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Abstract

This paper presents a symbolic execution framework

devoted to system models, recursively defined by inter-

connecting component models. Our concern is to allow

one to explicitly define interaction rules between com-

ponents, while taking into account those rules at the

symbolic execution phase. The paper introduces a small

set of primitives dedicated to this purpose, together with

their associated symbolic execution rules.

1 Introduction

Symbolic execution has been first defined for pro-

grams [12, 4]. It mainly consists in replacing con-

crete input values and initialization values of variables

by symbolic ones in order to compute constraints in-

duced on these variables by different possible execu-

tions. Symbolic execution has been widely used in

different contexts to formally reason about programs.

It provides all necessary pieces of information to de-

tect unfeasible paths or deadlocks. Among its numer-

ous applications, it has been used in combination with

model checking technics to address verification and test-

ing of programs [1, 11]. It has also been applied on

models for verification or conformance testing purposes

[14, 9, 5, 6].

Behavioral models of systems (as StateCharts of

Statemate [10], IF [3], UML statemachines [13])...) are

usually recursively defined from component models in-

teracting accordingly to some rules that define commu-

nication or synchronization mechanisms between com-

ponents. Those mechanisms depend on the considered

modeling languages. Our contribution1 is a first attempt

to define a generic symbolic execution framework to

1This work has been partially supported by the Usine Logicielle

project of the french cluster System@tic (Pôle de compétitivité)

and by the french national ANR project Hecosim (http://projet-

hecosim.org/).

take into account such system models. In our approach,

system descriptions are given in the form of so called

designs which introduce programs denoting system ex-

ecutions. A design may reuse other designs represent-

ing sub systems and in that case its program defines

the interaction rules between reused designs. Designs

may declare times (either discrete of dense) used to as-

sociate dates to observations of their executions and to

define time constraints upon them. From a design point

of view, its reused designs are black boxes: their exe-

cutions are only observable by successive observations

of values assigned to their ports which are used to ex-

change values. Such observations may be associated

with dates and are symbolically represented as so called

snapshots. The whole symbolic execution of a reused

design is represented as a direct acyclic graph, called an

execution graph, whose nodes are snapshots and whose

arrows denote observational state evolutions during the

reused design execution. Programs are built by structur-

ing basic programs whose application is pre-conditioned

by predicates over the system state. States of systems

are symbolically denoted as so called synchronizations

characterizing global observations of all reused designs

(in the form of sets of reused design snapshots) and

constraints over the main design port values and time.

Basic programs may introduce instructions dedicated to

model exchanges of values between different reused de-

signs and thus represent communication rules. Basic

program executions result in the definition of one or sev-

eral new synchronizations. Basic programs are struc-

tured through several operators to schedule their execu-

tions. Structured program symbolic executions are built

by successively executing basic programs accordingly to

their scheduling. The symbolic execution of a design is

then defined by extracting an execution graph from the

symbolic execution of its program. This makes the sym-

bolic execution procedure recursive that is, any design

may be reused in some new design for which the sym-

bolic execution procedure is applicable.

Denoting and symbolically executing models of in-
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teraction has already been addressed at the requirement

level [15, 16] by considering variants of message se-

quence charts as modeling languages. Our proposal is

complementary because the models that we consider are

component-oriented (designs are components that can

be composed recursively). They are close to the models

that can be described using formal languages as Com-

mUnity [7] and BIP [2]. However, to the best of our

knowledge, no works address the problem of symboli-

cally executing system models defined from components

interacting accordingly to explicitly specified interaction

rules.

In Section 2 we introduce designs. Section 3 is de-

voted to symbolic execution rules. Section 4 is a discus-

sion.

