
HAL Id: hal-00812339
https://centralesupelec.hal.science/hal-00812339

Submitted on 12 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adequate logic for heterogeneous systems
Marc Aiguier, Boris Golden, Daniel Krob

To cite this version:
Marc Aiguier, Boris Golden, Daniel Krob. An adequate logic for heterogeneous systems. 18th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS), Jul 2013, Singapore,
Singapore. pp.1-10, �10.1109/iceccs.2013.19�. �hal-00812339�

https://centralesupelec.hal.science/hal-00812339
https://hal.archives-ouvertes.fr

An adequate logic for heterogeneous systems

Marc Aiguier

MAS Laboratory

École Centrale Paris

91 295 Châtenay-Malabry (France)

marc.aiguier@ecp.fr

Boris Golden

LIX Laboratory

École Polytechnique

91128 Palaiseau (France)

boris.golden@polytechnique.edu

Daniel Krob

LIX laboratory

École Polytechnique

91128 Palaiseau (France)

dk@polytechnique.edu

Abstract—We coalgebraically define a unified semantics for
systems with an emphasis on the notion of time. Such a
semantics intends to formalize system that underly system
engineering (i.e. the discipline focusing on the integration
mastery of large industrial systems). Moreover, we give a formal
meaning to another important aspect of systems engineering :
system requirements, constraining the expected properties of
a system. To express such requirements, we define a logic that
extends µ-calculus to our coalgebraic definition of systems. We
establish an important property of this logic: adequacy.

Keywords-System modelling; System semantics; System re-
quirements; Timed Mealy machines; Coalgebras; µ-calculus;
Adequacy

I. INTRODUCTION

To manage the complexity of systems, a discipline called

systems engineering, focused on the integration mastery of

large industrial systems, has progressively emerged since

the 50’s. Systems engineering consists of a set of concepts,

methods and good organizational and technical practices that

the industry had to develop to be able to deal with the

growing complexity of industrial systems (see [5], [15], [20],

[22] for further details). However, systems engineering is

just the application of a more general paradigm of thought,

systems approach, a aim of which is to address dynamic

system design homogeneously. At the heart of this paradigm

is the notion of system which is generally described as a set

of heterogeneous interconnected components1, themselves

recursively defined as systems, and interacting together to

participate permanently to a same goal.

When mathematically apprehended, the concept of system

is often defined with models coming from control theory

and physics, that deal with systems as partial functions of

dataflow transformation, so-called transfer function, of the

form:

y = F (x, q, t)

where x, y and q are respectively vectors of input, output

and state of the system usually defined as internal variables,

1The heterogeneity of components being mainly the result of the way
they deal with dataflow, i.e. continuously or discretely, making of time a
central element of their modelling.

and where t stands for time (considered in these approaches

as continuous (see [4], [8], [21]). There is therefore a great

challenge on being able to transfer to the systems engineer-

ing area, the formalization of systems taking into account the

special feature of industrial systems to be software intensive,

that is, providing advanced interaction with the external

world through intelligent sensors and actuators based on

software components. This then requires to unify in a same

formal framework homogeneously and consistently mathe-

matical methods dealing with the design of both continuous

and discrete systems. To reach this purpose, we extend the

approach developed in [6] where discrete and continuous

times have been unified homogeneously by using techniques

of non-standard analysis [9], [10], [11], [16], [17], into

discrete models where steps are either infinitesimal or usual,

in order to denote, respectively continuous and discrete

times. The approach developed in [6] is both semantic

and operational, in the sense that time scales associated

to systems are subsets of the non-standard positive real

numbers ∗
R

+ (the time reference) and systems are extended

Turing Machines. To address more abstractly system design,

we deal with time axiomatically, that is by expressing the

minimal properties that both time references and time scales

have to satisfy. Hence, the key point on which our approach

relies, is a common (discrete) model of time, inspired of the

way time scales have been defined in [6] over a non-standard

model of real numbers. This will allow us to avoid a trouble

property standard in the theory of hybrid systems because

based on the continuous time R [14]: the Zeno effect2. We

further propose to specify system behaviors in an extension

of the coalgebraic framework of Mealy machines so as it

has been defined in [19]. The interest, as this has been

shown strinkingly in [19], is that system behaviors can be

modelled by causal transfer functions. We can then observe

that transfer functions are causal functions following the

sense given in [19], but taking into account different time

scales between system inputs and outputs. Hence, by using

standard results of the categorical theory of coalgebras [18],

we will show how to define the causal function which

2A hybrid system can change of state an infinite number of times within
a finite time.

underlies any system or equivalently that the system under

consideration implements. In the paper [3], to build new

systems from existing ones, we have formally defined two

operators that play a crucial role in systems engineering:3

1) Integration operators based on two basics operators:

product and feedback

2) Abstraction/simulation operators.

The integration operator consists in building larger sys-

tems by making connections between inputs and outputs of

more basic ones, and the abstraction/simulation operators

allow to define abstractions of systems, so that they can be

integrated in more global ones.

A last crucial aspect is still missing with a complete

formalization of systems engineering : system requirements.

In a formal approach such as defined in this paper, it is

necessary to formally express such requirements to be able

to address ”scientifically” system correctness, i.e. checking

that the system satisfies a set of requirements. Our formalism

being based on an extension of Mealy machines with time

scales, it is natural to define these requirements by temporal

and real-time properties with the possibility to express con-

straints on the production time of output values from input

ones. We then propose to extend a logic which subsumes

most of modal and temporal logics: the µ-calculus. More

precisely, we propose a variant of first-order fixed point

modal logic [12], [23], and it is precisely the first order

extension that will allow us to express real-time properties

on the production time of output values from input ones.

Of course, this logic will probably be restricted when we

are interested in future works in its computational aspects

such as system synthesis or the definition of model-checking

algorithm. Here, being interested by theoretical results such

as truth of formulas is preserved by bisimulations, the variant

of first-order fixed point modal logic we propose is quite

adequate.

The paper is structured as follows:

Section II gives the axiomatization of time references, and

defines time scales and dataflows on which system behaviors

will be defined. In Section III are defined both fundamental

notions of transfer functions and systems. We will take

the benefit of having formalized systems as coalgebras to

extend in this section some standard results connected to

the definition of a terminal model. This will then allow us to

formally define system behaviors through transfer functions.

We do not present in this paper our formalization of both

integration and abstraction/simulation operators. Further de-

tails can be found in [3]. In Section IV, we present a logic

whose interpretation will be over systems, and show that it

is adequate with respect to bisimulation.

