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multibody simulations of a vehicle chassis
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Vignes, 92290 Châtenay-Malabry, France

Abstract

Rubber bushings are extensively-used linking parts in a vehicle chassis that
allow to filter noise and vibration. They influence much, however, the tran-
sient behaviour of the vehicle, such as its steering performance. Therefore
building a multibody simulation with a relevant description of the rubber
bushings is useful to describe the significant characteristics of the vehicle’s
steering behaviour. First, a nonlinear time-dependent model describing a
rubber bushing’s mechanical behaviour is presented. In order to be relevant,
the parameters associated with this model are then identified from experi-
mental tests using an adjoint state formulation of the identification problem.
The identified values are eventually validated using additional experimental
data.

Keywords: rubber bushings, nonlinear time-dependent model, parameter
identification, adjoint state, multibody simulation

1. Introduction1

Rubber bushings are mechanical parts that are extensively used to reduce2

noise and vibration in a vehicle chassis. They have, however, a strong im-3

pact on the whole vehicle chassis behaviour, such as its steering performance.4
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Since it is not always possible to get experimental data directly on the whole5

chassis system, their impact has to be described using a multibody simula-6

tion. This would include a relevant model of the rubber bushings mounted in7

the chassis. This paper focuses on the identification procedure that allows to8

determine the parameters associated with such a model. This will be done by9

means of experimental data derived from specific measurements on bushings10

mounted in test rigs.11

The following provides an outline of the paper. First, the rubber bush-12

ings’ behaviour enlightening the different phenomena to take into account13

in the model is briefly presented. Then the characteristics of the chosen14

model are given; two points are underlined: how relevant this choice is to15

describe the observed phenomena, and how the results coming from the as-16

sociated multibody simulations allow to describe some qualitative, but sig-17

nificant characteristics of the vehicle’s steering behaviour. In order to derive18

more accurate, quantitative results from these simulations, the characteri-19

zation of the actual rubber bushings’ behaviour is needed. Consequently, a20

series of measurements on test rigs have been performed in conjunction with21

several suppliers of bushings. These tests are primarily used as an experimen-22

tal reference in the identification procedure. This is the core of the study,23

which is described in detail: a misfit function expressing the discrepancy24

between the model’s results and the experimental data is defined and then25

minimized by means of a gradient-based minimization algorithm using an26

adjoint state formulation. The identification results are eventually presented27

and discussed.28

2. Mechanical behaviour of the rubber bushings29

2.1. Description of the mechanical part30

Rubber bushings are cylindrical parts that consist of a metallic inner core31

and a plastic or metallic outer frame linked one to the other by a rubber32

intermediate body (Figure 1). The inner core and the outer frames are33

connected to different parts of the chassis.34

The geometry of the rubber intermediate body is not exactly axisym-35

metric: pits and ribs allow distinct behaviours for different load directions.36

Thus the bushing’s tridimensional mechanical behaviour can be split into37

several simple uniaxial behaviours, corresponding to classical types of loads38

(axial, radial, torsional, . . . ). These different behaviours can be described in39

a simple way, for they can be directly related to the material behaviour of40
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Figure 1: Typical rubber bushing

rubber. Thus in the following, the study of the mechanical characteristics41

of rubber will be studied rather than the influence of the geometry of the42

rubber intermediate body.43

2.2. Material mechanical behaviour of rubber44

Rubber usually exhibits three canonical components in its mechanical45

behaviour: an elastic component, which is totally reversible, and two dissi-46

pating (thus irreversible) components, which are hysteresis and viscoelastic-47

ity. Additional specific effects also have to be taken into account. All these48

behaviours have been listed in numerous references [1, 2, 3], which tried to49

propose some associated simple models as the basis of more complex models.50

The elastic component is characterized by a nonlinear stress versus strain51

curve, which can be obtained from cyclic measurements involving high-amplitude52

displacements at low speed: in this case, the irreversible effects can be ne-53

glected. If not, one way to derive the stress versus strain curve is to flatten54

the obtained cycle into an average curve assumed to represent the elastic55

component only. Furthermore, for rather small displacements, as it is gener-56

ally the case for the bushings typically used, the stress versus strain relation57

can be considered as linear, or, at worst, as piecewise linear.58

The hysteretic component is mainly due to the presence of carbon black59

as a reinforcing filler in rubber: inner friction-like phenomena due to these60

3



particles create a history effect, which depends on the loading speed. This61

component is of utter importance for the vehicle chassis behaviour, especially62

at small amplitudes where hysteresis is the most significant effect.63

Carbon black particles also have an additional impact on the bushing’s64

secant stiffness, called the Payne effect [4]. The secant stiffness is considered65

when plotting the force versus displacement curve as cyclic displacements66

are applied to the bushing, and is defined as the slope of the secant line67

joining the two extreme points of the obtained hysteresis cycle. For small68

displacement amplitudes, the Payne effect consists in a secant stiffness that69

decreases rapidly as the loading amplitude increases. This effect is significant70

enough to be taken into account in the bushings typically used: it can be71

seen in experimental measurements that the higher the proportion of carbon72

black fillers, the stronger this effect.73

Whereas hysteresis is often a rate-independent phenomenon, viscoelastic-74

ity on the contrary depends on the loading speed, and can be related to the75

friction that takes place between the rubber macromolecules. The associated76

effects are particularly significant in relaxation, which occurs when a displace-77

ment characterised by a Heaviside step function is applied to the bushing:78

the force versus time curve depends on the amplitude of the displacement79

step function as well as its speed (for the application of the displacement is80

not truly discontinuous). Relaxation has to be taken into account because it81

denotes an evanescent memory effect, which is crucial in the vehicle’s steer-82

ing behaviour: two successive steering wheel rotations will not have the same83

effect depending if they are in the same direction or in opposite directions.84

Another significant impact of the viscoelastic component can be observed85

in the frequency domain: there is a dynamic stiffening of the bushing as the86

loading frequency increases. The bushing’s dynamic stiffness is derived from87

a first-harmonic analysis of the force obtained when a sinusoidal displacement88

is applied to the bushing: it is defined as the amplitude ratio of the force’s89

(predominant) first harmonic to the displacement. This effect is opposed to90

the Payne effect: even if it is more limited, it should be taken into account91

in the bushing’s model.92

One last effect related to the mechanical behaviour of rubber should be93

evoked: the Mullins effect [5], which consists in a strong decrease in the94

bushing’s secant stiffness occurring whenever the load increases beyond its95

prior all-time maximum value. After a few cycles at a given amplitude, it96

can then be assumed that the stiffness does not evolve any more, provided97

there is no applied load of higher amplitude. This damage-like effect, though98
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significant, will not be taken into account here, for it is assumed that all the99

