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Abstract—Two-way relay channel (TWRC) models a coopera-
tive communication situation performing duplex transmission via
a relay station. For this channel, we have shown previously that
a lattice-based physical layer network coding strategy achieves,
at the limit of arbitrarily large dimension, the same rate as
that offered by the random coding-based regular compress-
and-forward. In this paper, we investigate a practical coding
scheme using finite dimension lattices and offering a reasonable
performance-complexity trade-off. The algorithm relies on lattice
based quantization for Wyner-Ziv coding. We characterize the
rate region allowed by our coding scheme, discuss the design
criteria, and illustrate our results with some numerical examples.
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I. INTRODUCTION

The two way relaying problem where two communicating

nodes want to exchange information via a relay is encoun-

tered in various wireless communication scenarios: ad-hoc

networks, range extension for cellular and local networks ...

While network level routing is the standard option to this prob-

lem, it has been shown that network coding (NC) strategies

provide better performance by leveraging the side information

that is available in each node. In fact, NC allows to improve

the rates by combining raw bits or packets at the network

layer. The capacity of the system can be further improved

when NC is applied to the physical layer. It takes advantage

of the linear superposition properties of the wireless channel

in order to turn interference nuisance into useful signal [1].

In this context, we consider a physical network coding (PNC)

strategy where the overall communication takes two phases,

namely a Multiple Access (MAC) phase and a Broadcast (BC)

phase.

Various strategies have been proposed for TWRC. Amplify

and Forward [2], Decode and Forward (DF) [3], and Compress

and Forward. The latter has attracted particular attention since

it offers a good compromise between processing complexity at

the relay and noise amplification. CF for TWRC [4] follows

the same strategy of CF schemes for the relay channel [5].

Performance bounds of this scheme have been investigated in

[6], [7], [8]. It has been shown that for specific channel condi-

tions, specially symmetric channels, CF outperforms the other

relaying schemes for high SNR regimes. In the aforementioned

references, the derivation of the achievable rate regions has

employed high dimension assumptions and random coding

approach which is impractical for real systems. Interestingly,

structured codes have been found to be more advantageous

in practical settings thanks to their reduced complexity in

encoding and decoding [9]. It has been shown in [10] that for

an Additive White Gaussian Noise (AWGN) channel, lattice

codes can achieve the Shannon capacity for Gaussian point-

to-point communication. Based on this result, lattice codes

have been extended to TWRC scenario in [11] and [12] as

follows : the transmitters employ nested lattices as codebooks,

and the relay decodes a modulo-lattice sum of the transmitted

codewords from the received signal in order to emulate a

XOR operation at the packet level. All nodes (transmitters

and relay) are constrained to transmit with the same power

and consequently they use the same lattice codebook. In both

schemes, the relay follows a DF strategy since it decodes a

function of the transmitted lattice codewords. In this paper, we

design a new relaying scheme for TWRC based on CF strategy

where the relay only compresses the received signal from

both nodes based on a knowledge of their transmit power and

the channel gain modules. Unlike [11] and [12], our scheme

employs lattice encoding only by the relay and is compatible

with arbitrary transmit powers and channel gains.

In the MAC phase of our scheme, the communicating nodes

send simultaneously their messages and the relay receives a

mixture of the transmitted signals. The relay considers this

mixture as a source which will be compressed and sent during

the BC phase. Taking into account that each terminal has a

partial knowledge of this source (side information), the BC

phase is equivalent to a Wyner-Ziv (WZ) compression setting

with two decoders having a piece of side information each.

A lattice based lossy compression is employed to help each

user generate a local distorted version of the source. The

proposed scheme is based on lattice quantization introduced

in [13] and which we extend to the TWRC case. In [14], we

have showed that with infinite dimension lattices, this scheme

achieves the same rates as the random coding compress and

forward strategy. With finite dimension lattices, the decoding

error probability cannot be arbitrarily small. Based on this

observation, we derive, in this paper, achievable rate regions

by considering non vanishing yet constrained decoding error

probabilities. The rest of the paper is organized as follows. In



section II, we introduce our system model. In section III and

IV, we propose a new lattice-based Wyner-Ziv Coding scheme

and we derive its achievable rate region for finite dimensions.

In section V, we present a numerical implementation of

the achievable rates with practical finite dimension lattices.

Finally, section VI concludes the paper.