3In [3], the system definition is slightly different. It uses no coalgebraic
notation, and manipulated input and output are not simple sets but are
provided with some structures to read and write in a virtual buffer.
Nevertheless, these two operators are easily definable in the formalism
presented in this paper.

II. TIME AXIOMATISATION AND DATAFLOWS

A. Time reference

By following an axiomatic approach to specify time carri-

ers, we can accommodate several models of times including

N, Z+, R+, or ∗
R

+,4 as well as more pragmatic times such

as the δ time of VHDL.

Definition 2.1 (Time reference): A time reference is any

set T together with an internal law +T : T → T and a

pointed subset (T+, 0T) satisfying the following conditions:

• upon T+:

– ∀a, b ∈ T+, a+T b ∈ T+ closure (∆1)

– ∀a, b ∈ T+, a+T b = 0T =⇒ a = 0T ∧ b = 0T

initiality (∆2)

– ∀a ∈ T+, 0T +T a = a neutral to left (∆3)

• upon T :

– ∀a, b, c ∈ T, a+T (b +T c) = (a+T b) +T c
associativity (∆4)

– ∀a ∈ T, a+T 0T = a neutral to right (∆5)

– ∀a, b, c ∈ T, a+T b = a+T c =⇒ b = c
cancelable to left (∆6)

– ∀a, b ∈ T, ∃c ∈ T+, (a+T c = b)∨ (b+T c = a)
linearity (∆7)

Elements of T are dates (or instants) whilst elements

of T+ are durations, or distances between instants. Any

duration can be considered as an instant, by considering a

conventional origin.

Using standard definitions, we note that (T,+, 0T) and

(T+,+, 0T) are monoid and submonoid, respectively, that

further satisfy ∆6 and ∆2 for the latter. Moreover, also note

that ∆2 forbids inverse elements in T+.

Example 2.1 (Non-standard real numbers):

Following [6] which has inspired the works developed here,

we can choose as time reference the set of non-standard

real numbers ∗
R defined as the quotient of real numbers R

under the equivalence relation ≡⊆ R
N × R

N defined by:

(an)n≥0 ≡ (bn)n≥0 ⇐⇒ m({n ∈ N|an = bn}) = 1

where m is an additive measure that separates between each

subset of N and its complement, one and only one of these

two sets being always of measure 1, and such that finite

subsets are always of measure 0. The obvious zero element

of ∗
R is (0)n≥0, ∗

R
+ is its positive part taken here as

durations, and the internal law + is defined as the usual

addition on R
N, i.e.:

(an)n≥0 + (bn)n≥0 = (an + bn)n≥0

∗
R being a totally ordered field that extends the set

of standard reals identified to the class of the constant

4∗R is the non-standard real numbers set [9], [16], [17]. Its definition is
given in Example 2.1.

sequences by considering infinitesimal and infinite numbers,

all the conditions of Definition 2.1 are satisfied. Observe also

that ∗
R has as subset, the set of non-standard integers ∗

Z

where infinite numbers are all ones having absolute value

greater that any n ∈ N.

Example 2.2 (VHDL time reference): Our axiomatisation

is sufficiently broad to regard the δ time of VHDL as a

possible model. The VHDL time reference [13] V is given by

a couple of natural numbers (both sets of moments and du-

rations are similar): the first number denotes the “real” time,

the second number denotes the step number in the sequence

of computations that must be performed at the same time –

but still in a causal order. Such steps are called “δ-steps” in

VHDL (and “micro-steps” in StateCharts). The idea is that

when simulating a circuit, all independent processes must be

simulated sequentially by the simulator. However, the real

time (the time of the hardware) must not take these steps into

account. Thus, two events e1, e2 at moments (a, 1), (a, 2)
respectively will be performed sequentially (e1 before e2)

but at a same real time a. The VHDL addition is defined by

the following rules:

(r′ 6= 0) =⇒ (r, d) + (r′, d′) = (r + r′, d′)

(r′ = 0) =⇒ (r, d) + (r′, d′) = (r, d+ d′)

where r, r′, d and d′ are natural numbers and + denotes

the usual addition on natural numbers. Clearly, the internal

law + above is not commutative, nor Archimedean: we may

infinitely follow a δ-branch by successively adding δ-times5.

The properties given upon T and T+ are constraints that

catch the intuitive view that the time elapses linearly by

adding successively durations between them.

Proposition 2.1: Let us note �T and ≺T the binary

relations on T defined as follows:

a �T b⇔ ∃c ∈ T+, b = a+T c
a ≺T b⇔ ∃c ∈ T+ \ {0T}, b = a+T c

Then, �T and ≺T are total orders on T .

In the following, �T and ≺T will be simply noted � and

≺ when this does not raise ambiguity.

B. Time scale

Time references give the basic expected properties of

any time carrier. Now, we can observe that time scales of

systems are different. However, most of them can be unified

as regular time scales of the form:

m m+ τ m+ 2τ m+ 3τ ...

where τ is the step. For instance, in ∗
R defined in Exam-

ple 2.1, by using results of non-standard analysis, continuous

5This is not the intended use of VHDL time, however: VHDL compu-
tations should perform a finite number of δ-steps.

time scale can then be considered in a discrete way (see

Example 2.3 below).

Definition 2.2 (Time scale): A time scale is any subset T

of a reference time T such that:

• T has a minimum mT ∈ T

• ∀d ∈ T, Td+ = {d′ ∈ T | d′ ≻ d} has a minimum

succT(d)
• ∀d ∈ T , when d ≻ mT, the set Td− = {d′ ∈ T | d′ ≺
d} has a maximum predT(d)

• the principle of induction6 is true on T.

Given a timescale, let us define the mapping ~T : T → T

that from d ∈ T yields the least d′ ∈ T such that d′ � d.

Hence, dT is defined by:

{

d if d ∈ T

succT(d) otherwise
Example 2.3 (Discrete and continuous time scales): By

using results of non-standard analysis, continuous time

scales can then be considered in a discrete way. Following

the approach developed in [6] to model continuous time

by non-standard real numbers, a time scale can be ∗
Nτ

where τ ∈ ∗
R

+ is the step, 0 ∈ ∗
Nτ and ∀d ∈ ∗

Nτ ,

succ
∗
Nτ (d) = d + τ . This provides a discrete time scale

for modelling classical discrete time (when the step is

not infinitesimal) and continuous time (when the step is

infinitesimal)7. Indeed, by using transfer principle that

claims basically that every usual property of standard

real numbers holds for non-standard ones up to replacing

standard sets by their non-standard equivalents, the

recurrence principle can be immediately lifted to ∗
R, up to

working with ∗
Nτ instead of N.

