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Abstract—Private Mobile Radio (PMR) networks are cellular
infrastructures dedicated to be used by professionals, such as
public safety, military, industry and transportation organizations.
In those networks, resources are scarce, and there are strong
Quality of Service (QoS) requirements. The emergence of new
services which need more bandwidth has made the world PMR
leader focus on the LTE-Advanced protocol. In order to ensure
the QoS despite resource shortage, we propose an algorithm of
Resource Blocks (RBs) allocation with spatial frequency reuse
whose scheme takes into account users’ (UEs’) interference
possibility and probability.

We start by defining the underlying problem, which we call
Weighted Fractional Coloring Problem (WFCP), in terms of
graph theory. Next, we prove its NP-hardness. As obtaining an
exact solution of such a problem in reasonable time is unrealistic,
we propose a heuristic algorithm.

In order to evaluate the performance of our algorithm we use
a rigorous validation procedure. We compare its performance
with that of a random one which we propose as a reference and
the exact one which can be run on very small networks. Thanks
to the results obtained we believe that the proposed algorithm
can establish a solid starting point to conceive its distributed
versions for novel PMR protocols.

Index Terms—frequency reuse, resource allocation, optimiza-
tion algorithms, interference control

I. INTRODUCTION

PRIVATE Mobile Radio (PMR) networks are cellular
infrastructures dedicated to be used by professionals,

such as public safety, military, industry and transportation
organizations. In those networks, resources are scarce, notably
on the up-link, and there are strong Quality of Service (QoS)
requirements. The emergence of new services, which need
more bandwidth, has made the world PMR leader Cassidian,
a member of the EADS consortium, focus on enhancing of
the LTE protocol for the next generation of PMR networks.
The novel sensing mechanism considered by the PMR leader
in future releases of its product will allow the interference
possibility and probability of a user entity (UE) to be dis-
covered more precisely than in the standard LTE networks.
Knowing the UEs’ interference interactions would enable us
to allocate Resource Blocks (RBs) in a way that avoids inter-
cell interference in a more flexible and efficient way than
what is allowed by the frequency reuse schemes deployed
nowadays [1].

We present what we call a spatial frequency reuse scheme,
adapted to the uplink of the novel PMR architecture which
we proposed within the context of the SOAPS.2 project. This

project is also one of those of the SYSTEMATIC PARIS-
REGION1 competitiveness cluster.

We make several contributions in this paper. With the first
one we get ahead in the modeling of problems of resource
allocation with frequency reuse in the novel generation of
PMR networks. We have at our disposal certain information
about the UEs’ probabilities of interfering with one another.
This fact allows us to take advantage of these probabilities to
reuse RBs in neighboring cells without creating interference.

We have been able to define this problem, which we call the
Weighted Fractional Coloring Problem (WFCP), in a compact
and elegant way, this opening up the possibilities of its theoret-
ical analysis and conception of efficient algorithms to solve it
(Section III). Therefore, despite its practical importance for the
design of parsimonious and efficient spatial frequency reuse
schemes, we are even more convinced that this problem is
worth attention for purely theoretical reasons.

Our next contribution is the problem complexity computa-
tion. The NP-hardness result forces us to provide a heuristic
algorithm, as exact methods cannot be considered for instances
of relevant size. We propose a centralized algorithm based
upon the greedy approach (Section IV) and the methodol-
ogy of generation of random graphs necessary to validate it
(Section V). As we deal with a newly stated problem, we
have no other algorithms to compare with. For this reason,
the algorithm performance evaluation is notably made under
condition of a shortage of RBs (Section VI) in order to
estimate the utilization of available resources. We also propose
a centralized random allocation scheme as a performance
reference. Another comparison is carried out against the exact
method which is, however, feasible for very small networks
due to its computational complexity. This confrontation gives
us a clear idea of benefits in terms of transmission quality and
RB utilization which can be made thanks to the new sensing
technique.