2 Design

Designs introduce data. In the following, such data

are modeled by means of a data specification SP =
(Ω, ax) as defined in the appendix and supposed given

in the sequel. A design D is composed of a public part,

a private part and a body.

design design_id

public:

port p1[:=t1] : s1, · · · , pn[:=tn] : sn

time discrete|dense
[private:

[var v1[:=t1] : s1, · · · , vm[:=tm] : sm]
[use design_id1, · · · , design_idk]]

body: prog

design_id is a design identifier. The public section

introduces typed ports which are typed variables and a

time carrier which is used to assign dates to observa-

tions of port values. That time carrier may be discrete

or dense. Time is handled as the other data: we sup-

pose that the set of types of Ω contains Timedi (dis-

crete) and Timede (dense), and that the set of opera-

tions contains at least, for each i ∈ {di, de}, an ini-

tial date denoted as a constant 0i :→ Timei, and two

function names +i : Timei × Timei → Timei and

<i: Timei × Timei → bool 2. Semantical interpre-

tations of those operations are the usual ones respec-

tively over N and Q+. The private section introduces

local typed variables used for computation and design

identifiers denoting reused designs. All public variables

involved in programs (ports and time) are prefixed by

their design identifier. Private variables are not prefixed.

2We suppose that Ω also contains the sort bool with constants true

and false. Moreover, we will note < instead of <i when the context

is clear of confusion.

Programs introduced in the body section are defined as

follows:

Prog ::= when(For) {Ins} (For)

| {p ⊙ p′} with ⊙ ∈ {|;| , |,| , |i|}
| while(For){Prog}

Ins ::= in (design_id.p) provided(For)

| d.p -> d′.p′

| x:=t

| if(For) then{Ins}[else {Ins}]
| Ins; Ins

where:

• x is a private variable or a port of design_id.

t is a term over Ω, over private and public variables

of D and over public variables of its reused designs.

• d ∈ {design_id, design_id1, · · · , design_idk},

d′ ∈ {design_id1, · · · , design_idk} and p and p′

are respectively ports of d and d′.

For ::= t1 = t2 where t1 and t2 are of same type

| touch(design_id.p)

| For ⊙ For with ⊙ ∈ {∧,∨}
| ¬For

Intuitively, when(ϕ){ins}(ψ) means: when ϕ is

satisfied, the instruction ins is executed and after this

execution the property ψ holds.

A design may receive a value to be assigned to its

ports from its environment. Such an available value is

finally assigned to the corresponding port by executing

an instruction in(design_id.p)provided(ϕ) (occurring

in the design program) provided that ϕ is evaluated to

true. A design may also make some value available for

one of its reused designs d′ by means of the instruction

d.p -> d′.p′ (d is either a reused design or is design_id).

Finally, touch(design_id.p) is a predicate evaluated to

true when a value is available for p.

Operators |; | and |i| are used to define the evaluation

order of programs: |; | is the sequencing of programs

and |i| is the interleaving operation which states that the

order is arbitrary. |, | is a choice operator.

Example 1 Car Wiper Controller : design

The system describes a simplified automatic car

wiper controller. The main design env represents the

environment, which sends information about the inten-

sity of the rain to calc every 5 time slot (1). calc cal-

culates the wipers’ speed. When the calculated speed

has changed in calc (3), env sends it (4) from calc to the

wiper engine, which only consumes the received value.
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design env

public:

port intensity := 0 : int,
time discrete

private:

var t := 0 : time, previousSpeed := 0 : int
use calc, engine

body:

while(True) {

( when (env.time = 5 + t) { (1)

if ( touch(env.intensity) ){

in(env.intensity);

env.intensity -> calc.intensity

}

t := env.time

}

| ,|

when ( env.time < t+ 5 & (2)

calc.speed <> previousSpeed ) { (3)

previousSpeed := calc.speed;

calc.speed -> engine.speed (4)

}

)

}

design calc

public:

port intensity := 0 : int, speed := 0 : int

private:

var th1 : int, th2 : int, speedTmp : int

body:

while(True) {

when (touch(calc.intensity) ) {

in(calc.intensity);

if(calc.intensity<th1)

then{speedTmp := 1}

if((calc.intensity>=th1)
&

(calc.intensity<th2) )

then{speedTmp := 2}

if(calc.intensity>=th2)

then{speedTmp := 3}

calc.speed:=speedTmp;

}

}

design engine

public:

port speed := 0 : int

body:

while(True) {

when (touch(engine.speed) ) {

in(engine.speed);

}

}

The communication between env and calc is time-

triggered (1) since it occurs every 5 time slots (pro-

vided that a new intensity is received). On the contrary,

the communication between calc and engine is event-

triggered (3), since it occurs when a new speed is re-

ceived. Constraint (2) ensures that those two communi-

cations occur at separate times.