Example 2.4 (VHDL time scale): In the VHDL time V ,

the internal law induces a lexicographic ordering on N×N.

Thus, let W ⊂ V such that: ∀a ∈ N, ∃Na ∈ N, ∀(a, b) ∈
W , b ≤ Na (i.e. there are only a finite number of steps at

each moment of time in W). Then W is a time scale in the

VHDL time.

Example 2.5 (Time scale over R): A time scale on the

time reference R
+ can be any subset A such that: ∀d, d′ ∈

R
+, |A ∩ [d; d+ d′]| is finite.

Let us point out, although defined discretely, time scales

are not necessarily order-isomorphic copy of natural num-

bers. Indeed, regular time-scales ∗
Nτ in Example 2.3, when

τ is infinitesimal, characterises continuous times and is

noncoutable. Moreover, because discretely defined, each

instant is not divisible ad infinitum, which avoids the Zeno

effect de facto.

C. Dataflows

Definition 2.3 (Dataflow): Let T be a time reference. Let

T ⊆ T be a time scale. A T-dataflow over a set of values

A is a mapping f : T→ A. The set of all T-dataflows over

6For A ⊂ T,
(

mT ∈ A & ∀d ∈ A, succT(d) ∈ A
)

⇒ A = T.
7In [6] It has then been shown that every regular time scale with an

infinitesimal step is continuous according to its non-standard meaning.

A is noted AT. The set of all dataflows over A with any

possible time scale of T is noted AT =
⋃

T⊆T

AT.

The notion of derivative dataflow which is defined just be-

low, will be useful to characterize the observable behaviors

of systems.

Definition 2.4 (Derivative dataflow): Let T be a time ref-

erence. Let T ⊆ T be a time scale. Let f be a T-dataflow

over a set A. Let d ∈ T be a date. The T-dataflow fd
derivative of f at d is defined by:

• ∀d′ ≺ dT ∈ T, f ′
d(d

′) = f(d′)
• ∀d′ � dT ∈ T, fd(d

′) = f(succT(d′))

The next definition means that dataflows can be observed

at any instant of time although their values only change at

instants contained in their underlying time scale.

Definition 2.5 (Snapshots): Let T be a time reference and

T ⊆ T be a time scale. Let f be a T-dataflow over A and

let d ∈ T be an instant of time. The snapshot of f at time

d, denoted f :: d, is the element f(dT) of A.

III. TRANSFER FUNCTIONS VIA COALGEBRAS

Similarly to Rutten’s works in [19], we show in this

section that the behavior of systems can be characterized

by causal functions mapping infinite input to infinite output

sequences. Hence, observable behaviors of systems are given

by causal transfer functions.

A. Transfer function

Observable behavior of systems will be specified through

causal transfer functions. Transfer functions are timed data

flow transformers satisfying the causality condition.

Definition 3.1 (transfer function): Let In and Out be

two sets denoting, respectively, the values in input and in

output. Let T be a time reference. Let T ⊆ T be a time

scale giving rhythm data processing in input to yield output.

A function F : InT → OutT is a transfer function if, and

only if it is causal, that is:

∀d ∈ T, ∀f, g ∈ InT , (∀d′ � dT ∈ T, f :: d′ = g :: d′)
=⇒ F(f) :: d = F(g) :: d

Here, we define the technical notion of derivative function

that will be useful to build final systems, and then to denote

the observable behaviours of systems.

Definition 3.2 (Derivative function): Let F : InT →
OutT be a transfer function. For every input i ∈ In and

every time d ∈ T, we define the derivative function

F(i,d) : InT → OutT for every dataflow f : T
′ → In

with T
′ ⊆ T by:

F(i,d)(f) = F((i, d) : f)d

where (i, d) : f : T′ → In is the dataflow defined from

f as follows:

• ∀d′ ≺ dT′ ∈ T
′, (i, d) : f(d′) = f(d′)

• (i, d) : f(dT′) = i

• ∀d′ ≻ dT′ ∈ T
′, (i, d) : f(d′) = f(predT

′

(d′))

Proposition 3.1: For every transfer function F : InT →
OutT, F(i,d) is a transfer function.

Proof: Let d1 ∈ T , let f, g ∈ InT such that for every

d2 � d1 ∈ T , f :: d2 = g :: d2. By construction, we also

have that ((i, d) : f) :: d2 = ((i, d) : g) :: d2. As F is causal,

we can then write that F((i, d) : f) :: d1 = F((i, d) : g) ::
d1.

Here, two cases have to be considered:

1) d1 6= d. In this case, we can directly conclude by

F((i, d) : f)|d :: d1 = F((i, d) : g)|d :: d1.

2) d1 = d. By construction, ((i, d) : f) :: d = ((i, d) :
g) :: d, and ((i, d) : f) :: succT(d) = ((i, d) :
g) :: succT(d) since f :: d1 = g :: d1. We can then

conclude F((i, d) : f) :: succT(d) = F((i, d) : g) ::
succT(d), i.e F((i, d) : f)|d :: d1 = F((i, d) : g)|d ::
d1.

B. Systems as coalgebras

Definition 3.3 (Systems): Let In and Out be two sets

denoting, respectively, the values in input and in output. Let

T be a time reference. A system S is defined by a coalgebra

(S, α) for the signature H = (Out ×)In×T : Set → Set
where T ⊆ T is the time scale of S, and a distinguished

element q0 denoting the intial state of the system S.

A system S is called a pre-system when its initial state

is removed.

In the following, given a system ((S, α), qo) over a

signature H = (Out ×)In×T, we will note α(q)(i, d)1
(resp. α(q)(i, d)2) the resulting output value (resp. resulting

state) of the couple α(q)(i, d).
Definition 3.4 (Category of systems): Let S =

((S, α), q0) and S ′ = ((S′, α′), q′0) be two systems

over H. A system morphism h : S → S ′ is a

coalgebra homomorphism h : (S, α) → (S′, α′) such

that h(q0) = h(q′0).
We note Sys(H) (resp PSys(H)) the category of systems

(resp. of pre-systems) over H.

Below, we give a classical result over category of systems:

the existence of a terminal system. This last point will be

useful to give a trace model to systems via transfer functions.

Theorem 3.1: Let H = (Out ×)In×T be a signature.

