Aubry et al,, 2010), which takes inertia effects into account.

2.1. Timescales

A CCF loading is assumed: typically, two periodic loads witry different fre-
quencies are simultaneously applied to the studied streictwvo time scales are then
defined:

— a slow time scale, denotedassociated with the low frequency load

— afast time scale, denotedassociated with the high frequency loBd¢.
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The ratiof = t/7 is assumed small enough so that these two time scales cootthbe
sidered as independent one from the other. In this casejrapydependent variable
« can be written as a function of both time scales, and its tierevdtive leads to:

da 780[ 10a 1

/
e T g Z 1
& ot Tfor YT [
Where?i—?, & anda’ stand for the total time derivative, the partial time detiv@awith
respect to the slow time scal@and the partial time derivative with respect to the fast
time scaler respectively.

In addition, it is also assumed that any time-dependenakibigiv(¢, 7) is periodic
with respect to the fast time scate This so-called 'quasiperiodicity’ assumption is
all the more justified as the ratfis small, and can then be written as:

alt,7) =« (t,T + %) Vt, T [2]

Eventually, the fast time scale averaging of variab(g 7) is introduced in order
to pass from the fast to the slow time scale:

¢
Pt

<a>:—/Fa(t,T)dT
€ Jo

The consequent homogenized quantitya > is a function of the slow time scale
t only. The residual associated with this averaging is dehate= o — < o >,
and depends on both time scateendr. Moreover, with the previous notations, it is
possible to find an equivalent expression for the quasigaity assumption [2]:

<ad>=0 [3]

2.2. Asymptotic expansion of the mechanical problem

Any field from the solution of the mechanical problem (digglmentu(x, ¢, 7),
stressr(x, t, 7), total straire(x, ¢, 7), plastic straire? (x, ¢, 7)) is assumed to be writ-
ten in terms of an asymptotic expansion with respeé¢t t6or example, the stress field
is expressed as:

o(x,t,7) = 0o(x,t,7) + Eo1(x,t,7) + O(£?) [4]
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The mechanical problem consists in solving in the dontamssociated with the
studied structure the following equations (along with rmitial conditions):

. d?
Divyo + 1, = pyl; [5]
o=C(e—¢P) [6]
e %(Dxu + Dyu?) [7]
deP
= = Wlo) (8]

wherep, C anda stand for the mass density, the (linear) elasticity tenedraageneric
(nonlinear) operator describing the material evolution I®Div, andD, are the di-
vergence and the gradient operators respectifglx, ¢, 7) is the body force defined
in the domair2, wheread;(x, ¢, 7) is the surface force applied to its boundaxy:

on=f; [9]

wheren is the unit outer normal defined at each poind6¥. Without loss of general-
ity, it can be considered that the surface force is applidgtora part of the boundary
01, and that a given displacement is imposed on the complemygudat.

Asymptotic expansions similar to [4] are used for each dated field, and are
introduced in Equations [5]-[6]-[7]-[8]-[9]. By using thetal differentiation rule [1],
equations with the different powers ¢fare obtained. For example, the evolution
equation [8] gives, up to order one:

1

g0 T (E ) HEET +e2) + 0(E%) = alov) +EDoalon)or + O(EY)
with D,a(og) the gradient ofi expressed at,. With the assumption of decoupled
scales { < 1), it can be written that, in any of these equations, the étgemhave to
stand for each order gfindependently from the other orders, leading to the egnatio
detailed in Sections 2.4 and 2.5.