Our paper starts with the state of the art in allocation
schemes in standard LTE-based networks and coloring-based
resource allocation models (Section II). The four following
sections present our contributions and follow the order in-
troduced in the paragraphs above. Section VII contains our
conclusions and presents the perspectives arising from the
WFCP formalization. It ends by the plan of our further work.

1SYSTEMATIC PARIS-REGION and the SOAPS.2 project are supported
by the French Ministry of Industry, the department of Essonne, and the
department of Yvelines.
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II. RELATED WORKS

RB allocation for the uplink has been studied notably in [2],
[3], [4] and [5] and several algorithms have been proposed,
both fast greedy algorithms and more time-consuming ones
that are impractical for production use. These algorithms take
the channel conditions into account, but do not avoid inter-
cell interference. The usual assumption is that an appropriate
frequency reuse scheme takes care of interference control.

Graph theory has been used before, notably in [6] and [7], to
build an interference graph in which nodes model UEs, and
two nodes are linked by an edge if the corresponding UEs
are spatially close enough to interfere with each other. Graph
coloring problems are used to represent the radio resource
allocation problem, so that the same color (modelling an RB)
is not attributed to adjacent nodes. However, the approach
studied in [6] does not consider a possible preference of a node
towards some specific colors, meaning any color is as good
as another to color a given node. In practical applications,
users have differing channel conditions, and not all RBs are
equivalent.

The classical coloring heuristic DSATUR [8] is often used
to color interference graphs, for example in [7] and [9]. In [7],
DSATUR is used to obtain independent sets of nodes, and then
channels are attributed to those sets depending on the channel
conditions. The proposed algorithm is polynomial, inO(mn3),
where m is the number of colors and n the number of nodes.

III. PROBLEM DEFINITION

We use graph theory to define the optimal spatial frequency
reuse scheme as a discrete optimization problem.

A. Interference Graph

Let us first define an interference graph as a graph G =
(V,E) where nodes represent entities which can be assigned
resources (for instance, UEs). Two nodes are linked by an
edge in E iff they are not to share the same resource because
they would interfere with each other. In the specific case of
SC-FDMA RB assignment, nodes u and v are linked in two
cases:
• if UEs u and v are in the same cell, because of the

frequency orthogonality constraint of SC-FDMA [10]
• if UEs u and v are not in the same cell, but v is close

enough to the eNodeB which handles u so that it would
create interference to the eNodeB if both UEs emitted on
the same frequency

The latter point requires an interference probability map
of the UEs, which will be made possible by a novel sensing
mechanism for LTE-based PMR networks in development by
Cassidian [1]. This sensing mechanism relies on the sharing
between neighboring cells of the standard SRS (Sounding
Reference Signal) mesurements, which will allow one to get
an interference ability idea across multiple cells.

B. Resource Blocks and Quality Metric

In LTE-based systems, radio resources are allocated in the
form of RBs. On the uplink, eNodeBs use SRS measurements

sent by the UEs to assess, for these UEs, channel quality of
all the available RBs. This measurement is used to build a
scheduling metric. The scheduling metric can take into account
other parameters, such as different priorities between UEs or
a desire for fairness among UEs (for example, the classical
Proportional Fair metric [11]). We will consider the chosen
metric as a measure of quality.

To the interference graph G = (V,E) above, we can
therefore associate a quality matrix M of size |V | ×m if we
have m available RBs. Column j of M then corresponds to a
vector containing the nodes’ preferences towards color j. Our
objective is, on the one hand, to find an assignment of RBs
to UEs that does not attribute the same RB to adjacent UEs
in the interference graph, which is a graph fractional coloring
problem [12]. On the other hand, we want to maximize the
overall transmission quality, as defined by matrix M (we
consider Mij as the weight of color j for node i). We model
this by a new problem that we call the Weighted Fractional
Coloring Problem (WFCP).

