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ABSTRACT.This paper deals with the numerical simulation of combined cycle fatigue (CCF),
which is characterized by two periodic loads, whose frequencies are very different one from the
other. Rather than using classical fatigue life estimations, a time transient evolution model is
solved using a periodic time homogenization method. This latter is based on the assumption
that the time scales associated with the two periodic loads are decoupled. Different results on
academic as well as industrial examples are presented. An extension of the proposed method
up to three time scales is eventually proposed in order to speed up the numerical simulations.

RÉSUMÉ.On considère ici la simulation numérique de la fatigue à cycles combinés (CCF),
caractérisée par deux chargements périodiques de fréquences très différentes. Plutôt que
d’utiliser les méthodes classiques de durée de vie en fatigue, on souhaite utiliser un mo-
dèle temporel d’évolution dont l’exploitation numérique est rendue possible par une méthode
d’homogénéisation périodique en temps. Cette méthode repose sur une hypothèse de sépara-
tion des échelles de temps liées aux deux chargements périodiques. Différents résultats sur
des exemples académiques et industriels sont présentés. Une extension de la méthode à trois
échelles de temps est enfin proposée afin d’accélérer encore plus les calculs.

KEYWORDS:periodic homogenization, time multiscale, combined cyclefatigue, dynamics.

MOTS-CLÉS :homogénéisation périodique, multiéchelles en temps, fatigue à cycles combinés,
dynamique.
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1. Introduction

This paper aims at the numerical simulation of combined cycle fatigue (CCF),
which is characterized by two periodic loads acting on the studied structure. Usually
the frequencies associated with these two loads are very different one from the other.
Since the classical fatigue life estimations do not allow toaccurately take into account
the chronology of the applied cycles, or the inertia effectsassociated with the fast cy-
cles, it seems more relevant to use a time transient evolution model describing how
internal variables such as plastic strain evolve with respect to time. Because of the
significant difference between the two loading frequencies, such a numerical simula-
tion would be too costly as is. Therefore a periodic time homogenization strategy was
proposed in (Guennouniet al., 1986; Guennouni, 1988) in the case of quasistatic prob-
lems. This strategy was inspired from classical schemes used in space homogeniza-
tion (Bensoussanet al., 1978; Sanchez-Palencia, 1980). Since then, similar concepts
have independently emerged: ’Oscillatory Stroboscopics’(Blekhman, 1994) or mul-
tiple scales homogenization (Chenet al., 2001) and have led to various applications.
For example, extensions to the estimation of damage rather than plasticity have also
been proposed in (Oskayet al., 2004; Devulderet al., 2010). More recently, whereas
the other references only dealt with quasistatic studies, the time homogenization strat-
egy presented here has been extended in dynamics, and validated on academic exam-
ples (Aubryet al., 2010). The aim here is to apply this strategy on an actual specimen
geometry, whose number of degrees of freedom (DOFs) is very high. The specimen
proposed here comes from the European project PREMECCY dealing with CCF in
aeronautics.

2. Basis of the time homogenization method

The time homogenization method aims at the effective numerical simulation of
a structure under a high number of loading cycles, when the associated material be-
havior is described by a time transient model. Even if, similarly to (Guennouniet
al., 1986; Guennouni, 1988), this method is briefly presented here in the case of a
generic viscoplastic behavior, it is described in its extension to dynamics, proposed
in (Aubry et al., 2010), which takes inertia effects into account.

2.1. Time scales

A CCF loading is assumed: typically, two periodic loads withvery different fre-
quencies are simultaneously applied to the studied structure. Two time scales are then
defined:

– a slow time scale, denotedt, associated with the low frequency loadF ;

– a fast time scale, denotedτ , associated with the high frequency loadF/ξ.
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The ratioξ = t/τ is assumed small enough so that these two time scales could becon-
sidered as independent one from the other. In this case, any time-dependent variable
α can be written as a function of both time scales, and its time derivative leads to:

dα

dt
=

∂α

∂t
+

1

ξ

∂α

∂τ
= α̇ +

1

ξ
α′ [1]

wheredα
dt

, α̇ andα′ stand for the total time derivative, the partial time derivative with
respect to the slow time scalet and the partial time derivative with respect to the fast
time scaleτ respectively.