Let Γ be the set of all transfer functions F : InT →
OutT. Let π : Γ → (Out × Γ)In×T defined for every

F : InT → OutT and every i ∈ In and every d ∈ T by

π(F)(i, d) = (F((i, d) : f)(d),F(i,d)) where f ∈ InT is

arbitrary8. Then, the pre-system (Γ, π) is the final coalgebra

in PSys(H), that is for every pre-system (S, α) there exists

a unique homomorphism !α : (S, α)→ (Γ, π).
Proof: For every pre-system (S, α), we define the

function !α : S → Γ which for every q ∈ S associates the

8This is correct because transfer functions are causal.

transfer function !α(q) : InT → OutT defined as follows.

Let d ∈ T, and let (mT, d1, . . . , dn) such that for every i,
0 ≤ i < n, di+1 = succT(di) with d0 = mT and dn = d.

Then, for every f : T′ → In ∈ InT , !α(q)(f)(d) equals:

α(α(. . . (α(α(q)(f :: mT,mT)2)(f :: d1, d1T)2)
(f :: d2, d2T)2 . . .)(f :: dn−1, dn−1T)2)(f :: dn, dnT)1

It is not very difficult to verify that !α(q) is causal, and the

function !α is a homomorphism which is further unique.

We call the transfer function !α(q) above the behaviour

of q, and then !α(q0) will be the behaviour of the system

((S, α), q0).

Conversely, given a transfer function F ∈ Γ, we can build

the minimal system <F> the behaviour of which is F as

follow:

• F is the initial state.

• <F> is the set of transfer functions of Γ that contains

F and is closed under transitions in (Γ, π) for any

inputs and times.

• αF :<F>→ (Out× <F>)In×T is the mapping that

associates to every F ′ ∈<F>, every i ∈ In and every

d ∈ T the couple π(F ′)(i, d).

Proposition 3.2: <F> is the minimal system (i.e. it has

the smallest number of states) such that !αF (F) = F .

Proof: The fact that !αF (F) = F follows from the

identity IdΓ which is the unique homomorphism over Γ.

To show that < F > is minimal, let us consider a system

((S, α), q0) such that !α(q0) = F . Let us define <q0> the

subsystem ((S′, α′), q′0) of ((S, α), q0) as follow:

• q′0 = q0
• S′ is the set of states of S that contains q0 and is closed

under transitions in (S, α) for any inputs and times.

• α′ : S′ → (Out × S′)In×T is the mapping that

associates to every q ∈ S′, every i ∈ In and every

d ∈ T the couple α(q)(i, d).

As !α is a homomorphism, it directly follows that the image

!α(S) is a sub-presystem of (Γ, π). Moreover, by definition

we have that !α(S) =!α(< q0 >) =<!α(q0) >=< F >
whence we can conclude that <F> is the minimal system

such that !αF (F) = F .

By Theorem 3.1 and Proposition 3.2, we will talk about

systems and transfer functions indifferently.

Example 3.1: [Discrete system] First, let us observe that

any deterministic Mealy machine can be represented in our

formalism. Indeed, given a Mealy machine (S, α) with α :
S → (Out×S)In, we can define the equivalent pre-system

S = (S, α′) over the signature (Out ×)In×ω by: ∀n <
ω, ∀i ∈ In, ∀q ∈ Q,α′(q)(i, n) = α(q)(i).

Here, let us consider a more concrete example. We then

propose to model a very simplified toothbrush viewed

as a system, and some requirements over it within our

framework. We set R as our time reference and work on

the regular time scale Nτ where the step τ stands for a

hundredth of second.

The toothbrush has 2 input flows, B and E , modelling

respectively the button to control the toothbrush and the

electricity coming by the power supply of the toothbrush.

The input B can take two values : 1 or 0, according to

the state of the button (pressed or released). The input E can

also take the two values 1 or 0, according to the presence

or not of electricity allowing to supply the toothbrush.

Our toothbrush is modelled with one single output R
figuring the rotation of the head designed to brush the teeth.

The output R can take values in {0, 1, 2, 3, 4} according to

the speed of rotation (0 meaning no rotation and 4 being the

highest speed of the head).

An oversimplified specification of the transfer function of

the toothbrush can be the following:

• the toothbrush has 5 states : 0, 1, 2, 3, 4

• whatever the state of the system:

– when E = 0, then R = 0 and the system returns

to the state 0.

– when E = 1 and B = 0 at any moment, then at the

next step the state decreases of 1 (or 0 if it was 0),

and R takes the value corresponding to the state.

– when E = 1 and B = 1 at any moment, then at the

next step the state increases of 1 (or remains to 4
if it was 4), and R takes the value corresponding

to the state.

More formally, the system S = ((S, α), q0) is:

• S = {0, 1, 2, 3, 4}
• q0 = 0
• α : S → (Out × S)In×Nτ with Out = {0, 1, 2, 3, 4}

and In = {0, 1} × {0, 1} is defined by: ∀q ∈
{0, 1, 2, 3, 4}, ∀d ∈ Nτ

– α(q)((0,), d) = (0, 0)
– α(q)((1, 0), d) =

{

(q − 1, q − 1) if q ∈ {1, 2, 3, 4}
(0, 0) if q = 0

– α(q)((1, 1), d) =
{

(q + 1, q + 1) if q ∈ {0, 1, 2, 3}
(4, 4) if q = 4

Example 3.2: [Continuous system] It has been proved

that any Hamiltonian system can be modelled within the

framework introduced in [6]. As our definition of system

generalizes the work of this first paperIt is out of the scope

of this paper to prove it, however the proof is not difficult as

one can notice that non-standard time scales defined in [6]

are still time scales in our new model, and that transitions

defined in [6] can be rewritten as transitions in our model.,

we recall here a simplified example of a Water Tank given

in [6], which is a well-known example of the hybrid systems

and control theory literature.

We work in the time reference ∗
R of nonstandard real

numbers. Let us fix first some regular continuous time scale

T with infinitesimal time step τ (i.e. T = ∗
Nτ). We consider

a water tank where water arrives at a variable rate wi(d) ≥ 0
(with d ∈ T) through one single pipe. The water leaves

through another (output) pipe at rate wo(d) (with d ∈ T)

controlled by a valve whose position is given by v(d) ∈
[0, 1] (with d ∈ T), 0 and 1 modelling respectively here

the fact that the valve is closed or open. The water tank

can be modelled as a system, taking on input the current

values of the incoming water flow wi(d) and the position

v(d) of the valve and sending on its output the corresponding

output water flow wo(d) and water level l(d) according to

the following equations: for every d ∈ T \ {0},

wo(0) = C V0, wo(d+ τ) = C v(d)
l(0) = L0, l(d+ τ) = l(d) + (wi(d) − wo(d)) τ

where C is the maximal throughout capacity of the output

pipe and V0 is the initial position of the valve at the time

mT = 0.