C. Weighted Fractional Coloring Problem

Let G be an interference graph, and let m colors (corre-
sponding to RBs) be available. We want to find a coloring
of graph G which does not attribute the same color to two
adjacent nodes. We are allowed to use up to m colors for
a single node, but some nodes may remain uncolored. Our
objective is to find such a coloring that also maximizes the
sum of the weights of the colors attributed to nodes.

It should be noted that, as we are considering the uplink,
UEs have power constraints. An UE has to divide its power
over all the RBs it emits on. Therefore, we introduce a demand
d that is fixed for all nodes and that represents the maximum
number of RBs a node demands to be allocated.

Definition 1. Weighted Fractional Coloring Problem
(WFCP)
Instance: G = (V,E) an undirected graph, a mapping w(v, j)
of nodes v and RBs j to natural numbers (weights), a demand
d, d ∈ N.
Objective: find for all nodes v a set Av = {j : 1 ≤ j ≤ m}
(possibly empty) such that:
• (u, v) ∈ E implies Au ∩Av = ∅
• ∀v ∈ V, |Av| ≤ d
•

∑
v∈V

∑
j∈Av

w(v, j) is maximum.

Theorem 1. The WFCP is NP-hard.

Proof: Let us consider the special case where d = m = 1.
Coloring the graph with a single color c is equivalent to
finding an independent set of nodes in that graph (i.e. a
subset V ′ ⊆ V such that no two nodes in V ′ are joined
by an edge in E). The quality vector related to color c
corresponds to adding weights to the nodes, and trying to
find an independent set of maximum total weight. We recall
the definition of the Weighted Independent Set decision and
optimization problems.

Definition 2. Weighted Independent Set Problem (WISP) [13]
Instance: G = (V,E) an undirected graph, a mapping w of
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nodes to natural numbers (weights w : V → N), and k a
natural number.
Question: does G contain an independent set whose weight is
greater than or equal to k?

This problem is NP-complete. In fact, even its special case
where ∀v ∈ V,w(v) = 1 is NP-complete [13]. Hence, the
associated maximization problem, as defined below, is NP-
hard.

Definition 3. Maximum Weighted Independent Set Problem
(MWISP)
Instance: G = (V,E) an undirected graph, a mapping w of
nodes to natural numbers (weights w : V → N).
Objective: find an independent set of maximum weight.

The MWISP problem is a special case of the WFCP and is
NP-hard. Therefore, the WFCP is also NP-hard.

Since the WFCP is NP-hard, exact solutions will only be
available for extremely simple instances. We therefore propose
a heuristic algorithm.

D. Granularity

As defined above, and as used throughout this paper, nodes
represent UEs. However, different granularity levels can be
used. In the most coarse-grain model, nodes represent cells,
neighboring cells should not share RBs, and we are in the
classical Fractional Frequency Reuse scheme. In the most fine-
grain model, presented here, we attribute RBs to users directly.
But in intermediate models, groups of neighboring users could
be considered as nodes. This could reduce the size of the
graph significantly at only a slight performance cost, and is
particularly relevant in a PMR application where users could
be grouped by patrol or by event.

IV. HEURISTIC ALGORITHM

Algorithm 1 describes our heuristic, greedy algorithm. We
basically build a list of all available colors for all the nodes,
find the pair with highest metric, assign it, remove all now-
unavailable colors from the list, and start again. Line 8 is an
example of how we can adjust the metric during the run of
the algorithm, in order to avoid having the best located clients
pumping out all the resources. It can be omitted or adapted to
fit different QoS requirements.

The while loop will run at most mn times; all operations
inside it are in O(mn). Consequently, the algorithm is in
O(m2n2) in the worst case.

V. INTERFERENCE GRAPH GENERATION

We validated our heuristic algorithm solving the WFCP on
series of random interference graphs in order to estimate its
performance. In order to do this, we needed a way to produce
series of random interference graphs that were plausible.