3 Symbolic execution

Symbolic executions are represented as graphs

where nodes are symbolic system states and transitions

are symbolic state evolutions. Symbolic states are char-

acterized by symbolic values associated to variables and

constraints on those values. In the sequel, symbolic val-

ues are denoted as terms over a set of fresh variables F

disjoint from the set of variables of the program. In our

context, states are (symbolic) snapshots in which each

port is associated with both a current value (obtained

via the function η in Def. 1), and an available (or buffer)

value (via the function ν). Snapshots also introduce ob-

servation dates (δ) denoting values of their time carriers

and sets of constraints π computed all along the execu-

tion. We note P (D) the set of ports of a design D3 .

Definition 1 (Snapshots) A snapshot over D is any

element (η, ν, δ, π) of (TΩ(F ))P (D) × (TΩ(F ) ∪
{⊥})P (D)×TΩ(F )timei

×2SenΩ(F ) such that π is finite.

We note Snp(D) the set of all snapshots over D.

⊥ is used to model the absence of available values.

In the sequel, for any such snapshot s, the notations ηs,

νs, δs and πs stand respectively for η, ν, δ and π.

Example 2 Car Wiper Controler : snapshot

Here is a snapshot for design env at initialization time:








η0(intensity) → i0
ν0(intensity) → ⊥
t0
π0{t0 ≥ 0, i0 = 0}

The current value of port intensity is the symbolic

value i0, constrained to 0, and there are no new values

available for this port.

3In the sequel, for any two sets A and B, BA denotes the set of all

functions from A to B.
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The symbolic execution of a design D is given in

the form of a particular structure, the so-called execution

graph of D.

Definition 2 (Execution graph) An execution graph of

D is a couple (I,R) where I ∈ Snp(D) and R ⊆
Snp(D) × Snp(D) are such that the following condi-

tions hold:

(Initialization). ηInit is injective and

∀x ∈ P (D), ηInit(x) ∈ F ∧ νInit(x) = ⊥

(Time). ∀(s1, s2) ∈ R, δs2
> δs1

∈ πs2

Initialization ensures that, at the initial snapshot,

ports are assigned by variables of F and no values are

available from the environment yet. Time ensures that

successive observations occur consistently with time

passing.

The symbolic execution of a design is built by sym-

bolically executing its associated program. Some op-

erations and conditions occurring in programs refer to

states of reused designs. Therefore, states of reused de-

signs have to be known. Thus, a complete state for a de-

sign is given by one of its own snapshots together with

snapshots for its reused designs. Such a complete state

observation is called a synchronization. In the sequel,

V (D) refers to the set of private variables declared in D.

Definition 3 (Synchronization) Let D1, · · · Dk be the

reused designs of D. A D-synchronization is a triple

sync = (s, i, γ) where s ∈ Snp(D), i : V (D) →
TΩ(F ) is a mapping, and γ ∈

∏

j≤k Snp(Dj).

We note γj for the jth-projection of γ and Sync(D)
the set of all D-synchronizations.

Note that beside snapshots, synchronizations also in-

troduce values associated to private variables (function

i) which do not appear in snapshots since they are not

observable from the design environment. One can define

a unique substitution associated to sync, denoted ιsync,

which relates variables of sync to its symbolic values.

More precisely ιsync associates: to any x ∈ P (D) (re-

spectively x ∈ P (Dj) for some j ≤ k) the term ηs(x)
(respectively ηγj

(x)); to any x ∈ V (D) the term i(x); to

design_id.time (respectively, to design_idj .timewith

j ≤ k) the variable δs (respectively δγj
).

We also note ιsync the canonical extension to for-

mulas which associates to any formula ϕ the formula

ιsync(ϕ) obtained by replacing: (1) occurrences of any

ports or variables x by ιsync(x); (2) sub-formulas of the

form touch(design_id.x) (resp. touch(design_idj .x)
with j ≤ k) by True if νs(design_id.x) 6= ⊥ (resp.