In addition, it is also assumed that any time-dependent variableα(t, τ) is periodic
with respect to the fast time scaleτ . This so-called ’quasiperiodicity’ assumption is
all the more justified as the ratioξ is small, and can then be written as:

α(t, τ) = α

(

t, τ +
ξ

F

)

∀t, τ [2]

Eventually, the fast time scale averaging of variableα(t, τ) is introduced in order
to pass from the fast to the slow time scale:

< α > =
F

ξ

∫
ξ
F

0

α(t, τ) dτ

The consequent homogenized quantity< α > is a function of the slow time scale
t only. The residual associated with this averaging is denoted α∗ = α− < α >,
and depends on both time scalest andτ . Moreover, with the previous notations, it is
possible to find an equivalent expression for the quasiperiodicity assumption [2]:

< α′ > = 0 [3]

2.2. Asymptotic expansion of the mechanical problem

Any field from the solution of the mechanical problem (displacementu(x, t, τ),
stressσ(x, t, τ), total strainε(x, t, τ), plastic strainεp(x, t, τ)) is assumed to be writ-
ten in terms of an asymptotic expansion with respect toξ. For example, the stress field
is expressed as:

σ(x, t, τ) = σ0(x, t, τ) + ξσ1(x, t, τ) + O(ξ2) [4]
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The mechanical problem consists in solving in the domainΩ associated with the
studied structure the following equations (along with nullinitial conditions):

Divx σ + fb = ρ
d2

u

dt2
[5]

σ = C (ε − εp) [6]

ε =
1

2
(Dxu + Dxu

T) [7]

dεp

dt
= a(σ) [8]

whereρ, C anda stand for the mass density, the (linear) elasticity tensor and a generic
(nonlinear) operator describing the material evolution law. Divx andDx are the di-
vergence and the gradient operators respectively.fb(x, t, τ) is the body force defined
in the domainΩ, whereasfs(x, t, τ) is the surface force applied to its boundary∂Ω:

σ n = fs [9]

wheren is the unit outer normal defined at each point of∂Ω. Without loss of general-
ity, it can be considered that the surface force is applied only to a part of the boundary
∂Ω, and that a given displacement is imposed on the complementary part.

Asymptotic expansions similar to [4] are used for each calculated field, and are
introduced in Equations [5]-[6]-[7]-[8]-[9]. By using thetotal differentiation rule [1],
equations with the different powers ofξ are obtained. For example, the evolution
equation [8] gives, up to order one:

1

ξ
εp
0
′ + (ε̇p

0 + εp
1
′) + ξ (ε̇p

1 + εp
2
′) + O(ξ2) = a(σ0) + ξDσa(σ0)σ1 + O(ξ2)

with Dσa(σ0) the gradient ofa expressed atσ0. With the assumption of decoupled
scales (ξ ≪ 1), it can be written that, in any of these equations, the equalities have to
stand for each order ofξ independently from the other orders, leading to the equations
detailed in Sections 2.4 and 2.5.

2.3. Asymptotic expansion of the dynamic equilibrium equation

Here is detailed the asymptotic expansion of the dynamic equilibrium equation.
Using the total differentiation rule [1] allows to write theacceleration field up to order
one as follows:

d2
u

dt2
=

1

ξ2
u
′′

0+
1

ξ
(2u̇′

0 + u
′′

1 )+(ü0 + 2u̇′

1 + u
′′

2 )+ξ (ü1 + 2u̇′

2 + u
′′

3)+O(ξ2)

Before applying this expression to Equation [5], however, the magnitude of the
inertia terms should be studied first. More precisely, it canbe assumed that for most
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usual materials, the ratio between the mass density and a norm characteristic of the
magnitude of the elasticity tensor is such that:

ρ

||C||
= βξ2 [10]

with β = o(1/ξ). This assumption is correct if the inverse of the ratioξ is smaller
than the pressure waves propagation celerity within the material. Such assumptions
are commonly addressed in space periodic homogenization (Sanchez-Palencia, 1980).
Eventually the right hand-side of Equation [5] reads, up to order one:

ρ
d2

u

dt2
= β||C||u′′

0 + ξβ||C|| (2u̇′

0 + u
′′

1) + O(ξ2) [11]

2.4. 1/ξ-order equations

The first expression coming from the asymptotic expansions of the different equa-
tions of the mechanical problem is associated with the order1/ξ in Equation [8]:

εp
0
′ = 0, henceεp

0(x, t, τ) = εp
0(x, t) [12]

This can be explained by the fact that the viscoplastic behavior is basically (meaning
at the zeroth order) a slow-evolving phenomenon when compared with the period of
the fast cycles.