Notations Random variables (r.v.) are indicated by capital

letters where the realizations are written in small letters. Vector

of r.v. or a sequence of realizations are indicated by bold fonts.

II. SYSTEM MODEL

Fig. 1. The two-phase transmission of TWRC

We consider a Gaussian TWRC in which two nodes T1 and

T2 exchange two individual messages m1 and m2, with the

help of a relay R as shown in Fig.1. The relay operates in half-

duplex mode. The communication takes n channel uses that

are split among MAC phase and BC phase with lengths n1 =
αn and n2 = (1 − α)n , α ∈ [0, 1] respectively. During the

MAC phase, node Ti, i = 1, 2 draws uniformly a message mi

from the set Mi = {1, 2, · · · , 2nRiī} and sends it to the other

terminal. Let xi(mi) denotes the codeword of length n1 sent

by node Ti, i = 1, 2. The messages are transmitted through

a memoryless Gaussian channel and the relay R receives a

signal Yr.

During the BC phase, the relay generates a codeword xr(mr)
of dimension n2 from the received sequence yr. The signal Xr

is transmitted through a broadcast memoryless channel and the

received signal at node Ti is Yi, i = 1, 2.

All input distributions are real valued: Xk ∼ N (0, Pk), k =
{1, 2, r}, where N (0, Pk) denotes a zero mean real Gaussian

variable with power Pk. The received signals can be modeled

as follows:

Yr = h1X1 + h2X2 + Zr (1)

Yi = hiXr + Zi, (2)

where hi denotes the channel coefficient between Ti and R,

i = 1, 2. Without loss of generality, channel reciprocity is

assumed, i.e. hi→r = hr→i = hi. Zr ∼ N (0, σ2
r ) is the

additive white Gaussian noise at the relay and Zi ∼ N (0, σ2
i )

is the AWGN at node Ti, i = 1, 2. We assume perfect CSI for

all nodes and the noise components are independent of each

other and from the channel inputs. In the sequel, we investigate

the achievable rates and the design of our scheme.

III. ACHIEVABLE RATE REGION FOR TWRC

Theorem 3.1: Let (Λ1,Λ2), a pair of two nested lattices

of dimension n1, with Λ2 ⊂ Λ1. For Gaussian TWRC, the

convex hull of the following end-to-end rates (R12, R21) is

achievable:

R12 ≤ α

2
log2

(

1 +
|h1|2P1(|h1|2P1 + σ2

r −D2)

|h1|2P1(σ2
r +D2) + σ4

r

)

(3)

R21 ≤ α

2
log2

(

1 +
|h2|2P2(|h1|2P1 + σ2

r −D2)

|h1|2P1(σ2
r +D2) + σ4

r

)

(4)

where D2 satisfies:

α(log2

(

σ2
U2

D2

)

+ log2 (G(Λ1)µ(Λ2))) ≤

(1− α)min

{

log2

(

1 +
|h2|2Pr

σ2
2

)

, log2

(

1 +
|h1|2Pr

σ2
1

)}

(5)

with G(Λ1) being the normalized second moment of Λ1 and

µ(Λ2) being the volume to noise ratio of Λ2 [15], and α ∈
[0, 1].

Remark 1: Letting n1 → ∞, the left-hand side expression

in (5) reduces to its first term since the second term corre-

sponds to the penalty of using finite dimension, that vanishes

asymptotically. We have shown in [14] that the achievable

rate region coincides with the random coding compress and

forward achievable rate region presented in [8].

IV. PROOF OF THEOREM 3.1

In this section, we present a detailed proof of theorem

3.1. The main idea of the proposed scheme is the following:

during the BC phase, the relay station sends a compressed

version of the signal received during the MAC phase. The

relay employs a lossy compression Wyner-Ziv scheme using

nested lattices that is tuned to the side information of the user

with the weakest side information. The proof is divided into

three paragraphs: in section IV-A, we present the WZ strategy

based on the weakest side information at the receivers. In

section IV-B, the lattice coding scheme for the WZ model

is introduced and finally the achievable rates of the proposed

scheme are derived in IV-C.