2.3. Asymptotic expansion of the dynamic equilibrium equation

Here is detailed the asymptotic expansion of the dynamidibgum equation.
Using the total differentiation rule [1] allows to write theceleration field up to order
one as follows:

d2u 1 " 1 -/ " . -/ " . -/ " 2
i 5—2u0+g (2ag + uf)+(ip + 207 + uy)+£ (41 + 205 + uz)+0(§7)

Before applying this expression to Equation [5], howeviee magnitude of the

inertia terms should be studied first. More precisely, it barassumed that for most
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usual materials, the ratio between the mass density andma cloaracteristic of the
magnitude of the elasticity tensor is such that:
P 2

T = B¢ [10]

licll
with 8 = o(1/£). This assumption is correct if the inverse of the ratiis smaller
than the pressure waves propagation celerity within theerigt Such assumptions
are commonly addressed in space periodic homogenizatic(ez-Palencia, 1980).
Eventually the right hand-side of Equation [5] reads, uprtéeoone:

d2u " -/ " 2
gz = BllClug + &ol[C]| (2i + ui) + O(€?) [11]

2.4. 1/¢-order eguations

The first expression coming from the asymptotic expansibtissodifferent equa-
tions of the mechanical problem is associated with the ordein Equation [8]:

58/ — O, hencesg()(7 t, 7‘) = Eg(x, t) [12]

This can be explained by the fact that the viscoplastic bieh&vbasically (meaning
at the zeroth order) a slow-evolving phenomenon when coedpaith the period of
the fast cycles.

2.5. Zeroth-order equations

The next expression coming from the evolution equation $8hssociated with
order zero, where there are both the zeroth-order and fidgr@lastic strains. Using
the quasiperiodicity relation [3] allows to make the firstier plastic strain disappeatr:

ey =< a(og) > [13]

where we used that ¢, >= &f according to Equation [12]. This means that the
zeroth-order plastic strain evolves as the average ovest ayale of the evolution law
expressed in terms of the zeroth-order stress field. Therlaas to be considered as
an 'instantaneous’ quantity, (x, t, 7), which depends on both time scales.

In order to evaluate this quantity, the first step consistdefining the zeroth-
order homogenized equations coming from Equations [SF[$]9] by using the
same technique as for the evolution equation [8]:

Divx <og >+ <, >=0 [14]

<og>=C(<egy>—¢gp) [15]
1

<eo>=(Dx <up>+Dx <ug>") [16]

<op>n=<£f> [17]
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This shows that the zeroth-order homogenized equilibrigoaéon is a quasistatic
equation, where the inertia terms are not present any more.

The second step consists in solving the residual equatmmgg from the previ-
ous homogenization process:

Divy oy + £ = B||C|Jug” [18]

oy = Ce} [19]
1

£y = 5(Dxug + Dyu ) [20]

ogn=f [21]

where Equations [14]-[15]-[16]-[17] have been subtradteth the zeroth-order equa-
tions corresponding to the initial ones [5]-[6]-[7]-[9].h€ previous equations corre-
spond to the definition of a dynamic linear elastic problemose solutionrj (x, ¢, 7)

is completely decoupled from the solution of Equations {fi4]-[16]-[17] and can
be computed once for all. As a result, Equations [14]-[153}{[17] are solved along
with Equation [8] using the fact that (x, ¢, 7) = < 09 > (x,t) + o5 (x,t, 7).

3. Application to a simple example

In order to show the validity as well as the efficiency of thetmoe, the following
academic example is proposed: a cylindrical bar of lengtithstands a normal
loading defined as the sum of a slow-evolving load of freqyenand a fast-evolving
load of frequency'/¢. The chosen material law is viscoplastic with two hardesing
as defined in (Lemaitret al,, 1990).

3.1. Reference problem

The reference problem consists of the transient equatidrish have not yet been
homogenized. The dynamic equilibrium equation is scaldrd@als with the longitu-
dinal displacemeni(z, t, 7) of the bar's median axis as well as with the normal stress
o(x,t, ) within the bar:

oo d%u
T [22]

wherez € (0, L). Here it is assumed that there is no body force within the duad,
that the only loading is the surface forf¢gt, ) applied inz = L. Inz = 0, the bar
is clamped. The elastic constitutive relation is given by:

" (g_z _ ) [23]
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whereFE andeP(z, t, T) are the Young’s modulus and the longitudinal plastic strain
spectively. The evolution law is viscoplastic with two nimglar hardenings, which in
its uniaxial expression, coming from (Lemaital., 1990), consists of the following
equations (along with null initial conditions):

dp _ /lo=X[-R—Fk\"
dt K

.
% = %sign(JfX)

dX 2 deP d

T =30 oY
T owo-RY

where< a >, = (1+signa)a/2 is the positive part of(¢, 7). %(:p, t,7), X(z,t,7)
andR(z,t, 7) stand for the equivalent plastic strain rate, the (unidkiakematic hard-
ening variable and the (uniaxial) isotropic hardeningafale respectivelyk, K, n,
C, 7o, b and@ are material parameters, which are constant at given texter

3.2. Zeroth-order homogenized equations

When using the same technique as in Section 2.4, the samkisimmds obtained,
that is zeroth-order viscoplasticity is a slow-evolvinggpbmenon:

po(z,t,7) = po(z,t) eg(z,t,7) = ef (z,t)
Xo(z,t,7) = Xo(z,1) Ro(z,t,7) = Ro(x,t)

Then by applying the steps of Section 2.5, the zeroth-ordleidgenized and resid-
ual equilibrium equations are the following ones:

a%[E (%—Eg)] _0 [24]
9 [.0u;
- {E aﬂ = BEu" [25]

along with the following boundary conditions in= 0 andx = L respectively:

<up>=0 and E(a}&—sg):<fs> [26]
X
wi =0 and B0 _ g [27]

ox
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Eventually the zeroth-order homogenized evolution lavesgiven by:

. loo — Xo| — Ro — k\"
p0—<< . >+> (28]

~ Xo| — Ry — k\"
eb = <<|"0 OJK fto > sign(oo —X0)> [29]
+
Y 2 -p .
Xo = 5050 — YopoXo [30]
Ry =b(Q — Ro)po [31]

where the instantaneous zeroth-order stress can be exgrass

0 <wug >
ox

oug
t
(‘T) )+ ax

oo(z,t,7) = F ( (@, t,7) — 58(x,t)> [32]

3.3. Numerical results

Equations [24]-[25]-[26]-[27]-[28]-[29]-[30]-[31] aresolved using a time-
dependent Finite Element model with respect to the slow tan@blet. It is assumed
that the force applied im = L can be written as:

< fe> ()= fo+ ficos2nFt and f¥(r)= focos2wF'T

where fy, f1 and f» are given constants, and the slow and fast frequencieg' ate
0.05Hz and F'/¢ = 500Hz respectively. This example, which is consistent with what
is applied in CCF, allows to write thatj is a function ofz andr only. Figure 1
depicts the surface force that is applied on the numericatgies below: the high
discrepancy between the two frequencies only allows toteeertvelope of the surface
load.

The elastic dynamic equation [25] along with Equation [2&h ¢hen be solved
independently from the other equations, that is, it can lbeedoonce for all, in a
preprocessing step, over the fast period. This fast timetisol w; is then used to
estimate the instantaneous stress [32] required in Eqeaf8]-[29]-[30]-[31]. The
fast time scale averaging of(t, 7) is then computed using a quadrature rule, such as
the classical trapezoidal rule:

N-1

o ] £
<o¢>z% (@JrZa(t,%%)wLa(téF)) [33]

Jj=1

with N chosen as a trade-off between the accuracy of the estimadtiaicalculation
cost. Eventually, the remaining equations [24]-[26]-239]-[30]-[31] depend only
on the slow time variable
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Figure 1. Applied surface force, witlfy = 250MPa, f; = —200MPa and f; =
—50MPa.

The simulations are carried out for a bar made of TA6V titamialloy, whose
material properties &50°C are given in (Lemaitret al,, 1990). In order to validate
the proposed time homogenization method, a referencelatitiy which consists
in directly solving the equations from Section 3.1, is aadrout on the time interval
[0, 20]s corresponding to the first slow load period. The accurachisfdalculation is
guaranteed by choosing a very fine time step('s) corresponding to a twentieth of
the fast load period. The associated results will then bepewed with these obtained
with a zeroth-order time-homogenized calculation on tmeesime interval, but using
a0, 04s-time step, hence reducing the number of iterations by 400.