2.5. Zeroth-order equations

The next expression coming from the evolution equation [8] is associated with
order zero, where there are both the zeroth-order and first-order plastic strains. Using
the quasiperiodicity relation [3] allows to make the first-order plastic strain disappear:

ε̇p
0 = < a(σ0) > [13]

where we used that< ε̇p
0 > = ε̇p

0 according to Equation [12]. This means that the
zeroth-order plastic strain evolves as the average over a fast cycle of the evolution law
expressed in terms of the zeroth-order stress field. This latter has to be considered as
an ’instantaneous’ quantityσ0(x, t, τ), which depends on both time scales.

In order to evaluate this quantity, the first step consists indefining the zeroth-
order homogenized equations coming from Equations [5]-[6]-[7]-[9] by using the
same technique as for the evolution equation [8]:

Divx < σ0 > + < fb >= 0 [14]

< σ0 > = C (< ε0 > − εp
0) [15]

< ε0 > =
1

2
(Dx < u0 > + Dx < u0 >T) [16]

< σ0 > n = < fs > [17]
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This shows that the zeroth-order homogenized equilibrium equation is a quasistatic
equation, where the inertia terms are not present any more.

The second step consists in solving the residual equations coming from the previ-
ous homogenization process:

Divx σ∗

0 + f
∗

b = β||C||u∗

0
′′ [18]

σ∗

0 = Cε∗0 [19]

ε∗0 =
1

2
(Dxu

∗

0 + Dxu
∗T
0 ) [20]

σ∗

0 n = f
∗

s [21]

where Equations [14]-[15]-[16]-[17]have been subtractedfrom the zeroth-order equa-
tions corresponding to the initial ones [5]-[6]-[7]-[9]. The previous equations corre-
spond to the definition of a dynamic linear elastic problem, whose solutionσ∗

0(x, t, τ)
is completely decoupled from the solution of Equations [14]-[15]-[16]-[17] and can
be computed once for all. As a result, Equations [14]-[15]-[16]-[17] are solved along
with Equation [8] using the fact thatσ0(x, t, τ) = < σ0 > (x, t) + σ∗

0(x, t, τ).

3. Application to a simple example

In order to show the validity as well as the efficiency of the method, the following
academic example is proposed: a cylindrical bar of lengthL withstands a normal
loading defined as the sum of a slow-evolving load of frequency F and a fast-evolving
load of frequencyF/ξ. The chosen material law is viscoplastic with two hardenings
as defined in (Lemaitreet al., 1990).

3.1. Reference problem

The reference problem consists of the transient equations,which have not yet been
homogenized. The dynamic equilibrium equation is scalar and deals with the longitu-
dinal displacementu(x, t, τ) of the bar’s median axis as well as with the normal stress
σ(x, t, τ) within the bar:

∂σ

∂x
= ρ

d2u

dt2
[22]

wherex ∈ (0, L). Here it is assumed that there is no body force within the bar,and
that the only loading is the surface forcefs(t, τ) applied inx = L. In x = 0, the bar
is clamped. The elastic constitutive relation is given by:

σ = E

(

∂u

∂x
− εp

)

[23]
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whereE andεp(x, t, τ) are the Young’s modulus and the longitudinal plastic strainre-
spectively. The evolution law is viscoplastic with two nonlinear hardenings, which in
its uniaxial expression, coming from (Lemaitreet al., 1990), consists of the following
equations (along with null initial conditions):

dp

dt
=

〈

|σ − X | − R − k

K

〉n

+

dεp

dt
=

dp

dt
sign(σ − X)

dX

dt
=

2

3
C

dεp

dt
− γ0

dp

dt
X

dR

dt
= b(Q − R)

dp

dt

where< α >+= (1+signα)α/2 is the positive part ofα(t, τ). dp

dt
(x, t, τ), X(x, t, τ)

andR(x, t, τ) stand for the equivalent plastic strain rate, the (uniaxial) kinematic hard-
ening variable and the (uniaxial) isotropic hardening variable respectively.k, K, n,
C, γ0, b andQ are material parameters, which are constant at given temperature.