bushings which are used in the chassis are first exerted in a burn-in process:100

they are submitted before operational service to various loads along different101

directions, so that the Mullins effect is no longer significant once the bushings102

have been mounted on the chassis.103

3. Mechanical model for the rubber bushings104

Since the typical geometry of a rubber bushing is designed such that105

the mechanical behaviours along the different directions are decoupled, the106

geometry influence is not further studied, and a simple model can be proposed107

for each loading mode. Furthermore, the model should be chosen as simple108

as possible so that its implementation in a multibody simulation software109

could be easy and robust. Therefore rheological models are used that have110

to represent the different components described in Section 2.2. The degrees111

of freedom (DOFs) associated with these models correspond to the nodes112

linking the different rheological components. They are the solutions of the113

Ordinary Differential Equations (ODEs) associated with the chosen models.114

3.1. Standard Triboelastic Solid model (STS)115

The Standard Triboelastic Solid model (STS), initially proposed by Coveney [6]116

for seismic rubber bushings, is based on the linear superposition of a pure117

elastic behaviour (described by a spring element) and a hysteretic component118

(described by a solid friction element): the resulting combination, depicted119

in Figure 2, is the STS elementary cell, whose combination in series can rep-120

resent a typical hysteretic cycle, for the different friction elements allow to121

reproduce the desired memory effect. The parameters associated with the122

STS elementary cell are the stiffness Kr of the spring element and the thresh-123

old force Ff of the friction element, which means that the friction element124

slides if and only if the norm of the load acting on it is higher than the125

specified threshold Ff .126

Eventually, the proposed STS model, shown in Figure 3, is based on the127

serial combination of several identical STS elementary cells, along with two128

additional springs, K0 and Kpa, standing for a global elastic stiffness and an129

additional stiffness for low-amplitude displacements respectively. The STS130

elementary cells are chosen identical for the sake of simplicity. Consequently,131

the proposed STS model is based on four distinct parameters, for the number132
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Figure 2: STS elementary cell

of STS elementary cells can generally be set once and for all. This number,133

indeed, allows a more or less fine discretization of the hysteresis cycle.134

Figure 3: STS model with N identical STS elementary cells

Although the STS model is able to represent the hysteretic component135

of the rubber bushing, it does not account for viscoelasticity. To take it into136

account, most current models add in parallel to the STS model elements with137

viscoelastic behaviour. For example, a Maxwell cell (i.e. viscous damping) is138

added in parallel in [7], but it generally seems difficult to suit the bushing’s139

global dynamical response: [8] shows that using a viscous damping tends to140

entail an overestimation of the efforts in play.141
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3.2. Rate-dependent Triboelastic model (RT)142

Rather than add other components to the previous model, a better solu-143

tion seems to replace the friction elements of the STS model by components144

exhibiting a viscoelastic behaviour: this is the Rate-dependent Triboelas-145

tic model (RT), proposed by Coveney as well [7]. The RT elementary cell146

comprises a linear spring element with stiffness Kr and a nonlinear viscous147

dashpot put in parallel. The force versus velocity law of the dashpot is148

characterized by two parameters (C0, α) such that:149

Fk(t) = C0sign(y′
k(t))|y

′
k(t)|

α (1)

where Fk(t) is the force applied on the dashpot and y′
k(t) is the velocity of150

the corresponding DOF. α is chosen such that 0 < α < 1: depending on this151

value, the dashpot exhibits different behaviours. In particular, if α = 0, the152

dashpot is exactly equivalent to the solid friction element used in the STS153

model (when C0 = Ff ).154

Eventually, the proposed RT model is based on the serial combination155

of several identical RT elementary cells, along with two additional springs,156

K0 and Kpa, standing for a global elastic stiffness and an additional elastic157

stiffness for low-amplitude displacements respectively. The RT elementary158

cells are chosen identical again for the sake of simplicity, resulting in the159

assembly depicted in Figure 4.160

Since, once again, the number N of RT elementary cells is set a priori (al-161

lowing a more or less fine discretization of the hysteretic cycle), the proposed162

RT model depends on P = 5 distinct parameters: p = (K0 Kpa Kr C0 α)T.163

The forward problem thus consists in solving the following system of N time-164

dependent ODEs:165

(Kpa + Kr)y1(t) − Kry2(t) + C0sign(y′
1(t))|y

′
1(t)|

α = Kpay0(t) (2)
...

−Kryk−1(t) + 2Kryk(t) − Kryk+1(t) + C0sign(y′
k(t))|y

′
k(t)|

α = 0
...

−KryN−1(t) + 2KryN(t) + C0sign(y′
N(t))|y′

N(t)|α = 0

for 1 < k < N . The different DOFs (yk(t))1≤k≤N are the components of166

the state vector y(t), whereas y0(t) is the prescribed displacement. It is also167

assumed that the initial conditions for each DOF are equal to zero.168
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Figure 4: RT model with N identical RT elementary cells