A. Wyner-Ziv using the weakest side information

Let Si = hiXi be the side information available at terminal

Ti, i = 1, 2. Without loss of generality, we assume that

|h2|2P2 ≤ |h1|2P1. With this setting, T2 is the terminal who

experiences the weakest side information. The quantization

performed by the relay is tuned so that T2 reconstructs a local

version Ŷr,i of Yr with a distortion D2: 1
n1

E‖Yr−Ŷr,2‖2 ≤
D2. The terminal T1 will undergo this choice on its decoded

signal at the end of transmission.

The source Yr can be written as the sum of two independent

Gaussian r.v.: the side information S2 and the unknown part

U2 = Yr|S2 = h1X1 + Zr that will be decoded at the end.

The variance per dimension of U2 is σ2
U2

= V AR(Yr|S2) =
|h1|2P1 + σ2

r .

B. Lattice based source coding

We use a pair of n1-dimensional nested lattices (Λ1,Λ2)
chosen as in [13]: the fine lattice Λ1 is good for quantization

with basic Voronoi region V1 of volume V1 and second



moment per dimension σ2(Λ1) = D2 and the coarse lattice

Λ2 is good for channel coding with basic Voronoi region V2

of volume V2 and second moment σ2(Λ1) = σ2
U2

.

The encoding operation is performed with four successive

operations: first, the input signal Yr is scaled with a factor

β. Then, a random dither which is uniformly distributed over

V1 is added. This dither is known by all nodes. The dithered

scaled version of Yr, βyr+ t is quantized to the nearest point

in Λ1. The outcome of this operation is processed with a

modulo-lattice operation in order to generate a vector vr of

size n1 as shown in Fig.2.

Fig. 2. WZ Lattice Coding and Decoding at Ti, i = 1, 2

vr = Q1(βyr + t) mod Λ2 (6)

The relay sends the index of vr that identifies the coset of Λ2

relative to Λ1 that contains Q1(βyr + t). The coset leader vr

is represented with
V2

V1
. bits. Thus, the source coding rate of

the scheme is

R(D2) =
1

n1
log2 |Λ1 ∩ V2| =

1

n1
log2

V2

V1
(bits per dimension)

(7)

At both users, vr is decoded first. Then Ŷr,i|Ŝi = Ûi is

reconstructed with a WZ lattice decoder (WZLD) using the

side information Si as

ûi = β((vr − t − βsi) mod Λ2), i = 1, 2 (8)

C. Rate analysis

At the relay, the message mr corresponding to the index

of vr is mapped to a codeword xr of size n2. Let Rr be the

common broadcast rate. This rate is bounded by

n1R(D2) ≤ n2Rr (9)

On the other hand,

Rr ≤ min(I(Xr;Y1), I(Xr;Y2)) (10)

Since real Gaussian codebooks are used for all transmissions,

we have: I(Xr;Yi) = 1
2 log2

(

1 + |hi|
2Pr

σ2

i

)

, i = 1, 2. This

constraint ensures that the index mr is transmitted reliably to

both terminals and vr is available at the input of WZLD at

both receivers. At terminal T2, û2 in (8) can be written as:

û2 = β((βu2 + eq) modΛ2) (11)

≡ β(βu2 + eq) (12)

where eq = Q1(βyr + t)− (βyr + t) = −(βyr + t) mod Λ1,

is the quantization error. By the Crypto Lemma [10], Eq is

independent from Yr, thus U2, and it is uniformly distributed

over V1 i.e VAR(Eq) = σ2(Λ1) = D2. The equivalence

between (11) and (12) is valid only if βu2 + eq ∈ V2. With

finite dimension lattices, the volume of V2 should be large

enough to enclose this signal. In this case, provided that

1

n1
E‖Eq + βU2‖2 = D2 + β2σ2

U2
≤ σ2(Λ2) (13)

The rates are calculated by ensuring that the probability

Pr(βU2 + Eq /∈ V2) does not exceed a fixed threshold.

Pr(βU2 + Eq /∈ V2) ≤ Pe (14)

Given that V1 =

(

σ2(Λ1)

G(Λ1)

)n1/2

where G(Λ1) is the normal-

ized second moment (NSM) of Λ1 and σ2(Λ1) = D2, the

coding rate in (7) reads:

R(D2) =
1

2
log2

(

σ2
U2

D2

)

+
1

2
log2 (G(Λ1)µ(Λ2)) (15)

The WZ rate distorsion function is achieved with a redundancy

term L =
1

2
log2 (G(Λ1)µ(Λ2)), where

µ(Λ2) =
V

2

n1

2

σ2
U2

(16)

is the Λ2 volume to noise ratio (VNR) associated with proba-

bility of error Pe. This term has been introduced by Poltyrev

in [16] for lattice codes in AWGN setting. For a probability

Pe and a lattice Λ with volume V , µ(Λ) = V
2

n1 /σ2, σ2 is

the variance of a Gaussian noise Z which verifies Pr(Z /∈
V) ≤ Pe. By analogy to our problem, taking into account the

constraints expressed in (13) and (14), the VNR is given by

(16). Finally, (5) is obtained by combining equations (9), (10)

and (15).