3.2. Zeroth-order homogenized equations

When using the same technique as in Section 2.4, the same conclusion is obtained,
that is zeroth-order viscoplasticity is a slow-evolving phenomenon:

p0(x, t, τ) = p0(x, t) εp
0(x, t, τ) = εp

0(x, t)

X0(x, t, τ) = X0(x, t) R0(x, t, τ) = R0(x, t)

Then by applying the steps of Section 2.5, the zeroth-order homogenized and resid-
ual equilibrium equations are the following ones:

∂

∂x

[

E

(

∂ < u0 >

∂x
− εp

0

)]

= 0 [24]

∂

∂x

[

E
∂u∗

0

∂x

]

= βEu∗

0
′′ [25]

along with the following boundary conditions inx = 0 andx = L respectively:

< u0 > = 0 and E

(

∂ < u0 >

∂x
− εp

0

)

= < fs > [26]

u∗

0 = 0 and E
∂u∗

0

∂x
= f∗

s [27]
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Eventually the zeroth-order homogenized evolution laws are given by:

ṗ0 =

〈

〈

|σ0 − X0| − R0 − k

K

〉n

+

〉

[28]

ε̇p
0 =

〈

〈

|σ0 − X0| − R0 − k

K

〉n

+

sign(σ0 − X0)

〉

[29]

Ẋ0 =
2

3
Cε̇p

0 − γ0ṗ0X0 [30]

Ṙ0 = b(Q − R0)ṗ0 [31]

where the instantaneous zeroth-order stress can be expressed as :

σ0(x, t, τ) = E

(

∂ < u0 >

∂x
(x, t) +

∂u∗

0

∂x
(x, t, τ) − εp

0(x, t)

)

[32]

3.3. Numerical results

Equations [24]-[25]-[26]-[27]-[28]-[29]-[30]-[31] aresolved using a time-
dependent Finite Element model with respect to the slow timevariablet. It is assumed
that the force applied inx = L can be written as:

< fs > (t) = f0 + f1 cos 2πFt and f∗

s (τ) = f2 cos 2πFτ

wheref0, f1 andf2 are given constants, and the slow and fast frequencies areF =
0.05Hz andF/ξ = 500Hz respectively. This example, which is consistent with what
is applied in CCF, allows to write thatu∗

0 is a function ofx andτ only. Figure 1
depicts the surface force that is applied on the numerical examples below: the high
discrepancy between the two frequencies only allows to see the envelope of the surface
load.

The elastic dynamic equation [25] along with Equation [27] can then be solved
independently from the other equations, that is, it can be solved once for all, in a
preprocessing step, over the fast period. This fast time solution u∗

0 is then used to
estimate the instantaneous stress [32] required in Equations [28]-[29]-[30]-[31]. The
fast time scale averaging ofα(t, τ) is then computed using a quadrature rule, such as
the classical trapezoidal rule:

< α >≈
1

N





α(t, 0)

2
+

N−1
∑

j=1

α(t,
j

N

ξ

F
) +

α(t, ξ

F
)

2



 [33]

with N chosen as a trade-off between the accuracy of the estimate and the calculation
cost. Eventually, the remaining equations [24]-[26]-[28]-[29]-[30]-[31] depend only
on the slow time variablet.
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Figure 1. Applied surface force, withf0 = 250MPa, f1 = −200MPa and f2 =
−50MPa.

The simulations are carried out for a bar made of TA6V titanium alloy, whose
material properties at350◦C are given in (Lemaitreet al., 1990). In order to validate
the proposed time homogenization method, a reference calculation, which consists
in directly solving the equations from Section 3.1, is carried out on the time interval
[0, 20]s corresponding to the first slow load period. The accuracy of this calculation is
guaranteed by choosing a very fine time step (10−4s) corresponding to a twentieth of
the fast load period. The associated results will then be compared with these obtained
with a zeroth-order time-homogenized calculation on the same time interval, but using
a0, 04s-time step, hence reducing the number of iterations by 400.