3.3. Other models169

In addition to these two previous models, numerous models relying on170

alternative choices of rheological components have been proposed and exten-171

sively studied. For example, a fractional derivative model can be introduced172

in the viscoelastic part [9]. This kind of model, used in [10] along with a gen-173

eralized friction force element, allows to accurately account for the evolutions174

of the dynamic stiffness of rubber isolators as the frequency and amplitude175

of the excitation, as well as the static precompression, evolve. This model,176

however, seems hardly suited to be implemented in a multibody simula-177

tion, because most of the associated algorithms used to solve the fractional178

derivative part in the time domain are rather sophisticated [11], or can be179

very time-consuming. Furthermore, the parameter identification seems far180

more awkward in the time domain than in the frequency domain.181

Another widely-used model coming from [12] then [13] is the Bouc-Wen182

model consisting in a parametric hysteretic loop along with a spring and a183

linear viscous dashpot in parallel. The identification of the parameters as-184

sociated with this model has been achieved in [14] in the frequency domain185

using a harmonic balance approximation. Used as is, however, the Bouc-Wen186

model exhibits some inconsistencies when compared with experimental data,187

and tends to overestimate the rate-independent hysteretic part relatively to188
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the rate-dependent part. Several modifications have been introduced to im-189

prove the model, such as in [15] recently: the proposed model consists in190

two simple Bouc-Wen models put in parallel along with a spring and a linear191

viscous dashpot. Even if this modified Bouc-Wen model gives better predic-192

tions of the bushing’s behaviour, it depends on 16 independent parameters.193

This makes the parameter identification rather difficult: in [15], a genetic194

algorithm is proposed, but the identified values of the different parameters195

strongly depend on the experimental data used in the identification process,196

because the inverse problem is significantly ill-posed due to the high number197

of parameters. The authors then propose to combine several experimental198

test results to improve the identification, but the process eventually seems199

to be delicate to apply.200

3.4. Simulations examples using the RT model201

Considering the conclusions of the previous section, the RT model seems202

to be the most relevant choice. First the number of RT cells has to be set203

so that the predictions are sufficiently refined to be similar to the curves204

obtained with the available measurements. Typically N can be directly re-205

lated to the discretization of hysteresis cycles as far as the simulation of206

quasistatic periodic displacements is concerned: Figure 5 shows the hys-207

teresis cycles obtained for different values of N . The different parameters208

{K0, Kpa, Kr, C0, α} have been chosen such that the simulated cycles have209

similar features, i.e. the same values of the maximum load, the secant stiff-210

ness, and the tangents before and after cusps. For N ≥ 10, the obtained211

curves have converged to a limit cycle whose smoothness seems satisfactory.212

Finally, N = 15 cells are chosen to be able to account for applied displace-213

ments which would be larger than the ones proposed in the measurements,214

which could possibly happen in the vehicle chassis in operation.215

In Figure 6, different simulations using the proposed RT model with216

N = 15 elementary cells are depicted and show the model’s ability to grasp217

most of the effects described in Section 2.2. On the left of Figure 6, the218

force-displacement curves, obtained when sinusoidal displacements are ap-219

plied to the bushing, are plotted: they clearly show the bushing’s stiffening as220

the loading frequency increases. More precisely, the secant stiffness, defined221

as the ratio between the maximum load and the maximum displacement,222

increases by 4% between 1Hz and 10Hz, and by 4.5% between 10Hz and223

100Hz. On the right of Figure 6, one shows the force obtained when a dis-224

placement described by a Heaviside step function is applied to the bushing:225
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Figure 5: Numerical simulations obtained with the RT model for different numbers of cells

relaxation is clearly observed, until the force goes down to a given constant226

value, consistent with the bushing’s static behaviour and the value of the227

applied steady-state displacement. In the same way, it is possible to verify228

that the proposed RT model is able to account for the Payne effect as well.229

Figure 6: Numerical simulations obtained with the RT model for different prescribed
displacements: sines of increasing frequencies (left) and Heaviside step function (right)

3.5. Implementation in a multibody simulation code230

The RT model has then been implemented in a multibody simulation231

of a typical chassis using ADAMS software. More precisely, user functions232
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programmed in Fortran allow to compute the load associated with the chosen233

model when a given displacement is applied to the rubber bushing.234

Two different strategies are available. Using a GSESUB user function235

allows to solve the ODEs associated with the RT model along with the re-236

maining equations associated with the whole multibody system. On the237

contrary, when a VARSUB user function is used, one has to implement di-238

rectly in the subroutine the time integration algorithm. These two strategies239

have been tested on the very simple model of a beam linked to the ground240

by a rubber bushing whose mechanical behaviour is described by the RT241

model. They lead to similar results in terms of simulation results and ac-242

curacy. Nevertheless the VARSUB function seems to have more advantages243

than the GSESUB function: it is possible to implement any time integration244

scheme, independently from the one used for the remaining elements of the245

structure, and the computation time tends to be shorter. The final choice246

has then consisted of an explicit Euler scheme defined in the VARSUB func-247

tion. The time step is chosen accordingly to the variable time step used by248

ADAMS, by dividing this latter by a given factor, which allows to guarantee249

the stability of the Euler time integration scheme.250

Different simulations have been run on a complete multibody model of a251

typical small family car using RT models for the rubber bushings mounted252

in the front and rear axles of the vehicle. Only two specific results are shown253

here, and are associated with one specific rubber bushing, mounted in the254

rear axle, as depicted in Figure 7. This rubber bushing, which links the255

rear crossbeam to the body, allows to filter vertical vibrations as well as to256

transmit longitudinal forces to the axle.257

Figure 7: Location of one specific rubber bushing in the rear axle (partial view of the
multibody model of a typical small family car)
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A first simulation focuses on how the studied bushing behaves when an258

angle characterised by a Heaviside step function is applied to the steering259

wheel of the vehicle (actually, the angular input is not truly discontinuous,260

but is characterised by a short time interval of constant angular velocity).261

Figure 8 shows the radial horizontal load in the bushing with respect to time262

in two different cases, depending on whether a RT model or a STS model263

is used to describe the rubber bushing’s behaviour. The two curves are264

normalised by the respective maximum load values, which allows to easily265

compare the two models. This comparison stresses the lack of relaxation266

when using the STS model, whereas the RT model is able to account for this267

effect, as expected.268

Figure 8: Normalised load in the bushing with respect to time (angular Heaviside step
function on the steering wheel): RT model (red) and STS model (black)