The results of these two simulations are depicted in Figurdt® zeroth-order
time-homogenized plastic strain (blue dotted line) is inngood agreement with the
reference plastic strain in = 0 (red dashed line): this is confirmed by Table 1. In
order to evaluate the effect of taking the inertia terms adoount in the equilibrium
equation [5], additional calculations have been carrigdrothe quasistatic case, that
is by assuming that = 0 in Equation [22] or that = 0 in Equation [25]. Figure 2 and
Table 1 show the significance of the inertia terms at the stuffequencies as well as
the good match between the results of the reference catml@ged continuous line)
and of the time homogenized calculation (blue dashed-diditte). Eventually, the
necessity of correctly taking the fast cycles into accoarthe time homogenization
process is demonstrated by the black curve, where the ktstin has been calcu-
lated by assuming thaf] = a(< oo >) instead of Equation [13], that is without
taking into account the fast cycles in the plastic straiduet#on. Figure 3, which is a
zoom of Figure 2, makes easier the comparison between thenefe calculation (in
red) and the zeroth-order time-homogenized calculatiobl{ie): whereas the refer-
ence plastic strain increases step by step (each step ponaiag to each fast cycle),
the time-homogenized plastic strain evolves more smoathtyremains close to the
reference one.
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Figure 2. Plastic strain inx = 0: reference solutions
(in red) and time-homogenized (in blue) solutions (dy-
namic and quasistatic); quasistatic solution when the
fast cycles are not taken into account in the homoge-
nization process (in black).

Simulations x=0 x=17L
Reference dynamic 5.361-1073 | 4.654-103
Zeroth-order time-homogenized dynamic5.389 - 10=3 | 4.595- 1073
Reference quasistatic 4.491-1073 | 4.491-1073
Zeroth-order time-homogenized quasistdti¢.493 - 1073 | 4.493 - 1073

Table 1. Comparison of the different calculations for the plasti@st at¢ = 20s.

These results show the efficiency of the time homogenizatiethod allowing to
reduce by 400 the number of calculated time steps. It is tlessible to solve prob-
lems, which would be impossible to calculate as is. Figureeis how the zeroth-
order time-homogenized plastic strain evolves for a tinteriral of one hour, which
is equivalent to appiyt80 slow cycles along with, 800, 000 fast cycles. With the
time homogenization method, ord, 000 time steps of length.04s are calculated,
instead of the&d6, 000, 000 time steps required for a reference calculation using a time

step of10~%s.

Important is to note that there is no limitation regarding fhst load amplitude
comparatively to the slow load amplitude: the previous itesiave been calculated
when the ratio of the former over the latter was one fourthis kven possible to
study the limit case when there is no slow load applied to thecgire, that is the high
cycle fatigue (HCF) case. Once again, the agreement betrederence and time-
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homogenized calculations is very good, as shown by Figuretbe quasistatic case
for loading frequencies df.001Hz and10Hz.

0 100 200 300 400 500 600 700 800 900 1000
Tirme ()

[ 500 1000 1500 2000 2500 3000 3500 4000
Time ()

Figure 5. Plastic strain in HCF: refer-
ence calculation (red continuous line)
and time-homogenized calculation (blue
dashed line).

Figure4. Zeroth-order time-homogenized
plastic strain inz = 0 (blue dashed line)
and inz = L (red continuous line).

Ultimately, it is possible to evaluate a fatigue critericasbd on the plastic strain
evolution: if it is assumed that fracture occurs beyond amgihreshold?,, the cycles
limit number is obtained by calculating the timg such that:

tm — Xl — _ n
/ <|00 ol = Ro k> sign(op — Xo) ) dt = e?
0 K n

4. Application to an industrial example

The time homogenization method is applied to an actual gggmesed in the
European project PREMECCY and depicted in Figure 6.