The input and output spaces of the system are thus In =
[0, C]× [0, 1] and Out = [0, C]× [L1, L2] where [L1, L2] is

the interval in which the level of water in the tank at each

time (given by l(d)) has to belong. Hence, the initial water

tank level L0 ∈ [L1, L2].
This illustrates the modelling of a simple physical system

in our framework. Modelling of more complex physical

systems can be found in [6].

Example 3.3: [Hybrid system] Let us consider a classic

hybrid system that models the physical behaviour of a lamp.

Three modes are modelled here: The ”Init” mode (the switch

button was never touched), the ”On” mode (the lamp was

switched on at least once) and the ”Off” mode (the lamp

was switched off at least once). The states corresponding

to these different modes then contain the three generic

evolution mode modelled by ordinary differential equations

(see below) of the continuous signal y(d) that represents the

output lamp energy at each moment of time d. Hence, the

inputs will be In = {Init, On,Off}×{ρ, π} where ρ and

π model respectively the fact that the button is either pressed

or released, and the outputs will be Out = R
+×{On,Off}.

To model such a system, we work in the time reference ∗
R of

nonstandard real numbers and for some regular continuous

time scale T with infinitesimal time step τ .

The lamp can be modelled as a system, taking on input the

current mode of the lamp M(d) and the fact that the button

is pressed or released B(d), and sending on its output the

corresponding output lamp energy y(d) and the new mode

M(d) according to the following equations:

y(0) = 0

y(d+ τ) =































0 if M(d) = Init and B(d) = ρ
τe − y(d)(τk + 1) if (M(d) = On and B(d) = ρ) or

(M(d) ∈ {Init, Off} and

B(d) = π)

y(d)(1 − τk) if (M(d) = On and B(d) = π) or

(M(d) = Off and B(d) = ρ)

where e is the energy level produced by the lamp, and k is

a real parameter to express the speed of the light compared

to the state of the button.

M(0) = Init

M(d+ τ) =























Init if M(d) = Init and B(d) = ρ
On if (M(d) = On and B(d) = ρ) or

(M(d) ∈ {Init, Off} and B(d) = π)

Off if (M(d) = On and B(d) = π) or

(M(d) = Off and B(d) = ρ)

Systems can be aggregated to make larger ones. Two

basic connectors (feedback and Cartesian product) have been

defined in [2], [3] easily adaptable to our framework. The

composition of theses basic connectors have been shown

sufficient to define most other connectors such as sequential

composition and synchronous product. For lack of space,

we do not present these operators in this paper, and refer

interested readers to our papers [2], [3].Besides, a complete

description of the hybrid system in Example 3.3 would

require a feedback on the output mode over the input one.

Next, we define the notion of bisimulation over which

we will show the adequateness of the logic presented in the

paper. Systems being defined by using coalgebraic notations,

we define bisimulations for systems following notations

in [1], [18]. Hence, a bisimulation between two systems is a

transition structure respecting relation between sets of states.

Definition 3.5 (Bisimulation): Let S1 = ((S1, α1), q
1
0)

and S2 = ((S2, α2), q
2
0) be two systems over a signature

H = (Out×)In×T. A subset R ⊆ S1×S2 is a bisimulation

if, and only if (q10 , q
2
0) ∈ R and there exists a mapping

αR : R → H(R) such that both projections from R to S1

and S2 are coalgebra morphisms:

S1
π1←−−−− R

π2−−−−→ S2

α1





y





y

αR





y

α2

H(S1)
H(π1)
←−−−− H(R)

H(π2)
−−−−→ H(S2)

S1 and S2 are said bisimilar if, and only if there exists a

bisimulation between them.

All the basic facts on bisimulations remain true in our

framework. Among others, the greatest bisimulation between

S1 and S2, noted ∼S1,S2
or simply ∼ when the context is

clear, exists and is defined as the union of all bisimulations

between S1 and S2.

IV. LOGIC FOR SYSTEMS

We present in this section a logic L whose the interpre-

tation will be over systems. L is a slight extension of µ-

calculus to input and output values and times. The interest

of µ-calculus is its greats increase in expressive power.

Indeed, it includes many of modal logics commonly used

in verification of reactive and distributed systems.

A. Syntax and satisfaction

The logic L being an extension of µ-calculus that is

known to subsume most of modal and temporal logics,

it will allow to express standard properties over reactive

systems such reactiveness, liveness, safety, etc. Now, time

being explicit in our framework, L must also allow to

express both real-time properties on the production time of

output values from input ones, and properties on the input

or output value reading from both dataflow and date. This

requires a language to express time expressions. By our

axiomatization, it is natural to define such expressions as

first-order terms with variables over the mono-sorted first-

order signature Σ = (F,R) where the set of function names

F = {succ1, pred1,+2} ∪ {d0|d ∈ T } and the set of

predicates R = {≺2,�2} for T a time reference. 9 Hence,

time terms will be element in the set TΣ(V) which is the set

of all terms freely generated from the signature Σ and a set

V of time variables. A model for Σ or Σ-model is any first-

order structure (T, succT, predT,+T,≺T,�T) where T ⊆ T
is a time scale, +T : (d, d′) 7→ (d +T d′)T, ≺T=≺T|T and

�T=�T|T . In the following, this model will simply note T

when this does not raise ambiguity.

Given an interpretation of variables ι : V → T and a time

term t ∈ TΣ(V) variables of which are among {x1, . . . , xn},
the evaluation of t for ι in T, noted JtKTι , is the evaluation

of ι(t) by interpreting succ, pred, +, ≺ and � by succT,

precT, +T, ≺T and �T, respectively, and every constant d
by dT. 10

In the next definition, we need a set of supplemen-

tary variables, called fixed point variables, to express for-

mulas in µ-calculus that denote recursion on states. To

differentiate these variables with those in V , we will

denote in the following variables in V by the letters

x, x′, x1, x2, . . . , y, y
′, y1, y2, . . . whilst fixed point variables

will be denoted by x, x′, x1, x2, . . . , y, y
′, y1, y2,

Definition 4.1 (Input and output terms): Let T be a ref-

erence time.Let V be a set of time variables. Let H =

9The exponents attached to function and predicate names indicate their
arty. Hence, any date d ∈ T is considered as a constant function.