The parameter β has to be chosen so that to verify (13) and

(17).

1

n1
E‖Yr − Ŷr,2‖2 = (1− β2)2σ2

U2
+ β2D2 ≤ D2 (17)

Thus, the optimal scaling factor β is β =

√

1− D2

σ2
U2

(see

[13]). By replacing U2 by its value we conclude that:

Û2 = β2h1X1 + β2Zr + βEq (18)

Let Zeq = β2Zr + βEq be the effective additive noise. The

communication between T1 and T2 is equivalent to a virtual

additive Gaussian channel where the noise is given by Zeq .

Let Zq a Gaussian variable with same variance as Eq. Based

on the results in [17], we have

D(β2U2 + βEq,β
2U2 + βZq)=h(β2U2 + βZq)−h(β2U2 + βEq)

(19)

where D(., .) is the relative entropy. Let λ =
D2

σ2
U2

, M =
Eq√
λ

and M∗ =
Zq√
λ

, we can verify that

h(β2U2 + βEq) = h(
√
λM +

√
1− λM∗)



Since U2 is Gaussian, this entropy increases to zero mono-

tonically as D2 goes from zero to σ2
U2

as shown in [17].

Equivalently for D2 → 0, the entropy increases to h(M∗):

h(β2U2 + βEq) → h(M∗) = h(Zq)− log2(
√
λ)

=
1

2
log2(2πeD2)−

1

2
log2

(

D2

σ2
U2

)

We have h(β2U2 + βZq) =
1
2 log2(2πeσ

2
U2
). Thus from (19),

D(Û2, β
2U2 + βZq) →− 1

2 log2

(

D2

σ2

U2

)

+ 1
2 log2

(

D2

σ2

U2

)

= 0

We conclude that in the divergence sense, for high resolution

assumption as D2 → 0, we can approximate the decoded

signal with a Gaussian one. Thus the achievable rate of this

link satisfies:

nR12 ≤ n1

2
log2

(

1 +
β2|h1|2P1

β2σ2
r +D2

)

by replacing
n1

n
= α and β by its value, (3) is verified.

At terminal T1, the decoder is tailored to the side information

S1. Thus, at the decoder we subtract βs1 and û1 is recon-

structed similarly to û2 in (11). Since σ2
S1

≥ σ2
S2

, we have

σ2
U1

≤ σ2
U2
,

Pr(βU1 + Eq /∈ V2) ≤ Pr(βU2 + Eq /∈ V2),

D1 =
1

n1
E‖Yr − Ŷr,1‖2 ≤ D2

The communication between T2 and T1 is equivalent to a

virtual Gaussian channel with an additive noise Zeq and a

rate:

nR21 ≤ n1

2
log2

(

1 +
β2|h2|2P2

β2σ2
r +D2

)

which verifies (4) and concludes the proof. The whole coding

scheme is summarized in Fig.3.

Remark 2: It is possible to use S1 as the side information

for the WZ lattice coding scheme to achieve a controlled

distortion D1 at terminal T1. For this purpose, we need two

coding layers: a common layer to be sent to both nodes and a

refinement layer to be decoded only by the best node T1. In

this case, the achievable rates can be ameliorated. This study

is under investigation.

V. NUMERICAL IMPLEMENTATION

In this section, we present the achievable rates for practical

finite dimensional lattices. In this case, a rate loss is incurred

in the coding rate comparing to the WZ rate distortion function

as described in previous sections (III and IV). The achievable

rate region is calculated by ensuring that the error probability

Pr(βU2 + Eq /∈ V2) ≤ Pe. The analytical derivation of the

error probability for practical lattice pairs is difficult in general

since it requires the integration over the Voronoi region of the

coarse lattice. Though it can be computed numerically using

Monte Carlo integration or approximated by an upper bound.