A second simulation allows to represent well-known phenomena in the269

steering behaviour such as the evanescent memory effect. On the right of270

Figure 9 the (normalised) load acting on the studied bushing is shown, when271

two successive rotations (each described by a Heaviside step function) are272

applied to the vehicle’s steering wheel. This kind of input is inspired from273

classical elk tests, consisting in avoiding an obstacle without braking and then274

coming back to the right lane. Depending on whether these two rotations275

are of the same direction or occur in opposite ways (as formally depicted on276

the left of Figure 9), the load acting on the bushing can be very different:277

the relaxation effect is stronger in the second case. This has an impact278
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on the toe and camber angles of the wheel associated with the bushing of279

interest. Similar results can be obtained for other bushings, allowing to280

conclude on the impact on the vehicle’s steering behaviour, which is a well-281

known phenomenon described by test drivers.282

Figure 9: Normalised load during the second of two successive rotations of the vehicle’s
steering wheel: (blue) rotations of the same direction (pink) rotations of opposite directions
(a positive rotation is equivalent to a left turn of the steering wheel)

The previous examples then demonstrate the relevance of the results pre-283

dicted by the multibody simulation. However, without experimental data,284

which would be directly measured on the whole vehicle on the track, these285

predictions remain essentially qualitative. In order to turn these results into286

quantitative predictions, the next step consists in finding the correct values287

for the RT model’s parameters. Since experimental information is available288

for each rubber bushing (coming from specific measurements in test rigs), the289

values of these parameters should be identified so that the response of a bush-290

ing, which is calculated using the RT model under a given loading mode, fits291

best the experimental measurements obtained with the same loading mode.292

4. Generic formulation of the identification problem293

For the sake of clarity, the identification problem as it is defined and294

solved is first presented in a generic way. The parameter identification of the295

RT model of rubber bushings is developed in the next section.296
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4.1. Generic formulation of the identification problem297

The forward problem (2) associated with the RT model can be described298

by the following implicit vector formulation of size N :299

F (y(t),y′(t),p, t) = 0 ∀t ∈ [0, T ] (3)

y(0) = 0

where p of size P and y of size N are, just as before, the parameter vector and300

the state vector comprising all the DOFs of the forward model respectively.301

For the identification problem, it can then be assumed that the exper-302

imental data will be compared with quantities derived from the different303

DOFs of the forward problem by means of a projection operator denoted A,304

of size n × N , where n is the number of experimental measurements. Simi-305

larly, it is assumed that the experimental data can be written as if they were306

derived from an experimental state vector of size N : this assumption has no307

other consequence than allowing a clearer presentation of the identification308

problem. Eventually, a so-called misfit function is defined, which expresses309

the discrepancy between the n measurements Ayexp(t) and the n associated310

quantities derived from the model Ay(t;p):311

J (p) =
1

2

∫ T

0

|A(y(t;p) − yexp(t))|
2 dt +

1

2
|R(p − p0)|

2 (4)

where y(t;p) is the solution of the state equation (3) calculated with param-312

eters p. Since the forward problem is nonlinear, it seems relevant to use a313

time formulation of the misfit function, hence the integral over time.314

The last term of the misfit function is a norm introduced to regularize the315

inverse problem, by expressing that the sought parameters p should be close316

to a vector p0 of typical values, with R a diagonal operator whose values are317

to be set. This so-called Tikhonov’s regularization term aims at reducing the318

ill-posedness of the identification process by bounding the magnitude of the319

sought parameters.320

4.2. Minimization of the misfit function321

The identification problem consists in minimizing the misfit function (4)322

to find the parameters allowing the model to be as close to the experimen-323

tal data as possible. This minimization is usually performed by means of324

gradient-based techniques, where the derivative of J (p) is analytically intro-325

duced using an adjoint state problem. This method was described in [16],326
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which deals with the identification of elastoplastic constitutive laws, whose327

form is quite similar to the kind of law used in the RT model.328

The solution z(t) of this adjoint state problem can be considered as a La-329

grange multiplier introduced in the following Lagrangian function L(y,p, z):330

L(y,p, z) =
1

2

∫ T

0

|A(y(t) − yexp(t))|
2 dt +

1

2
|R(p − p0)|

2 (5)

−

∫ T

0

F (y(t),y′(t),p, t)
T
z(t) dt − y(0)Tz(0)

where (y,p, z) are considered independent and (·)T is the transposition. Min-331

imizing the misfit function J (p) where y verifies (3) is then equivalent to332

writing the first-order stationarity conditions for L(y,p, z). This can be333

clearly seen when expressing the first-order stationarity condition with re-334

spect to z:335

−

∫ T

0

F(y(t),y′(t),p, t)Tδz(t) dt − y(0)Tδz(0) = 0 (6)

for any admissible δz(t). This expression is actually the weak formulation of336

the state equation (3).337

4.3. Adjoint state problem338

When writing the first-order stationarity condition for L(y,p, z) with339

respect to y, the following relation is obtained:340

∫ T

0

δy(t)T
(

ATA(y(t) − yexp(t))
)

dt (7)

−

∫ T

0

(

∇yFδy(t) + ∇y′Fδy′(t)
)T

z(t) dt − δy(0)Tz(0) = 0

for any δy(t) verifying null initial conditions. ∇yF and ∇y′F stand for the341

directional derivatives of F with respect to y and y′ respectively. After342

integrating by parts, the previous weak formulation leads to the following343

expression:344

∫ T

0

δy(t)T
(

ATA(y(t) − yexp(t))
)

dt (8)

−

∫ T

0

δy(t)T
(

∇yF
Tz(t) −

(

∇y′FTz(t)
)′

)

dt − δy(T )T∇y′FTz(T ) = 0
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which is equivalent to the following strong formulation defining the adjoint345

state problem:346

∇yF
Tz(t) −

(

∇y′FTz(t)
)′

= ATA(y(t) − yexp(t)) ∀t ∈ [0, T ] (9)