νγj
(design_idj .x)) 6= ⊥) and False otherwise. Let us

recall that touch(x) is true in a given snapshot s when a

value is available for x in s, that is νs(x) 6= ⊥.

We now define symbolic execution of instructions as

mathematical relations between synchronizations (intu-

itively sync is related to sync′ if sync′ reflects the effect

of an instruction execution from sync). The execution

of an instruction may affect reused designs. The result-

ing effect on reused design snapshots must be compati-

ble with the possible executions of that reused designs.

Those possible executions of reused designs are repre-

sented by a collection of (previously computed) execu-

tion graphs associated to them.

Definition 4 (Symbolic execution of instructions)

For j ≤ k, let us note Gj an execution graph of the

design Dj and G = (G)j≤k. For any instruction ̺, let

us note [[̺]]G ⊆ Sync(D) × Sync(D) the symbolic

execution of ̺ inductively defined on the structure

of instructions (s, i, γ) [[̺]]G (s′, i′, γ′) if, and only if

δs′ = δs, and:

• if ̺ ≡ x := t then γ′ = γ and:

– if x ∈ P (D), then4, ηs′ = ηsx7→a for some

fresh variable a ∈ F , νs′ = νs, i′ = i and

πs′ = πs ∪ {a = ι(s,i,γ)(t)}

– if x ∈ V (D) then i′ = ix7→a for some fresh

variable a ∈ F , πs′ = πs ∪ {a = ι(s,i,γ)(t)},

ηs′ = ηs and νs′ = νs

• if ̺ ≡ in(x)provided(ϕ), then:

νs(x) 6= ⊥, γ′ = γ,

ηs′ = ηsx7→a for some a ∈ F , νs′ = νsx7→⊥ and5

πs′ = πs ∪ {[ι(s,i,γ)(ϕ)]x←a ∧ a = νs(x)},

• if ̺ ≡ x->design_idj .p
′, then:

– νγj
(design_idj .p

′) = ⊥,

– for all l 6= j ≤ k γ′l = γl,

– if we note Gj = (Ij , Rj) then γj Rj γ
′
j ,

– ηγ′

j
= ηγj

, νγ′

j
= νγj design_idj .p′ 7→a

, and

– s′ is similar to s except that πs′ is πs ∪ {a =
ι(s,i,γ)(x)}

• sequences and conditions are handled as usual.

4For any function f : A → B, x ∈ A and y ∈ B, fx7→y : A →
B is the function equal to f except it associates y to x.

5For any formula ϕ, ϕz←y is the formula ϕ where all occurrences

of z are replaced by y.
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in(x)provided(ϕ) can not be executed from a syn-

chronization where no values are available for x ; oth-

erwise, it results in a synchronization in which x is as-

signed by the available value. x → design_id.p′ can

not be executed from a synchronization where a value

is already available for p′ ; otherwise, it yields syn-

chronizations where the snapshot corresponding to Dj

is reachable from γj in the execution graph Gj and re-

flects that a new value (symbolically denoted by a) is

available for x. Finally, s′ is similar to s except that

the constraint a = νsync(x) is added to reflect that the

available value is the one assigned to x in sync.

Definition 4 defines how the state of a design can be

modified by an instruction. But it can also be modified

without executing any instructions. A design state (i.e. a

snapshot) may evolve because either time passes or new

values become available for some of its ports. To capture

this fact we define the notion of stuttering of a snapshot.

Definition 5 (Stuttering) The stuttering of a snapshot

s is the set St(s) of snapshots s′ such that ηs′ = ηs;

for all x, if νs(x) 6= ⊥ then νs′(x) = νs(x), otherwise

νs′(x) = ⊥ or is a fresh variable; δs′ = a and πs′ =
πs ∪ {a > δs} with a ∈ F .

Snapshots of reused designs may also evolve with-

out being controlled by the main design program: this

comes from internal executions of reused design pro-

grams (i.e. executions of reused designs that do not re-

quire the availability of new values on their ports). Snap-

shots resulting from such executions can be identified in

reused design execution graphs.