10ι(t) is the term obtained from t by replacing every variable xi by its
value ι(xi) taken as a constant.

(Out ×)In×T be a signature with T ⊆ T . Input terms

(resp. output terms) over H are all inputs in In (resp.

outputs in Out) and all expressions of the form ::In t
(resp. ::Out t) where t ∈ TΣ(V).

Input expressions ::In t (resp. ::Out t) denote the

content of input (resp. output) dataflows at the date t.
Definition 4.2 (System formulas): Let T be a reference

time.Let V be a set of time variables. Let X be a set of fixed

points variables. LetH = (Out×)In×T be a signature with

T ⊆ T . System formulas are defined as follows:

ϕ := Θ| E = E′ | i ↓t o| x | [(i, t)]ϕ|¬ϕ|ϕ1∧ϕ2|∃x.ϕ|νx.ψ

where Θ is a first-order formula built over the signature Σ =
(F,R) and the set of variables V , E and E′ are either both

input terms or both output terms, i ∈ In, t ∈ TΣ(V), x ∈ V ,

x ∈ X and ψ is a formula that may contain occurrences

of the variable x provided that every free occurrences of

x occurs positively in ψ, i.e. within the scope of an even

number of negations 11.

A formula ϕ is closed when every time variable x and every

fixed point variable x are in the scope of a quantifier ∃x and

an operator νx, respectively.

Intuitively, atoms of the form E = E′ check the content

of input or output dataflows at different dates, and atoms of

the form i ↓t o stand for output formula and check that it is

possible to produce the output o after performing the input

i at the date t. A formula of the form [(i, t)]ϕ stands for a

state formula, and states that after preforming an input i at

the date t, all reachable states satisfy ϕ. Finally, a formula

of the form νx.ψ stands for a formula that expresses a

recursion on states and is defined semantically as a function

with fixpoints. More precisely, a formula ϕ of the logic can

be semantically defined by a function fϕ : P(S)n → P(S)
where occur freely the fixed point variables x1, . . . , xn in ϕ,

that given n subsets S1, . . . , Sn yields the set of states that

satisfy ϕ. Therefore, a formula ϕ of the form νx.ψ that can

be seen as a ”looping”, denotes the greatest fixpoint of the

function fϕ : P(S)→ fψ (see below). It is well-known that

such a fixpoint exists when f is monotonic on P(S). The

condition that every free occurrences of x occurs positively

in ψ, ensures monotonicity [7].

The least fixpoint operator µ is obtained standardly:

¬νx.ϕ⇔ µx.¬ϕ′

where ϕ′ is the formula obtained from ϕ by substituting

¬x for x in all free occurrences of x in ϕ.

Standardly, the universal quantifier is defined:

¬∃.ϕ⇔ ∀x.¬ϕ

11The notions of free and bound variables are usual where ν is the only
binding operator.

Example 4.1: we propose to express the following re-

quirement, insuring that the toothbrush reacts quickly to a

pression on its button: (Reactiveness) when the button is

pressed and that there is electricy powering, the toothbrush

modifies its output within 0.1 second except if it is already

at the highest speed. In this case, it remains to this highest

speed while the button is pressed. This requirement can be

expressed as follows in our framework:

::In x = (1, 1) ∧ ¬(::Out x = 4)
⇒ ∃y. y ≤ 10 ∧ ¬(::Out (x+ y) = ::Out x)

::In x = (1, 1) ∧ ::Out x = 4⇒

(∀y.y � x⇒







µx. ::In y = (, 0)
∨

([((1, 1), y)]x ∧ ::Out succ(y) = 4))

We propose to model another requirement, imposing that

the toothbrush would stop rapidly if the electricity supply

is stopped: (Inerty) when there is no power supply, the

toothbrush’s head stops its rotation within 1 second. This

requirement can be expressed as follows:

::In x = (0,)⇒ ∃y. y ≤ x+ 100 ∧ ::Out y = 0

We introduce a last requirement constraining the speed

of the toothbrush when it is working: (Performance) when

the toothbrush is working properly, constantly the speed

of rotation must be 1, 2, 3 or 4. This requirement can be

expressed as follows:

::In x = (1,)⇒
∨

1≤i≤4

::Out x = i

These 3 requirements are typical properties expected to be

verified from systems.

Definition 4.3 (Input output terms evaluation): Let H =
(Out×)In×T with T ⊆ T . Let V be a set of time variables.

Let ι : V → T be a time variable valuation. Let f : T′ → In
be an input dataflow in InT . Let E be an input term over

H. The evaluation of E for f , noted JEKT
′

(ι,f) is defined on

the structure of E as follows:

• JiKT
′

(ι,f) = i for i ∈ In

• J ::In tK
T
′

(ι,f) = f(JtKT
′

ι).

Let g : T → Out be an output dataflow. Let E be an

output term over H. The evaluation of E for g, noted

JEKT(ι,g) is defined on the structure of E as follows:

• JoKT(ι,g) = o for o ∈ Out

• J ::Out tK
T

(ι,g) = g(JtKTι).

Classically, the semantics of µ-calculus formulas is stan-

dardly defined by associating to each formula ϕ the set of

states for which ϕ is true12. This kind of semantics can be

12returning equally to define a function fϕ : P(S)n → P(S) as
previously where n is the set number of free fixed point variables in ϕ.

easily extended to our logic equivalently to Definition 4.4

just below. However, Definition 4.4 is a more classical

definition of satisfaction |= defined as a binary relation

between systems and formulas.

Definition 4.4 (Satisfaction): Let H = (Out×)In×T be

a signature with T ⊆ T . Let S = ((S, α), q0) be a system

over H. Let ϕ be a formula over H. For every valuation

λ : X → P(S), every interpretation of variables ι : V → T ,

every state q ∈ S and every input dataflow f : T′ → In ∈
InT . S satisfies for f , q, ι and λ the formula ϕ, noted

S |=f,q,ι,λ ϕ if, and only if:

• if ϕ is a first-order formula Θ over Σ, then S |=f,q,ι,λ Θ
iff T |=ι Θ.

• if ϕ is an atom of the form E = E′ where E and E′

are input terms, then S |=f,q,ι,λ E = E′ iff JEKT
′

(ι,f) =

JE′KT
′

(ι,f).