∇y′FTz(T ) = 0

The adjoint state problem is classical [16] and consists in solving for z(t) a347

linear time-backward ODE along with final conditions.348

4.4. Optimality conditions for the parameters349

Once the adjoint state problem is solved, the gradient of the misfit func-350

tion with respect to p can be evaluated. Because of the equivalence between351

the constrained minimization of J (p) and the stationarity of L(y(t;p),p, z(t)),352

it can be written that:353

∇pJ (p) = ∇pL(y(t;p),p, z(t)) = RTR(p − p0) −

∫ T

0

∇pF
Tz(t) dt (10)

and should be equal to zero at optimality. This is equivalent to say that the354

optimal parameters depend on a weighted time average of the derivative of355

the state equation (3) with respect to the parameters vector p, multiplied by356

the solution of the adjoint state problem (9).357

The minimization problem eventually consists in solving three ODEs with358

unknowns (y(t), z(t),p): the forward problem (3), the adjoint problem (9)359

and the optimality equation (10) set equal to zero. The straightforward360

solution is not possible here, as the adjoint problem is time-backward: a361

staggered process is then proposed instead, where the forward and adjoint362

problems are solved successively on the one hand, and the optimality equation363

on the other hand is used to derive successive estimates of the misfit function364

gradient. These estimates are used in a classical gradient-based optimization365

algorithm, such as a line-search or a trust-region method. In addition, for366

the solution of the adjoint state problem, a change of variable for the time is367

first introduced in order to solve a time-forward problem along with initial368

conditions, rather than the original time-backward problem.369

In terms of computational cost, evaluating the gradient of the misfit func-370

tion is cheaper and more robust using the adjoint state formulation than with371

a finite difference formula. Whenever evaluating the gradient associated with372

P parameters, the finite difference formula requires the solutions of P addi-373

tional forward problems, each one being evaluated with the same parameters374
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as the computed forward problem, except for one parameter which is slightly375

perturbed in order to derive the corresponding component of the misfit func-376

tion gradient. In addition, the computation of an integral is required for377

each of these P forward solutions, in order to evaluate the associated misfit378

function.379

On the contrary, when using the adjoint state formulation, only one ad-380

ditional ODE (9) has to be solved, and since this ODE is formally close to381

the forward problem, the solution of the adjoint state problem has the same382

cost as the solution of the forward problem. Then the computation of an383

integral is needed for each component of the gradient. To conclude, for each384

step of the staggered process, only two ODEs have to be solved and N inte-385

grals have to be evaluated when using the adjoint state formulation, whereas386

P +1 ODE solutions and N integrals evaluations are required with the finite387

difference formula.388

5. Parameter identification of the RT model389

5.1. Formulation of the identification problem390

The parameter identification is achieved according to the formulation pre-391

sented in the previous section. Similarly to (4), the misfit function quantifies392

the discrepancy between the computed and measured forces when a specific393

displacement is prescribed to the bushing:394

J (p) =
1

2

∫ T

0

|K0y0(t) + Kpa(y0(t) − y1(t;p)) − Fexp(t)|
2 dt (11)

+
1

2
|R(p − p0)|

2

where Fexp(t) is the measured force, R = diag(RK0
, RKpa

, RKr
, RC0

, Rα) com-395

prises the different regularization parameters to be set, and typical values for396

the different parameters are in p0 =
(

K0
0 K0

pa K0
r C0

0 α0
)T

.397

The adjoint state formulation used for evaluating the misfit function gra-398

dient consists in solving the following time-backward equations:399

(Kpa + Kr)z1(t) − Krz2(t) − C0α|y
′
1(t;p)|α−1z′1(t) (12)

−C0α(α − 1)sign(y′
1(t;p))y′′

1(t;p)|y′
1(t;p)|α−2z1(t) = −Kpa(F (t;p) − Fexp(t))

...

−Krzk−1(t) + 2Krzk(t) − Krzk+1(t) − C0α|y
′
k(t;p)|α−1z′k(t)
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−C0α(α − 1)sign(y′
k(t;p))y′′

k(t;p)|y′
k(t;p)|α−2zk(t) = 0

...

−KrzN−1(t) + 2KrzN(t) − C0α|y
′
N(t;p)|α−1z′N(t)

−C0α(α − 1)sign(y′
N(t;p))y′′

N(t;p)|y′
N(t;p)|α−2zN(t) = 0

for 1 < k < N , with vanishing final conditions, and where the force applied on400

the bushing, as evaluated by the RT model, is F (t;p) = K0y0(t)+Kpa(y0(t)−401

y1(t;p)). The gradient of the misfit function then comprises all the following402

partial derivatives:403

∇K0
J =

∫ T

0

y0(t)(F (t;p) − Fexp(t)) dt + R2
K0

(K0 − K0
0) (13)

∇Kpa
J =

∫ T

0

(y0(t) − y1(t;p))(F (t;p) − Fexp(t) + z1(t)) dt + R2
Kpa

(Kpa − K0
pa)

∇Kr
J = −

∫ T

0

(y1(t;p) − y2(t;p))z1(t) dt −

∫ T

0

(−yN−1(t;p) + 2yN(t;p))zN(t) dt

−
N−1
∑

k=2

∫ T

0

(−yk−1(t;p) + 2yk(t;p) − yk+1(t;p))zk(t) dt + R2
Kr

(Kr − K0
r )

∇C0
J = −

N
∑

k=1

∫ T

0

sign(y′
k(t;p))|y′

k(t;p)|αzk(t) dt + R2
C0

(C0 − C0
0)

∇αJ = −
N

∑

k=1

∫ T

0

C0sign(y′
k(t;p)) ln |y′

k(t;p)||y′
k(t;p)|αzn(t) dt + R2

α(α − α0)

This computed gradient is to be used within two classical minimization404

algorithms: a line-search method and a trust-region method [17]. The first405

results, however, are very unsatisfactory: the computed gradient is clearly406

erroneous, and can even, in some cases, return infinite values. Further inves-407

tigations allowed to determine that this came from the viscoelastic law (1)408

used in the RT model: depending on the value of α and due to the oc-409

currences of the sign and absolute value functions, this law can be nearly410

discontinuous, so that its derivative with respect to the velocity can be ex-411

tremely high for very small velocities. Furthermore, since α < 1, the adjoint412

problem (12) is singular when one of the velocities y′
k is equal to zero. This413

analysis is corroborated by the results of [18], which shows that it is impossi-414

ble to derive the correct misfit function gradients when discontinuities occur415
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in the equations to solve, with errors of a magnitude independent of the time416

step size. The authors then propose to smooth the discontinuities, and show417

that the correct gradient values can be evaluated when the time step size is418

’sufficiently small’ in comparison with the smoothing parameter.419

Therefore, in order to smooth the solved equations, we replaced the occur-420

rences of the sign and absolute value functions by the following expressions421

respectively:422

signs(y
′) =

2

1 + e−sy′
− 1 (14)

|y′|s =
2

s
ln

(

1 + esy′

)