Definition 6 (Internally reachable snapshots) Let s

be a snapshot of some execution graph G = (Init, R).
The set of snapshots internally reachable from s in G,

denoted I∗G ⊆ Snp(D) × Snp(D) is the transitive

closure of:

(sIGs
′) ⇔







s R s′

∀x ∈ P (D), νs′(x) 6= ⊥ ⇒
νs′(x) = νs(x)

s′ is internally reachable from s when it is reachable

through R∗ (the transitive closure of R) and none of the

ports has received a new available value. When νs(x) 6=
⊥ and νs′(x) = ⊥ this reflects a consumption of the

value available for x.

We now define sets of so called uncontrollable fu-

tures of a synchronization, which denote state evolutions

corresponding to stuttering for the main design and in-

ternal executions for reused designs.

Definition 7 (Uncontrollable futures) Let sync =
(s, i, γ) be a D-synchronization and for every j ≤ k

let Gj be an execution graph of Dj . The Uncontrollable

futures of sync, denoted F(sync) is the set of all D-

synchronizations sync′ = (s′, i, γ′) s.t. s′ ∈ St(s) and

for all j ≤ k, γj I
∗
Gj
γ′j .

We then define the program symbolic execution. The

symbolic execution of a program relies on the symbolic

executions of instructions introduced in that program.

Given a set of execution graphs G = (Gj)j≤k, the sym-

bolic execution of instructions is a binary relation on

synchronizations. Therefore, the symbolic execution of

programs is of the same form6.

Definition 8 (Symbolic execution of programs)

With notations of Definition 4, the symbolic ex-

ecution of any program α from a set of syn-

chronizations Syn ⊆ Sync(D) is the relation

[[α]]Syn
G ⊆ Sync(D) × Sync(D) defined as follows:

• [[when(ϕ){ρ}(ψ)]]Syn
G is the set of all

(sync, sync′) such that sync ∈ Syn and if we note

sync1 the synchronization (s1, i1, γ1) defined as

sync = (s, i, γ) except that πs1
= πs∪{ιsync(ϕ)},

then

– there exists a synchronization sync2 such that

sync1 [[ρ]]G sync2, and

– if we note sync3 the synchronization

defined as sync2 except that π(s3) =
π(s2) ∪ {ιsync2

(ψ)}
⋃

j≤k{ιsync2
(πγj

)},

then sync′ ∈ F(sync3)

• [[α1|; |α2]]
Syn
G = [[α1]]

Syn
G ∪ [[α2]]

Syn′

G , where

Syn′ = L([[α1]]
Syn
G ),

• [[α1|, |α2]]
Syn
G = [[α1]]

Syn
G ∪ [[α2]]

Syn
G ,

• [[α1|i|α2]]
Syn
G = [[α1|; |α2]]

Syn
G ∪ [[α2|; |α1]]

Syn
G ,

• Programs of the form while(ϕ){α} are handled as

usual.

We define the symbolic execution graph of a design

by symbolically executing its associated program from

an initial synchronization denoting an observation of the

system at the initial state and by forgetting snapshots of

reused designs.

6In the sequel, for any set E and relation R ⊆ E ×E we will note

L[R] the set of leaves of R defined as {y ∈ E|∃x ∈ E.x R y ∧ ∀z ∈
E.¬(y R z)}.
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Definition 9 (Symbolic execution of designs) Let D
be a design, D1, . . . ,Dk be its reused designs, and

α be the program of D. Let G(D1), . . . ,G(Dk) be

already computed execution graphs for each sub-

design D1, . . . ,Dk. Let sync = (s, i, γ) be an initial

synchronization that satisfies:

• s verifies (Initialization) condition of Definition 2,

and

• for every x ∈ V (D), i(x) is a fresh variable of F

disjoint of any fresh variable that occurs in some

Gi for i = 1, . . . , k. Moreover, i is injective (i.e.

two variables x, y ∈ V (D) cannot be associated to

the same fresh variable).