• if ϕ is an atom of the form E = E′ where E and

E′ are output terms, then S |=f,q,ι,λ E = E′ iff

JEKT(ι,!α(q)(f)) = JE′KT(ι,!α(q)(f)).
• if ϕ is an atom of the form i ↓t o, then S |=f,q,ι,λ i ↓t o

iff α(q)(i, JtKTι)1 = o. 13

• if ϕ is a fixed point variable x, then S |=f,q,ι,λ x iff

q ∈ λ(x).
• if ϕ = [(i, t)]ϕ′, then S |=f,q,ι,λ [(i, t)]ϕ′ iff

S |=(i,JtKT′ι):f,q′,ι,λ ϕ
′ and q′ = α(q)(i, JtKTι)2.

• if ϕ = νx.ψ, then S |=f,q,ι,λ νx.ψ iff ∃S′ ⊆ S, q ∈ S′

and ∀q′ ∈ S′, S |=f,q′,ι,λ[S′/x ψ.

Here, λ[S′/x] is the valuation such that λ[S′/x](x) =
S′ and λ[S′/x](x′) = λ(x′) for every x′ 6= x.

• propositional connectors and first-order quantifier are

handled as usual.

S satisfies a formula ϕ, noted S |= ϕ, if, and only if for

every f ∈ InT , every ι : V → T and every valuation

λ : X → P(S), S |=f,q0,ι,λ ϕ.

From Definition 4.4, it is obvious to show that for every

closed formula ϕ, every state q ∈ S and every input dataflow

f ∈ InT ,

∀λ : X → P(S), ∀ι : V → T,S |=f,q,ι,λ ϕ⇔ S |=f,q,∅ ϕ

where ∅ : X → P(S) is the valuation that associates to

every x ∈ X the emptyset ∅.

Let us show that L is expressive enough to characterise

bisimilarity, that is two systems S1 and S2 are bisimilar

when they are elementary equivalent and vice versa, where

elementary equivalence means that:

∀ϕ,S1 |= ϕ⇔ S2 |= ϕ

Theorem 4.1: Let S1 = ((S1, α1), q
1
0) ad S2 =

((S2, α2), q
2
0) be two systems over (Out ×)In×T. Then,

13Similarly, we could also write that S |=f,q,ι,λ ϕ iff !α(q)((i, JtKT
′

ι) :
f)(JtKTι) = o.

S1 and S2 are elementary equivalent if, and only if they are

bisimilar.

Proof: To prove the only if implication, let us suppose

that q10 ∼ q
2
0 . Let λ2 : X → P(S2). Let us define λ1 : X →

P(S1) by:

λ1(x) = {q1|∃q2 ∈ λ2(x), q1 ∼ q2}

It is quite obvious to show by structural induction on

formulas that for every ϕ,

S1 |=f,q1
0
,ι,λ1

ϕ⇔ S2 |=f,q2
0
,ι,λ2

ϕ

We can apply the same reasoning from any valuation λ1 :
X → P(S1).

For the converse (the if part), let us define the relation

≡⊆ S1×S2 as follows: q ≡ q′ iff for every f ∈ InT , every

ι : V → T and every λ : X → P(S1),

∀ϕ,S1 |=f,q,ι,λ ϕ⇔ S2 |=f,q′,ι,λ′ ϕ

where λ′ : X → P(S2) is the mapping that associates

the set {q′|∃q ∈ λ(x), q ≡ q′} to each x ∈ X . Let

us show that ≡⊆∼. Let us suppose that q ≡ q′. By

definition, this means for every i ∈ In and every d ∈ T
that α1(q)(i, dT)1 = α2(q

′)(i, dT)1. It remains to prove

that α1(q)(i, dT)2 ≡ α2(q
′)(i, dT)2. Let us suppose the

opposite. This means there exists a formula ψ, a dataflow

f : T′ → In ∈ InT , a variable interpretation ι : V → T and

a valuation λ : X → P(S) such that S1 |=f,α1(q)(i,dT)2,ι,λ ψ
and S2 6|=f,α2(q′)(i,dT)2,ι,λ′ψ. By definition of satisfaction, ψ
can be considered as a formula that does not contain first-

order formulas and atoms of the form E = E′ because

their satisfaction does not bring into play states. Therefore,

we can write equivalently that S1 |=(i,d
T′):f,α1(q)(i,dT)2,ι,λ

ψ and S2 6|=(i,d
T′):f,α2(q′)(i,dT)2,ι,λ′ψ, whence we conclude

S1 |=f,q,ι,λ [i, d]ψ and S2 6|=f,q′,ι,λ′ [i, d]ψ what is not

possible as q ≡ q′. The same reasoning can be carried out

for ≡−1.

When bisimulations rest on the same system, we have

further the following result:

Theorem 4.2 (Characterization): Let S = ((S, α), q0) be

a system over (Out×)In×T with T ⊆ T and such that the

set S is finite. Then, there exists for every q ∈ S, a set of

closed formulas Γq such that:

∀q′ ∈ S, q ∼ q′ ⇐⇒ (∀ϕ ∈ Γq, ∀f ∈ In
T ,S |=f,q′,∅ ϕ)

Proof: Let us associate to any state q ∈ S, the variable

xq ∈ X , and let us define the set

Γq = {νxq.[(i, d)]xq′∧i ↓d o|i ∈ In, d ∈ T, α(q)(i, d) = (o, q′)}

Let us define Γq as the set of closed formulas ob-

tained from Γq by recursively replacing in each formula

νxq.[(i, d)]xq′ ∧ i ↓d o the variable xq′ by every formula

of the form [(i′, succ(d))]xq′′ ∧ i′ ↓succ(d) o
′ in Γq′ , and

starting again this process on every free fixed point variable

until every fixed point variable is within in the scope of an

operator ν. S being finite, this process will terminate.

Let us suppose that q ∼ q′. Then, for every formula

ϕ ∈ Γq, we can show by induction on the number of nested

occurrences of ν-formulas in ϕ that S |=f,q,∅ ϕ for every

f ∈ InT . Let us suppose that this number is one. This means

that ϕ is of the form νxq.[(i, d)]xq∧i ↓d o. It is obvious that

in this case S |=f,q,∅ ϕ. It is sufficient to choose S′ = {q}.
Let us suppose that the number of nested occurrences of ν-

formulas is greater than one. Therefore, this means that ϕ
is of the form νxq.[(i, d)]ϕ

′ ∧ i ↓d o where ϕ′ is a closed

formula except maybe for the variable xq . By definition,

this means there exists q ∈ S such that α(q)(i, d) = (o, q),
and ϕ′ is of the form νxq.[(i, succ(d))]ϕ

′′ ∧ i′ ↓succ(d) o
′.