− y′

where s is a constant to set: the lower s is, the smoother the functions signs423

and | · |s are. The first function is actually a classical sigmoid function, and424

the second one is the primitive function of the first one: this allows to directly425

replace the sign and absolute value functions by their smoothed counterparts426

in Equations (2), (12) and (13). The influence of the smoothing parameter427

s is depicted in Figure 10. To determine the best value for s, the accuracy428

of the adjoint state solution has to be determined.429

Figure 10: Influence of the smoothing parameter s: smoothed sign function (left) and
smoothed absolute value function (right)

5.2. Validation of the adjoint state solution430

A classical way to check the accuracy of the computed adjoint state is431

to use the mathematical property of the adjoint state equation (9), whose432
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operator G should be the adjoint of the operator associated with the dif-433

ferentiated forward state equation ∇yF . The idea is to solve the following434

equations, for any arbitrary vector a:435

∇yF b = a (15)

G c = b

Since theoretically one has ∇yF
T = G, the following equality should hold,436

provided the adjoint state has been correctly solved:437

aTc = bTb (16)

This dot-product test should be verified for different values of a to be posi-438

tively sure that the adjoint state solution is correctly calculated.439

A series of numerical tests were conducted in order to determine the most440

relevant value that should be chosen for the smoothing parameter s. Using441

an arbitrary set of parameter values pexp =
(

Kexp
0 Kexp

pa Kexp
r Cexp

0 αexp
)T

442

in Equation (2) to simulate an experimental reference, the misfit function443

(with no regularization term) and its gradient are evaluated for a given set444

of parameters whose values are quite different from the experimental ones:445

(

Kexp
0 /2 2Kexp

pa Kexp
r /2 Cexp

0 /2 2αexp
)T

. The results in the case of different446

values of s (as well as without any smoothing) are listed in Table 1. In447

addition, the dot-product test (16) has been applied for a = (1 · · · 1)T and448

the associated results are listed in Table 1 as well.449

Smoothing J ∇K0
J ∇Kpa

J ∇Kr
J ∇C0

J ∇αJ aTc bTb

s = 0.1 921 787.149 −4 752.446 −16.3299 −277.728 49 467.59 −13 149.70 0.021 569 0.021 576

s = 1 888 192.640 −4 665.399 −17.630 −268.873 67 022.15 −13 154.49 0.021 378 0.021 351

s = 10 888 192.739 −4 665.399 −17.735 −285.087 38 570.69 −11 927.34 0.028 785 0.020 740

s = 100 888 192.736 −4 665.399 −5.6 · 109 −8.2 · 109 −1.3 · 1013 1.2 · 1012 > 3 · 107 0.020 359

none 888 192.736 −4 665.399 infinite infinite infinite infinite infinite 0.020 245

Table 1: Evaluation of the misfit function and its gradient, and dot-product test for
different smoothing settings

As predicted, the dot-product test is more and more accurately verified450

as the smoothing increases, that is as s decreases. Other values of a give451

similar results. The best value for the smoothing seems to be s = 1, for it452

represents a trade-off between the correct estimation of the misfit function453

J (and of its gradient) and the validation of the adjoint state characterized454

by the dot-product test.455
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In Table 2, we compare the directional derivatives previously computed456

with s = 1 with those estimated with a finite-difference formula and no457

smoothing. Even if the estimates are of the same order of magnitude, some458

differences can be noticed, excepted for ∇K0
J where z is not used. On459

the one hand, the computed problems are slightly different because of the460

smoothing; on the other hand, the estimates which are computed using a461

finite-difference formula without smoothing can not be considered as refer-462

ences, for they depend on the discretisation step used in the formula and463

the smaller this discretisation step, the stronger the impact of the tolerance464

of the forward state solution on the result of the formula. All in all, using465

some smoothing and estimating the misfit function gradient by means of the466

adjoint state seems to be relevant to solve the identification problem, as can467

be seen in the following section. Eventually, the value s = 1 is used in what468

follows.469

Method ∇K0
J ∇Kpa

J ∇Kr
J ∇C0

J ∇αJ
adjoint state with smoothing −4 665.399 −17.630 −268.873 67 022.15 −13 154.49
finite diff. without smoothing −4 665.399 −6.7776 −241.145 39 672.53 −8 141.242

Table 2: Evaluation of the misfit function gradient

5.3. Identification results with synthetic data470

In order to assess the accuracy of the identification process, preliminary471

tests using synthetic data are proposed. Since actual experimental data come472

from imposed quasistatic periodic inputs as well as Heaviside step functions,473

it seems relevant to study similar inputs to quantify the accuracy of the474

identification results. The final choice here is to compute the response to475

sinusoidal displacements, and use them as synthetic data for the identification476

process. Figure 6 (left) shows the typical curves that can be obtained for such477

inputs. Synthetic data are computed using an arbitrary set of parameter478

values pexp =
(

Kexp
0 Kexp

pa Kexp
r Cexp

0 αexp
)T

in the forward problem (2), for479

a sinusoidal displacement input of 1Hz-frequency.480

Two different gradient-based algorithms, proposed in the Optimisation481

Toolbox for Matlab, are tested: a line-search method, consisting in a Quasi-482

Newton method with the BFGS formula for the approximation of the Hessian483

matrix [17], and a trust-region method, based on the interior reflective New-484

ton method [19]. Identification results for both methods and close initial485
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values
(

Kexp
0 4Kexp

pa /3 2Kexp
r /3 2Cexp

0 2αexp
)T

are listed in Table 3. They486

range from satisfactory to excellent depending on the parameter, and tend487

to be better with the trust-region method.488

Method K0

K
exp
0

Kpa

K
exp
pa

Kr

K
exp
r

C0

C
exp
0

α
αexp

line-search 1.099 1.095 0.649 0.972 1.524
trust-region 1.001 0.975 0.767 1.270 0.922