TABLE I
SOME IMPORTANT BINARY LATTICES AND THEIR USEFUL PROPERTIES

Lattice Λ dimension n1 G(Λ) γc(Λ) K(Λ)

Z
k k 0.0833 1 2k

D4 4 0.07660
√
2 24

E8 8 0.071682 2 240

Λ16 16 0.06829 23/2 4320

Λ24 24 0.00657 4 196560

An approximation of the error probability can be obtained

using union bound and Chernoff bound:

Pr(βU2 + Eq /∈ V2) ≈ K(Λ2) exp

(

−1

8
γc(Λ2)µ(Λ2, Pe)

)

(20)

for sufficiently large µ(Λ2, Pe). γc(Λ2) =
d2min(Λ2)

V (Λ2)2/n1

is the

coding gain of Λ2 with dmin(Λ2) is the minimum distance

between two points in Λ2. We choose the VNR in (15) as

follows

µ(Λ2, Pe) ≈
8

γc(Λ2)
log2

(

K(Λ2)

Pe

)

(21)

Note that µ(Λ2, Pe) ≫ 1
γc(Λ2)

for small error probability. This

guarantees that the union bound approximation is valid and the

error probability is upper bounded by Pe.

Furthermore, given that the error probability of the scheme is

defined by the goodness of the coarse lattice, the performance

of the end to end scheme depends more on this lattice rather

than the choice of the fine lattice. Therefore, the simple cubic

lattice Zn1 with NSM G(Λ1) =
1
12 will be the preferred choice

for the fine lattice. In this case, for a good coarse lattice with

NSM G(Λ2) = 1
2πe , the rate loss with respect to the ideal

WZ scheme is only 1
2 log2(2πe/12) = 0.2546 bit per sample.

Moreover, in the quantization problem, the choice of the fine

(resp. coarse) lattice is equivalent to the choice of the coarse

(resp. fine) lattice for the dual channel coding problem. It has

been shown in [18] that practically Z
n1 suffices as a shaping

lattice that verifies arbitrary small error probability. Thus, a

sublattice of Z
n1 can be a simple engineering choice for the

fine lattice. In the sequel, Λ1 is a scaled version of Z
n
1 i.e.

Λ1 = ηZn1 .

We characterize the whole achievable rate region of the

proposed scheme by optimizing the time division α ∈ [0, 1]
between MAC and BC phases and the distortion choice at the

relay. The boundary bounds are determined by maximizing

the weighted sum of both rates R12 and R21. We solve the

following problem for θ ∈ [0, 1]

max θR12 + (1− θ)R21 (22a)

s.t. (R12, R21) satisfy (3) and (4) (22b)

D2 satisfies (5) for α ∈ [0, 1] (22c)

Table I gives the kissing number and the coding gain for a set

of commonly used finite lattices, that can be used to calculate

µ(Λ2, Pe) for fixed Pe using (21). Comparison between lattice

pairs can be found in Fig. 4 for symmetric static channels,



Fig. 3. Wyner-Ziv lattice-based coding scheme for TWRC
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Fig. 4. Achievable rate region of different finite dimension lattice pairs
compared to the high dimension achievable region for SNR1 = SNR2 =
SNRr = 10 dB. A difference of 0.15 bit/dimension between infinite and finite
dimension lattices
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Fig. 5. Achievable rate region of different finite dimension lattice pairs
compared to the high dimension achievable region for P1 = 8 dB, P2 = 5 dB,
Pr= 10 dB, |h1| = 2 and |h2| = 1

equal SNRs and Pe = 10−5. We notice that the difference

between the infinite scheme and the pair (Z4,Λ24) is about

0.15 bit/channel use. In Fig. 5, we present the achievable

rates for asymmetric channels and different power constraints.

The gap between the infinite and finite dimensions is 0.2

bit/dimension for R12 and 0.06 bit/dimension for R21. This

indicates that by using practical lattices, the loss in rates

according to the high dimensional regime (n → ∞) is

significantly small.

VI. CONCLUSION

In this paper, we derived a new achievable rate region for
TWRC with finite dimension. We proposed for this purpose
a new practical lattice-based physical layer network coding

scheme. The scheme is based on Wyner-Ziv source coding
strategy and nested lattice codes. We presented a numerical
implementation of the achievable rates with practical finite
dimension lattices.
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