Algorithm 1: Heuristic Algorithm Solving the WFCP
input :
• m: number of available colors (RBs)
• metric: metric array, indexed by (node, color) pairs
• graph: interference graph G = (V,E)
• a demand d, d ∈ N

output:
• colored graph (G and a mapping of V to sets of colors)

1 begin
2 list ← all (node, color) pairs;
3 while list not empty do
4 find a pair (n, c) in list with highest metric(n, c);
5 color node n with color c;
6 if n is colored with fewer than d colors then
7 for all other colors k do
8 metric(n, k) ← metric(n, k)/2;
9 end

10 else
11 remove all pairs (n, ∗) from list;
12 end
13 for all neighbors n′ of n do
14 remove (n′, c) from list (if possible);
15 end
16 end
17 return G;
18 end

A. Method

Our idea to obtain interference graphs was to generate
random topologies of a fixed size according to commonly
approved models and “span” them on PMR cells. We opted
for the widely used Waxman model [14] and the extended
Barabási and Albert model [15]. The first one is typically
used to represent a uniform graph with given numbers of
nodes and edges. We chose it to model a “non-emergency”
situation (UEs dispersed regularly). The second one expresses
the property of power law distribution of the node degree
which may often be observed in man-made communication
networks. We selected it to model an emergency situation
(certain UEs’ concentrations). We use aSHIIP [16] for graph
generation, our home-made and publicly available tool2, which
offers a powerful and reliable topology generator. We spanned
generated topologies of 70 UEs on a standard honeycomb
made up of seven cells. The spanning procedure is composed
of four steps.

First, we identified two methods to set the cell centers
(eNodeBs’ localization) in order to attribute UEs to cells.
Under our assumption a selected UE stands close to an
eNodeB in each cell. According to the first method we select
seven centers in a uniform way. The second method takes
into account properties of a topology and sets the centers
homogeneously. In other words, the cell centers are a solution
to the k-center problem (k = 7 in our experiments) which

2http://wwwdi.supelec.fr/software/ashiip/
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is NP-complete [13]. We find the centers with the heuristic
algorithm proposed in [17].

As a reader may already have noticed there is always a UE
very close to an eNodeB. After being switched on it has a
tendency to “pump out” available resources in a cell as its
metric is, most probably, the highest in this cell. In eBA-
based topologies with homogeneous eNodeB placement this
tendency is stronger because the k-center algorithm designates
as centers the nodes whose degree is relatively great.

Second, we associate nodes to cells. We express the distance
between a node and a cell center as an edge count. The nodes
closer to a cell center are associated to the corresponding cell.
In the case in which a node is equally far from several centers,
the decision is taken by a uniform draw.

Third, we designate the central honeycomb cell as the one
which is the most strongly connected to the other cells. The
first neighboring cell is the one the most strongly connected (in
terms of the edge number) with the central one. The second
neighbor cell is the one the most strongly connected to the
first neighbor, etc. The last, sixth neighbor of the central cell
is finally connected to the first neighbor.

Finally, a honeycomb spanned topology is cleaned up by
removing edges between cells which are not neighbors and
cell subgraphs are considered to be complete. These cliques
model the fact that the same RB cannot be assigned to several
UEs within the same cell (i.e. the orthogonality constraint
from SD-FDMA). An example of topology derived from
the eBA model and with the homogeneous cell centers’
placement used in the performance evaluation procedure is
illustrated in Fig. 1. Two topology generation models and
two methods of cell center setting give us interference graphs
in cases of non-emergency/emergency UEs deployment and
uniform/homogeneous eNodeB placement.