(T '

Figure 6. Specimen used in the European project PREMECCY

The specimen, made of titanium alloy, is used to chara&e@&F in turbine
fans, and is loaded at one of its ends, whereas the other ecidngped. Equa-
tions [5]-[6]-[7]-[9] are considered, as well as the vistagticity model with two

1. PREdictive MEthods for Combined CYcle fatigue in gas itveb, EU Project (6th RTD
Framework Programme), http://premeccy.mecc.polimi.it/
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hardenings (Lemaitret al,, 1990) in its tridimensional expression. Two different-cal
culations are carried out in order to demonstrate the effetite inertia terms in the
plastic strain evolution. In both cases, a CCF loading idiegpvith a low frequency
normal load along with a high frequency transverse loadeatime end. For the first
calculation, the high frequency,(441Hz) corresponds to the first bending mode of the
specimen, whereas the low frequency is chosenlad1Hz. Because the specimen
is excited at one of its resonance frequencies, Rayleighpaay(10~2) is added to
the dynamic equation [5]. For the second calculation, tigé fiequency is chosen at
10Hz, which is much lower than the first natural frequency of thecemen, whereas
the low frequency i9.001Hz. In both cases]00 slow cycles and, 000, 000 fast
cycles are calculated. It is then seen that the averageti@higal plastic strain within
the specimen is much higher for the first calculatibr2§ - 10~°) than for the second
one .90 - 10~7). This result highlights how much the resonant excitatinpacts
the irreversible behavior of the specimen, and eventubByfatigue life. However,
the computation times for these two calculations remaihtsth (about one day on
a typical workstation), which means that, if more slow cgcee to be computed, the
CCEF life estimation would still remain difficult to be evated.

5. Towards a three-time scale homogenization method

Regarding the previous remark, one way to further improeetimputational cost
would be to use the fact that the low frequency load is pecio@ihen, if it is consid-
ered that the zeroth-order time-homogenized problem [18H15]-[16]-[17] is the
new reference problem, it is possible to apply once agairtithe-homogenization
strategy to this new reference problem. This is equivalersial that we consider a
third time scale such that = 6/7, wheren can be arbitrarily small. When consid-
ering fora(0, t) that:

1

1 1 *
da _da  10a & and [4] :F/ a(0,t)dt =0
0

A T

and using an asymptotic expansion of each zeroth-orderhiongogenized variable,
such as the zeroth-order time-homogenized stress field:

< oo > (x,0,t) = o00(x,0,t) +noo1(x,0,t) + 0(172)
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Figure 7. Plastic strain: two-time scale (red line) and three-timelsc(blue line)
time-homogenized solutions.

it can be shown that:

580(Xa 9) t) = 580(Xa 9)
€00 = [< alooo + 07) >]
Divy [0‘00] + [< i, >] =0

[o00] = C ([e00] — €00)

[e00] = %(DX[UOO] + Dx[ugo]")

[O'()()] n=— [< fs >]

and that a residual problem, analogous to Equations [18H[0]-[21] in the qua-
sistatic case, can be defined &% = 0go — [0go] and associated fields, andag.

An example consisting in a one-day simulation of the sameaban Section 3.3
is proposed in the quasistatic case, with(&lz fast frequency, whereas the slow
frequency i9).001Hz. Figure 7 shows for the plastic strain evolution the congmari
between the initial two-time scale and the newly proposeekttime scale strategies.
The agreement is quite satisfactory, provided that the siteyes are judiciously chosen
in the three-time scale method: in this example, the salui@omputed every second
second until the first slow loading cycle is over{at 200s), then every two hundredth
second. It seems indeed to be mandatory that the time stepsail at the beginning
of the calculation in order to ensure a good convergencec€roing the computation
cost, the three-time scale method only needs aboutime steps, whereas the two-
time scale method requires arousi@ 000 time steps, which means that a huge cost
reduction is obtained.
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6. Conclusion

The efficiency of the periodic time-homogenization methaslbeen demonstrated
in the case of academic as well as industrial examples.oivalto solve the different
equations at the slow time scale only, by taking into accol@ataveraged effect of
the fast frequency cycles in the homogenized solution. tepto evaluate fatigue
life, which is associated with a very high number of cycletrae-time step strategy
is proposed to speed up the calculations. Work is in progoesther improve the
associated predictions as well as to validate it in the dyoaase.
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