The results of these two simulations are depicted in Figure 2. The zeroth-order
time-homogenized plastic strain (blue dotted line) is in very good agreement with the
reference plastic strain inx = 0 (red dashed line): this is confirmed by Table 1. In
order to evaluate the effect of taking the inertia terms intoaccount in the equilibrium
equation [5], additional calculations have been carried out in the quasistatic case, that
is by assuming thatρ = 0 in Equation [22] or thatβ = 0 in Equation [25]. Figure 2 and
Table 1 show the significance of the inertia terms at the studied frequencies as well as
the good match between the results of the reference calculation (red continuous line)
and of the time homogenized calculation (blue dashed-dotted line). Eventually, the
necessity of correctly taking the fast cycles into account in the time homogenization
process is demonstrated by the black curve, where the plastic strain has been calcu-
lated by assuming thaṫεp

0 = a(< σ0 >) instead of Equation [13], that is without
taking into account the fast cycles in the plastic strain evaluation. Figure 3, which is a
zoom of Figure 2, makes easier the comparison between the reference calculation (in
red) and the zeroth-order time-homogenized calculation (in blue): whereas the refer-
ence plastic strain increases step by step (each step corresponding to each fast cycle),
the time-homogenized plastic strain evolves more smoothlyand remains close to the
reference one.
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Figure 2. Plastic strain inx = 0: reference solutions
(in red) and time-homogenized (in blue) solutions (dy-
namic and quasistatic); quasistatic solution when the
fast cycles are not taken into account in the homoge-
nization process (in black).

Figure 3. Plastic strain
in x = 0 (zoom).

Simulations x = 0 x = L
Reference dynamic 5.361 · 10−3 4.654 · 10−3

Zeroth-order time-homogenized dynamic5.389 · 10−3 4.595 · 10−3

Reference quasistatic 4.491 · 10−3 4.491 · 10−3

Zeroth-order time-homogenized quasistatic4.493 · 10−3 4.493 · 10−3

Table 1. Comparison of the different calculations for the plastic strain at t = 20s.

These results show the efficiency of the time homogenizationmethod allowing to
reduce by 400 the number of calculated time steps. It is then possible to solve prob-
lems, which would be impossible to calculate as is. Figure 4 shows how the zeroth-
order time-homogenized plastic strain evolves for a time interval of one hour, which
is equivalent to apply180 slow cycles along with1, 800, 000 fast cycles. With the
time homogenization method, only90, 000 time steps of length0.04s are calculated,
instead of the36, 000, 000 time steps required for a reference calculation using a time
step of10−4s.

Important is to note that there is no limitation regarding the fast load amplitude
comparatively to the slow load amplitude: the previous results have been calculated
when the ratio of the former over the latter was one fourth. Itis even possible to
study the limit case when there is no slow load applied to the structure, that is the high
cycle fatigue (HCF) case. Once again, the agreement betweenreference and time-
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homogenized calculations is very good, as shown by Figure 5 in the quasistatic case
for loading frequencies of0.001Hz and10Hz.

Figure 4. Zeroth-order time-homogenized
plastic strain inx = 0 (blue dashed line)
and inx = L (red continuous line).

Figure 5. Plastic strain in HCF: refer-
ence calculation (red continuous line)
and time-homogenized calculation (blue
dashed line).

Ultimately, it is possible to evaluate a fatigue criterion based on the plastic strain
evolution: if it is assumed that fracture occurs beyond a given thresholdεp

m, the cycles
limit number is obtained by calculating the timetm such that:

∫ tm

0

〈

〈

|σ0 − X0| − R0 − k

K

〉n

+

sign(σ0 − X0)

〉

dt = εp
m

4. Application to an industrial example

The time homogenization method is applied to an actual geometry, used in the
European project PREMECCY1, and depicted in Figure 6.