By induction hypothesis, we have that S |=f,q,∅ ϕ
′, and by

hypothesis we have S |=f,q,∅ i ↓d o. By definition, ϕ′ is a

closed formula except maybe for the variable xq . Therefore,

we can write S |=f,q,∅[xq/{q}] [(i, d)]ϕ′, whence we can

conclude S |=f,q,∅ ϕ. By Theorem 4.1, since q ∼ q′, we

then have S |=f,q′,∅ ϕ.

Conversely, let us define the binary relation ≡ on S by:

q ≡ q′ ⇐⇒ (∀ϕ ∈ Γq, ∀f ∈ In
T ,S |=f,q′,∅ ϕ)

Let us show that ≡⊆∼. Let us suppose that q ≡ q′.
Let i ∈ In and d ∈ T be an input and a date such that

α(q)(i, d) = (o, q). By definition, for every f ∈ InT ,

S |=f,q′,∅ i ↓d o. It remains to prove that α(q)(i, dT)|2 ≡
α(q′)(i, dT)|2 . Let us suppose the contrary. This means

there are ψ ∈ Γα(q)(i,dT)|2 and f ∈ InT such that

S |=f,α(q)(i,dT)|2 ,∅ ψ and S6|=f,α(q′)(i,dT)|2 ,∅
ψ. By definition,

there exist a formula ϕ ∈ Γq and a formula ϕ′ ∈ Γq such

that ϕ[xq/ϕ
′] = νxq.[(i, d)]ψ∧ i ↓d o where ϕ[xq/ϕ

′] is the

formula obtained from ϕ by substituting every occurrence of

xq by ϕ′. Hence, we then have that S |=f,q,∅ ϕ[xq/ϕ
′] and

S6|=f,q,∅ϕ[xq/ϕ
′]. As ϕ is a closed formula, we also have

that S |=f,q,∅ ϕ and S6|=f,q,∅ϕ what is impossible since

q ≡ q′. The same reasoning can be carried out for ≡−1.

V. CONCLUSION

In this paper, we have defined a logic dedicated to express

properties over systems specified in a timed extension of the

coalgebraic framework of Mealy machines. The formalism

thus defined then allows to consider in a same framework

discrete, continuous and hybrid systems.

The logic has been defined as an extension of µ-calculus.

Hence, besides standard temporal properties, it further ex-

presses real-time properties and constraints on the produc-

tion time of output values from input ones. Moreover, we

have established the important property of adequacy with

respect to bisimulation as well as the characterisation of

bisimulation by sets of closed formulas.

We are currently studying conditions to preserve proper-

ties along our integration and abstraction/simulation opera-

tors.

REFERENCES

[1] P. Aczel and N. Mendler. A final coalgebra theorem. In D.-H.
Pitt, D.-E. Ryeheard, P. Dybjer, A.-M. Pitts, and A. Poigne,
editors, Proceedings category in computer science, Lecture
Notes in Computer Science, pages 357–365. Springer-Verlag,
1989.

[2] M. Aiguier, F. Boulanger, and B. Kanso. A formal abstract
framework for modeling and testing complex software sys-
tems. Theoretical Computer Science, 455:66–97, 2011.

[3] M. Aiguier, B. Golden, and D. Krob. Modeling of com-
plex systems ii: A minimalist and unified semantics for
heterogeneous integrated systems. Applied Mathematics and
Computation, 218(16), 2012.

[4] E. Alesken and R. Belcher. Systems Engineering. Prentice
Hall, 1992.

[5] B.-S. Blanchard and W.-J. Fabrycky. Systems engineering and
analysis. Prentice Hall, 1998.

[6] S. Bliudze and D. Krob. Modeling of complex systems -
systems as data-flow machines. Fundamenta Informaticae,
91:1–24, 2009.

[7] J. Bradfield and C. Stirling. Modal mu-calculi. In P. Black-
burn, J. van Benthem, and F. Wolter, editors, Handbook of
Modal Logic, pages 721–756. Elsevier, 2007.

[8] D. Cha, J. Rosenberg, and C. Dym. Fundmantals of Modeling
and Analysing Engineering Systems. Cambridge University
Press, 2000.

[9] F. Diener and G. Reeb. Analyse Non Standard. Hermann,
1989.

[10] J. Harthong. éléments pour une théorie du continu.
Astérisque, 109/110:235–244, 1983.

[11] J. Harthong. une théorie du continu. In H. Barreau and
J. Harthong, editors, La mathématique non standard, pages
307–329. Éditions du CNRS, 1989.

[12] R. Kashima and K. Okamoto. General models and complete-
ness of first-order modal µ-calculus. Journal of Logic and
Computation, 18(4):497–507, 2008.

[13] C. Delgado Kloos and P.-T. Breuer, editors. Formal Semantics
for VHDL. Kluwer Academics Publishers, 1995.

[14] J. Lygeros. Lecture notes on hybrid systems. Technical report,
ENSIETA Worshop, 2004.

[15] M.-W. Maier and E. Rechtin. The art of system architecturing.
CRC Press, 2002.

[16] E. Nelson. Internal set theory: a new approach to nonstandard
analysis. Bulletin of the American Mathematical Society,
83:1165–1198, 1977.

[17] A. Robinson. Non-standard analysis. American Elsevier, 2nd.
ed. edition, 1974.

[18] J.-M.-M. Rutten. Universal coalgebra: a theory of systems.
Theor. Comput. Sci., 249(1):3–80, 2000.

[19] J.-M.-M. Rutten. Algebraic specification and coalgebraic
synthesis of mealy automata. In International Workshop on
Formal Aspects of Component Software (FACS 2005), volume
160 of Electronic Notes in Computer Science, pages 305–319.
Elsevier, 2006.

[20] A.-P. Sage and J.-E. Amstrong. Introduction to system
engineering. John Wiley, 2000.

[21] E. Sontag. Mathematical Control Theory: Deterministic
Finite Dimensional Systems, volume 6 of Textbooks in Applied
Mathematics. Springer-Verlag, 1998.

[22] W.-C. Turner, J.-H. Mize, K.-E. Case, and J.-W. Nazemeth.
Introduction to industrial and systems engineering. Prentice
Hall, 1993.

[23] M. Viswanathan and R. Viswanathan. A higher order modal
fixed point logic. In Ph. Gardner and N. Yoshida, editors,
CONCUR 2004 - Concurrency Theory, volume 3170 of
Lecture Notes in Computer Science, pages 512–528. Springer-
Verlag, 2004.