Then, the symbolic execution of D is the couple

G(D) = (s,R) where R is the set of couples of

snapshots (s1, s2) for which there exist both i1, i2 :
V (D) → TΩ(F ) and γ1, γ2 ∈

∏

j≤k Snp(Dj) such that

(s1, i1, γ1) [[α]]
{sync}
G (s2, i2, γ2).

Example 3 Car Wiper Controller : symbolic execution

The diagram below represents a part of the symbolic

execution of env’s program (from Ex. 1). Snapshots

concerning the engine are not represented due to the

lack of space. By only keeping snapshots concerning

env (left column of the diagram) the resulting path

belongs to the symbolic execution of env in the sense of

Definition 9.

[env] [calc]









η0(intensity) → i0
ν0(intensity) → ⊥
t0
π0 = {t0 ≥ 0, i0 = 0}

















η′0(intensity) → i′0
η′0(speed) → s0
ν′0(intensity) → ⊥
t′0
π′0 = {t′0 ≥ 0, i′0 = 0,

s0 = 0}

⇓ new value available for port env.intensity








η1(intensity) → i0
ν1(intensity) → i1
t1
π1 = π0 ∪ {t1 > t0}

⇓ value of env.intensity sent to calc
















η2(intensity) → i1
ν2(intensity) → ⊥
t2
π2 = π1 ∪ {t2 > t1,

t2 = 5,
ν2(calc.intensity) = i1}













η′1(intensity) → i′0
η′1(speed) → s0
ν′1(intensity) → i′1
t′1
π′1 = π′0 ∪ {t′1 > t′0}

⇓ calc runs its code and computes calc.speed












η′2(intensity) → i′1
η′2(speed) → s1
ν′2(intensity) → ⊥
t′2
π′2 = π′1 ∪ {t′2 > t′1}

⇓ calc.speed sent to engine.speed
















η3(intensity) → i1
ν3(intensity) → i2
t3

π3 = π2 ∪ {t3 > t2, t3 <> t2 + 5,
η3(calc.speed) <> previousSpeed,

ν3(engine.speed) = η3(calc.speed)}

Theorem 1 For any design D:

• G(D) is an execution graph,

• G(D) is computable.

Sketch of proof

The first item of Theorem 1 holds because (Initializa-

tion) is ensured by Definition 9 and (Time) is ensured

by Definitions 7 and 8. That property ensures the ability

to recursively and symbolically execute designs built in

a hierarchical manner. The second item holds because

the relation [[α]]Syn
G from Definition 8 is defined by in-

duction on the form of design programs.

4 Discussion

Of course the set of snapshots related by R may

be infinite, when a design represents a reactive system

(i.e. a system continuously interacting with its environ-

ment). In such a case, paths (i.e. executions) starting at

the initial snapshot are arbitrary long. However Defini-

tion 9 can be associated with an algorithm which com-

putes arbitrary long paths. Such an algorithm is suffi-

cient for simulation or testing purposes. Each path of a

symbolic execution characterizes in fact a class of con-

crete behaviors. Such behaviors are called numerical

executions. Numerical executions are sequences of so-

called numerical snapshots. Numerical snapshots are

defined up to a model M ∈ Mod(SP ) and are triples

s = (ηs, νs, δs) ∈ ofMP (D) × (M ∪ {⊥})P (D) ×
(Mtimei

∪ {ε}). A numerical execution p = s1 · · · sn

corresponds intuitively to a sequence of observations of

observable states of D (i.e. numerical snapshots) dur-

ing an execution. Between two observations, an input

value may be sent from the environment of D. Such an

6



input v ∈ M for a port x occurs between two consec-

utive snapshots s and s′ of p if and only if νs(p) = ⊥
and νs′(p) = v. With notations of Definition 9, p is a

numerical execution if there exists a sequence of snap-

shots s′1 · · · s
′
n with s′1 = s and ∀k < n (s′k, s

′
k+1) ∈ R

satisfying:

• ∃i : F →M such that M |=i

∧

ϕ∈πs′n

ϕ and,

• ∀k ≤ n, ∀x ∈ P (D),
ηsk

(x) = i(ηs′

k
(x)), νsk

(x) = i(νs′

k
(x)) when

νs′

k
(x) 6= ⊥ and νsk

(x) = ⊥ otherwise,

and finally δsk
= i(δs′

k
).