Figure 6. Specimen used in the European project PREMECCY

The specimen, made of titanium alloy, is used to characterize CCF in turbine
fans, and is loaded at one of its ends, whereas the other end isclamped. Equa-
tions [5]-[6]-[7]-[9] are considered, as well as the viscoplasticity model with two

1. PREdictive MEthods for Combined CYcle fatigue in gas turbines, EU Project (6th RTD
Framework Programme), http://premeccy.mecc.polimi.it/
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hardenings (Lemaitreet al., 1990) in its tridimensional expression. Two different cal-
culations are carried out in order to demonstrate the effectof the inertia terms in the
plastic strain evolution. In both cases, a CCF loading is applied with a low frequency
normal load along with a high frequency transverse load at the same end. For the first
calculation, the high frequency (1, 441Hz) corresponds to the first bending mode of the
specimen, whereas the low frequency is chosen at0.1441Hz. Because the specimen
is excited at one of its resonance frequencies, Rayleigh damping (10−3) is added to
the dynamic equation [5]. For the second calculation, the high frequency is chosen at
10Hz, which is much lower than the first natural frequency of the specimen, whereas
the low frequency is0.001Hz. In both cases,100 slow cycles and1, 000, 000 fast
cycles are calculated. It is then seen that the average longitudinal plastic strain within
the specimen is much higher for the first calculation (1.25 · 10−6) than for the second
one (2.90 · 10−7). This result highlights how much the resonant excitation impacts
the irreversible behavior of the specimen, and eventually the fatigue life. However,
the computation times for these two calculations remain still high (about one day on
a typical workstation), which means that, if more slow cycles are to be computed, the
CCF life estimation would still remain difficult to be evaluated.

5. Towards a three-time scale homogenization method

Regarding the previous remark, one way to further improve the computational cost
would be to use the fact that the low frequency load is periodic. Then, if it is consid-
ered that the zeroth-order time-homogenized problem [13]-[14]-[15]-[16]-[17] is the
new reference problem, it is possible to apply once again thetime-homogenization
strategy to this new reference problem. This is equivalent to say that we consider a
third time scaleθ such thatt = θ/η, whereη can be arbitrarily small. When consid-
ering forα(θ, t) that:

dα

dθ
=

∂α

∂θ
+

1

η

∂α

∂t
= ᾰ +

1

η
α̇ and [α̇] = F

∫ 1

F

0

α̇(θ, t) dt = 0

and using an asymptotic expansion of each zeroth-order time-homogenized variable,
such as the zeroth-order time-homogenized stress field:

< σ0 > (x, θ, t) = σ00(x, θ, t) + ησ01(x, θ, t) + O(η2)
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Figure 7. Plastic strain: two-time scale (red line) and three-time scale (blue line)
time-homogenized solutions.

it can be shown that:

εp
00(x, θ, t) = εp

00(x, θ)

ε̆p
00 = [< a(σ00 + σ∗

0) >]

Divx [σ00] + [< fb >] = 0

[σ00] = C ([ε00] − εp
00)

[ε00] =
1

2
(Dx[u00] + Dx[u00]

T)

[σ00]n = [< fs >]

and that a residual problem, analogous to Equations [18]-[19]-[20]-[21] in the qua-
sistatic case, can be defined forσ̃00 = σ00 − [σ00] and associated fields̃ε00 andũ00.

An example consisting in a one-day simulation of the same baras in Section 3.3
is proposed in the quasistatic case, with a10Hz fast frequency, whereas the slow
frequency is0.001Hz. Figure 7 shows for the plastic strain evolution the comparison
between the initial two-time scale and the newly proposed three-time scale strategies.
The agreement is quite satisfactory, provided that the timesteps are judiciously chosen
in the three-time scale method: in this example, the solution is computed every second
second until the first slow loading cycle is over (att = 200s), then every two hundredth
second. It seems indeed to be mandatory that the time steps are small at the beginning
of the calculation in order to ensure a good convergence. Concerning the computation
cost, the three-time scale method only needs about500 time steps, whereas the two-
time scale method requires around50, 000 time steps, which means that a huge cost
reduction is obtained.
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6. Conclusion

The efficiency of the periodic time-homogenization method has been demonstrated
in the case of academic as well as industrial examples. It allows to solve the different
equations at the slow time scale only, by taking into accountthe averaged effect of
the fast frequency cycles in the homogenized solution. In order to evaluate fatigue
life, which is associated with a very high number of cycles, athree-time step strategy
is proposed to speed up the calculations. Work is in progressto further improve the
associated predictions as well as to validate it in the dynamic case.
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