B. Parameters

We analyzed series of 1000 topologies of each type in
order to observe their characteristics. We calibrated the ini-
tial generation models (Waxman α = 0.2, β = 0.25, eBA
m0 = 10,m = 1, p = 0.5, q = 0.2) to keep the mean
size of cells comparable. Indeed, the confidence intervals for
these means on 0.05 confidence level are (11.21, 11.27) and
(10.61, 10.71), respectively. At the same time the mean size of
entire topologies is about of 69 nodes for both models as the
spanning procedure may result in several nodes whose metric
value is so weak that they cannot be connected. We observed
that interference graphs derived from the Waxman model are
statistically identical despite a spanning procedure. As eBA
topologies are denser than those obtained with the Waxman
model, the mean node degree in eBA-based interference graphs
is approximately twice as high as in Waxman-based ones.

Series of interference graphs needed for pertinent validation
have to have the assignment of metric values to available RBs
for each UE done in a coherent way. We opt for a normal
distribution rescaled in function of the distance between a UE
and an eNodeB expressed as a number of edges:

metric(UE) =
N(µ, xµ)

dist(UE, eNodeB) + 1
. (1)

Fig. 1. An example of an eBA generated interference graph with homoge-
neous eNodeB placement, spanned on the honeycomb

This linear formula preserves metric values from decaying too
quickly and makes graphs “harder to be solved” by reuse
schemes. We point out that edges added to form complete
graphs out of sub-graphs representing cells are not counted
in our formula. We argue here that an edge in graphs in
our experiences defines the existence of interference, not a
geographical distance and we are not attempting to violate any
law concerning signal attenuation. We put arbitrarirly µ = 50
and x = 15% in Eq. (1).

An interference graph of size n (whose nodes correspond to
UEs), m available colors (corresponding to RBs), a demand
of d RBs per UE, and metric values (corresponding to color
weights) constitute an instance of the WFCP.

VI. PERFORMANCE EVALUATION AND RESULTS

We compare the WFCP algorithm performance with those
of a random one, which we propose in Subsection VI-A, on
series of 1000 random interference graphs for all four scenarii.

The algorithms realize frequency allocation only; metric
values do not depend therefore on allocations done in the
past. In other words, the frequency attribution is made at time
t when all UEs have just switched on and want to emit. We
chose the average transmission quality and number of allocated
RBs as performance measures.

Then, in Subsection VI-B, we attempt to compare solutions
of our heuristic algorithm with exact ones. Due to the WFCP
complexity, we can carry on this examination for very small
interference graphs.

A. Random Algorithm

Algorithm 2 is similar to the heuristic algorithm but does
not consider the metric when choosing which (node, color)
pair to pick, line 4. Instead, pairs are chosen with uniform
probability from the list.

The experiments for the series of 1000 random graphs
constructed according to the description in Subsection V with
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Algorithm 2: Random Algorithm
input :
• m: number of available colors (RBs)
• graph: interference graph G = (V,E)
• a demand d, d ∈ N

output:
• colored graph (G and a mapping of V to sets of colors)

1 begin
2 list ← all (node, color) pairs;
3 while list not empty do
4 draw a pair (n, c) in list with uniform probability;
5 color node n with color c;
6 if n is colored with fewer than d colors then
7 remove all pairs (n, ∗) from list;
8 end
9 for all neighbors n′ of n do

10 remove (n′, c) from list (if possible);
11 end
12 end
13 return G;
14 end
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Fig. 2. Results for graphs with eBA topology and K-center cell distribution.

d = 2 and varied m. As the average cell size is of 10 UEs,
the availability of m = 20 RBs is sufficient to satisfy the
demands of all the UEs. We start by computing the average
signal quality for transmission for four scenarii identified
in Subsection V in function of the number m of available
RBs. These averages, together with their confidence intervals
with α = 0.05, which are extremely tight, are depicted in
Fig. 2 for the eBA topology model and the k-center based
cell distribution. As expected, our algorithm clearly performs
better than the random one. The other three scenarii produce
similar results and are not shown here in detail.