Table 3: Identification results for synthetic data and initial values close to the ’experimen-
tal’ ones

In order to check the robustness of the identification process, initial values489

much farther from the values used for computing the synthetic data are490

proposed:
(

2Kexp
0 5Kexp

pa Kexp
r /5 Cexp

0 /5 5αexp
)T

. They lead to the results491

listed in Table 4. The results are far worse than in the case of initial values492

chosen close to the ’experimental’ ones. This means that there are many local493

minima in the misfit function, making the identification process difficult as494

is. In addition, some parameters, such as C0 and α, seem not to have a495

strong impact on the response, for the bushing is loaded in a quasi-static496

way. Despite this final remark, it can be concluded that, between the two497

methods, the trust-region method gives the best results.498

Method K0

K
exp
0

Kpa

K
exp
pa

Kr

K
exp
r

C0

C
exp
0

α
αexp

line-search 1.328 5.121 0.227 0.498 7.954
trust-region 1.300 2.960 0.361 0.499 4.884

Table 4: Identification results for synthetic data and initial values far from the ’experi-
mental’ ones

To go further, some regularization is then required. It is not, however,499

straightforward when dealing with the actual experimental data: since the500

model uses rheological elements, there are no typical values which can eas-501

ily be chosen for the vector p0 =
(

K0
0 K0

pa K0
r C0

0 α0
)T

. Moreover, there is502

actually no quantitative information available concerning the measurement503

noise corrupting the experimental data. Applying principles such as Moro-504

zov’s [20] in order to set relevant values for the regularization parameters505

contained in R is then not really possible. With these two drawbacks, the506
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resulting regularization may not be relevant; therefore, rather than applying507

a classical Tikhonov’s regularization in the identification process, a technique508

is proposed in the following section to give a first guess of the initial values509

to be used in the minimization algorithm.510

5.4. Determination of relevant initial values for the identification process511

Due to the ill-posedness of the identification problem, it is crucial to512

be able to give relevant initial values to the minimization algorithm in or-513

der not to converge to a local minimum which would lie too far from the514

global one. This can be done by using the STS model described in Sec-515

tion 3.1 rather than the RT model, because the STS model can be analyti-516

cally inverted under some simple assumptions. Starting from the experimen-517

tal hysteresis curve, it is possible to get values for the associated parameters518

pSTS =
(

KS
0 KS

pa KS
r Ff

)T
. Then, initial values for the RT model’s parame-519

ters can be derived from these parameter values.520

First, it is assumed that all the STS cells but one (i.e. N − 1 cells) are521

loaded when the hysteresis curve is obtained: this is equivalent to assume that522

the bushing is loaded with a sufficiently high-amplitude displacement. In this523

case, three representative features of the hysteresis curve can be determined524

as functions of the STS parameters pSTS =
(

KS
0 KS

pa KS
r Ff

)T
:525

• the secant stiffness associated with the two extremities of the hysteresis526

cycle (with N odd):527

Ksec = KS
0 +

KS
paK

S
r

N−1
2

KS
pa + KS

r

(17)

• the slope of the line being tangent to the hysteresis cycle just after a528

cusp:529

Tg1 = KS
0 + KS

pa (18)

• the slope of the line being tangent to the hysteresis cycle just before a530

cusp:531

Tg2 = KS
0 +

KS
paK

S
r

(N − 1)KS
pa + KS

r

(19)
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These features are summarized on Figure 11. Finally, the maximal force Fmax532

applied on the bushing when N − 1 STS cells are loaded can be written as533

follows:534

Fmax = K0

(

FfN(N − 1)

KS
r

+
2FfN

KS
pa

)

+ 2NFf (20)

This maximal force is obtained for a displacement amplitude Xmax, which535

means that Fmax = KsecXmax.536

Figure 11: Features of the hysteresis curve associated with the STS model

The previous formulas can be reversed in order to determine the STS537

parameters pSTS =
(

KS
0 KS

pa KS
r Ff

)T
, for example in terms of slopes before538

and after a cusp, and maximal force and displacement :539

KS
0 =

Fmax(Tg1 + Tg2) − 2Tg1Tg2Xmax

2Fmax − (Tg1 + Tg2)Xmax

(21)

KS
pa =

(Tg1 − Tg2)(Fmax − Tg1Xmax)

2Fmax − (Tg1 + Tg2)Xmax

(22)

KS
r = −

(N − 1)(Tg1 − Tg2)(Fmax − Tg1Xmax)(Fmax − Tg2Xmax)

(2Fmax − (Tg1 + Tg2)Xmax)2
(23)

Ff =
(Fmax − Tg1Xmax)(Fmax − Tg2Xmax)

N(2Fmax − (Tg1 + Tg2)Xmax)
(24)

If it is assumed that the STS and RT models are roughly similar, the first540

three expressions can give straightforward initial values for the first three RT541
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model’s parameters:542

K0
0 = KS

0 K0
pa = KS

pa K0
r = KS

r (25)

In order to determine estimates for the last two, it is assumed that the543

viscoelastic part (1) of the RT cell should be analogous to the threshold544

force Ff of the STS cell when the bushing is loaded at a (mean) speed V0,545

that is:546

C0
0 =

Ff

V α0

0

(26)

To remain quite close to the solid friction behaviour of the STS cell, an547

arbitrary choice of a small value for α0 is made, such as one tenth or one548

fifth.549

This strategy has been tested on the example from the previous section.550

In Table 5 are listed the initial values of the RT model’s parameters that551

are obtained from the synthetic hysteresis cycle when two different values552

of α0 are proposed. The obtained values show some discrepancies with the553

’experimental’ ones: it can be explained by the fact that the slopes Tg1 and554

Tg2 cannot be determined without some error and that any inaccuracy in the555

associated values can have a strong impact on the determination of the STS556

model’s parameter values. As an example of this sensitivity, Figure 12 shows557

how the first three STS model’s parameters evolve as the measured value of558

the slope Tg2 varies: the changes can go up to nearly 100% for a 10%-change559

in the value Tg2. As any other inverse problem, the quality of the inversion560

of the formulas associated with the STS model shows a strong dependence561

on the noise in the measurements.562

α0 K0

0

K
exp
0

K0
pa

K
exp
pa

K0
r

K
exp
r

C0

0

C
exp
0

1/10 0.770 1.105 1.468 0.703
1/5 0.770 1.105 1.468 0.740

Table 5: Initial RT model’s parameter values using an STS model identification and the
synthetic hysteresis cycle