5 Conclusion

We have proposed a framework to symbolically ex-

ecute system models defined from components interact-

ing accordingly to explicitly specified interaction rules.

Systems are modeled by means of the notion of design.

Designs may reuse other designs denoting sub systems.

Designs introduce programs that allow one to specify

executions in an imperative style. Those executions

may contain value passing and synchronization between

reused designs. Time constraints may be expressed and

are taken into account symbolically.

Although we did not present it due to lack of space,

designs have been associated with a formal semantics

([8]) which allows one to mathematically ground the

symbolic execution rules that we introduce. The sym-

bolic execution mechanisms are being currently imple-

mented in the tool set AGATHA [14]. This symbolic

execution tool is associated to different rewriting tools7

and sat-solvers8 in order to treat various data types. The

small set of primitives introduced in this paper is not suf-

ficient to represent all the semantical features of models

written using a real modelling formalism (for example

dynamic creation of process or inheritance can not be

captured). This set of primitives should be extended to

take into account data structure and modelling mecha-

nisms of each involved modelling language. However,

a lot of work as already been done on this aspect in

the AGATHA tool (AGATHA is already able to sym-

bolically execute StateCharts of Statemate, IF models

and UML statemachines). At the implementation level,

our primitives come as an extension of the already de-

fined ones. The notion of design has been implemented

as a profile of UML in the Papyrus tool set9. Future

works include experimentations with the AGATHA tool

7CafeOBJ, MAUDE: http://www.cs.ucsd.edu/ goguen/sys/obj.html.
8CVC3 http://www.cs.nyu.edu/acsys/cvc3/
9http://www.papyrusuml.org

and connections with the UML profile. At a more the-

oretical level, semantics of designs are based on the

idea that it is possible to build synchronizations which

involve observations of all reused designs. Therefore,

even though our framework allows one to deal with sys-

tems which execute asynchronously, we are not able yet

to deal with distributed systems for which such synchro-

nizations may not make sense. We are currently working

on this issue.
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Data type formalism

A data signature is a couple Ω = (S,Op) where

S is a set of types, Op is a set of operations, each one

being provided with a profile s1 · · · sn−1 → sn (for i ≤
n, si ∈ S). A set of typed variables V is a set whose

each element x is associated with a type by means of a

function type : V → S. The set TΩ(V ) of Ω-terms with

typed variables in V is inductively defined as usual over

Op and V . Terms of TΩ(V ) are associated to types in S

by canonically extending the function type to terms.

An Ω-substitution over V is a function σ : V →
TΩ(V ) preserving types which can also be canonically

extended to TΩ(V ). TΩ(V )V denotes10 the set of all Ω-

substitutions defined on V . The set SenΩ(V ) of all Ω-

typed equational formulas contains the truth values True

and False and all formulas built using the equality pred-

icates t = t′ for t, t′ ∈ TΩ(V ) s.t. type(t) = type(t′),
the usual connectives ¬, ∨, ∧ and quantifiers ∀, ∃. A

many sorted equational specification is a couple SP =
(Ω, ax) where Ω is a data signature and ax ⊆ SenΩ(V )
is a finite set.

An Ω-model is a family M = {Ms}s∈S with, for

each f : s1 · · · sn → s ∈ Op, a function fM :
Ms1

× · · · ×Msn
→ Ms. Ms is called the carrier of

s. Ω-interpretations over V are applications i from V

to M preserving types, extended to terms in TΩ(V ). A

model M satisfies a formula ϕ, denoted M |= ϕ, iff for

all interpretations i, M |=i ϕ, where M |=i t = t′ is de-

fined by i(t) = i(t′), and where the truth values and the

connectives are handled as usual. MV is the set of all

interpretations from V to M . Semantics of SP , denoted

10In the sequel, for any to sets A and B, BA denotes the set of all

functions from A to B.

Mod(SP ) are the set of all models M s.t. M |= ϕ for

all ϕ ∈ ax.

Each time the context is clear of confusion, the prefix

"Ω" is removed (terms will be used instead of Ω-terms

for instance).
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