All these results, however, show that it is possible to get reasonable initial563

values for the RT model’s parameters: all the proposed values lie in a range564

of the same magnitude as the one proposed in the first identification exam-565

ple with synthetic data (with associated results in Table 3). Moreover, the566
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Figure 12: Normalized values of the first three STS model’s parameters with respect to
the slope Tg2 measured on the hysteresis curve

arbitrary choice of a value for α0 does not seem to have too high an impact567

on the proposed value for C0
0 . Finally, since all these values are perturbed by568

some noise, it seems better, as stated previously, to use them as initial values569

for the minimization algorithm rather than nominal values in a Tikhonov’s570

regularization term such as the one proposed in (11). The resulting benefit571

should be the minimization algorithm to likely start in the attraction basin572

of the global minimum of the misfit function.573

5.5. Identification results from actual data574

As described previously, actual experimental data come from quasistatic575

periodic as well as fast transitory loads, applied to the bushing by means of576

a specific test rig. Two simple test configurations are proposed: the first one577

consists in applying to the bushing a triangular periodic displacement at a578

rather limited speed and is used in the identification process. The second579

configuration consists in applying a displacement characterised by a Heav-580

iside step function to observe relaxation in the bushing (the input being581

not truly discontinuous, but being characterised by a 0.1s time interval of582

increase): but rather than using the associated measurements in the iden-583

tification process as well, one prefers to keep them as a further reference in584

order to validate the identified model a posteriori.585
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The same gradient-based algorithms as in Section 5.3 are used here. Ini-586

tial values of the RT model’s parameters are given according to the strategy587

described in Section 5.4; since the experimental curve (depicted in Figure 13588

or 14) is not perfectly symmetric, an average value of each feature has been589

used. Table 6 lists the (relative) identified values of the RT model’s param-590

eters as well as a normalized value of the discrepancy between the model’s591

results and experimental data: this value is calculated as the square root592

of the final misfit function divided by a norm J0 of the experimental data,593

defined by the following expression:594

J0 =
1

2

∫ T

0

|Fexp(t)|
2 dt (27)

This normalized value is a good guess of the relative identification error.595

Whereas this error was equal to 15.32% with the proposed initial values, it596

drops significantly for the values identified with the two methods. Eventually,597

the two methods lead to very similar results, even if the line-search method598

seems to provide a slightly better solution.599

Method K0

K0

0

Kpa

K0
pa

Kr

K0
r

C0

C0

0

α
α0

√

J

J0

line-search 1.217 1.049 1.088 0.930 1.197 3.11%
trust-region 1.182 1.145 1.156 0.889 1.153 3.20%

Table 6: Identification results for actual data (triangular periodic displacement)

Figures 13 and 14 (left) show for each method the comparison between600

the experimental data and the responses associated with the initial RT model601

and with the identified RT model. As seen previously with the relative602

errors, the agreement is very good in the case of the triangular periodic603

loading. Let us note that only the stabilised hysteresis curves are recorded604

in these quasistatic tests: no information is available on the first loading605

of the bushing. This latter is mandatory in the numerical simulation: it606

is introduced by considering that a linearly-varying displacement is applied607

to the bushing: afterwards, the stabilised hysteresis cycle is obtained. The608

misfit function is based on these experimental and predicted stabilised cycles609

only.610

Validation of these results is possible with the experimental response to611

the Heaviside step function, which has not been used in the identification612
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process. Figures 13 and 14 (right) show the good agreement between the613

response associated with the identified RT model and the experimental data.614

Since these latter have not been used in the identification process, this result615

shows the relevance of the RT model as well as the quality of the identification616

of the associated parameters. In particular, both the relaxation phenomenon617

and the asymptotic steady-state load are well described by the identified618

model, when compared with the experimental data.619

Figure 13: Identification results with the line-search method: comparison with the exper-
imental data used (left) and with experimental data not used in the identification process
(right)

Figure 14: Identification results with the trust-region method: comparison with the exper-
imental data used (left) and with experimental data not used in the identification process
(right)
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6. Conclusion620

Here a strategy for identifying the parameters of a nonlinear time-dependent621

model has been presented and applied on the example of a rubber bushing622

typically used in car chassis. The proposed model is based on components623

exhibiting a viscoelastic behaviour which can tend towards the description624

of contact-type phenomena. The identification has been achieved in the time625

domain using an adjoint state formulation allowing an efficient estimation of626

the misfit function’s gradient.627

It was shown that the near-discontinuous behaviour of the proposed model628

can lead to numerical difficulties, which may prevent the model’s parameters629

to be correctly identified due to an inaccurate estimation of the adjoint state630

variable. The solution has consisted in smoothing the discontinuities by631

means of sigmoid functions: a trade-off allowed to correct the estimates of632

the adjoint state without any significant loss of accuracy for the forward state633

solution.634

The relevance of the proposed model as well as the robustness of the635

method have been shown with the parameter identification from actual data:636

in addition, the obtained results have been validated with experimental in-637

formation which was not used in the identification process. Such an iden-638

tification allows to deal with accurate models, which are simple enough to639

be implemented in multibody simulation softwares, allowing to study well-640

known phenomena occurring in a typical vehicle chassis.641

In a more general way, the strategy presented here can be applied to other642

time-dependent problems with contact-type phenomena, and should allow to643

achieve the parameter identification both accurately and efficiently.644
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[10] M. Sjöberg, L. Kari, Nonlinear isolator dynamics at finite deforma-677

tions: an effective hyperelastic, fractional derivative, generalized friction678

model, Nonlinear Dynamics 33 (2003) 323–336.679
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