The ratio of signal quality obtained with the heuristic and
random algorithms in function of the number of available RBs
is illustrated in Fig. 3. When RBs are satisfactorily numerous
to fulfill the global demand, m ≥ 20, the WFCP heuristic
algorithm outperforms the random one by about 50% despite
the interference graph type. This difference is even more
evident in the case of resource shortage. For instance, for
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Fig. 3. Ratio between the heuristic and random solutions (signal quality) as
a function of the number of available RBs.

m = 4, the random algorithm performs almost half as well
as the heuristic one for all the scenarii.

In the same figure we observe that this ratio is greater for
Waxman-based graphs. This difference can be explained by
the fact that the heuristic algorithm’s “worst case” graph is a
star graph where the center node has weight w1 and the other k
nodes have weight w2, with kw2 > w1. Graphs with an eBA-
based topology are more likely to contain such situations than
Waxman-based graphs. This is even more problematic with a
k-center based cell distribution. In those graphs, the strongly
connected nodes are very likely to be solutions to the k-center
problem, which will make them cell centers, and as such will
give them higher weights. As shown in Fig. 3, those graphs
do have the lowest ratio.

The influence of eNodeBs’ localization is much less distinct
and it may be observed principally in the situation of resource
abundance (m ≥ 20) in Fig. 3. For the same reason as that
explained below, the random algorithm may happen to choose
randomly a node placed close to an eNodeB and this choice
may be advantageous. Consequently, the surplus of RBs makes
the algorithms “topology insensitive” and the dominant factor
of their performance is the eNodeB placement.

B. Exact Algorithm and “Toy Instances”

The exact method to solve the WFCP has the complexity
in O((m + 1)nd). It can thus be performed in reasonable
time only for small instances which are without any practical
interest. We compute, however, the exact results for toy exam-
ples to confront them with those obtained with our heuristic
algorithm.

Interference graphs the size of 15 UEs are deployed on
the same seven cell honeycomb as random ones (Fig. 4(a)).
The central cell is a clique of three UEs, its six neighbors
are cliques of two UEs. The central cell is connected to its
neighbors either by one link or two links, alternately. As we
cannot really determine the eNodeBs’ localization in such
a trivial structure, we attribute metric values within a cell
according to uN(µ, xµ), where u is uniform on (0, 1). For
computational reasons we have to limit ourselves to m = 2,
and d = 2. With these parameters, our heuristic algorithm
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(a) Toy instance with 15 nodes
spanned on the seven cells hon-
eycomb.

(b) “Apple core” graph, seen as
a two cell network.
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Fig. 4. Comparison between the performances on the apple-core graph of
the random and the heuristic algorithms and the optimal result, depending on
the number of available RBs.

found the exact solution in 75% of the randomly generated
metric matrices. When it did not, the computed solution was
at worst 94% of the optimal one.

In order to bring together the heuristic and exact methods’
results in function of a varied number of available RBs
we must restrain our ambitions regarding the size of the
interference graph even more. We propose for the further
performance analysis an “apple-core” graph, Fig. 4(b).

With d = 2, this toy network needs m ≥ 12 RBs to satisfy
its demands entirely. For computational reasons we cannot
reach this limit. The average signal quality computed with the
heuristic, random and exact algorithms is depicted in Fig. 4.
All three cases are averaged over 20 random metric matrices,
and results for the random algorithm are averaged over 50 runs
for each matrix. For an apple-core-like graph and for a given
m, the heuristic algorithm is two or three times better than
the random one. Moreover, the results of the heuristic one are
statistically the same as those obtained in the exact way. This
is an encouraging observation despite the small instance size.

VII. CONCLUSION AND FURTHER WORK

The passage towards broadband transmissions in LTE-based
PMR networks makes Cassidian, the world leader in this field,
propose new functionalities of this protocol. This new feature
concerns a more precise sensing mechanism allowing a more
efficient spatial reuse of available resources and, accordingly,

improves the level of the UEs’ QoS satisfaction, which is
crucial in this type of professional networks.

Our first goal was to define a problem which models the
attribution of frequencies to cells with maximization of the
transmission quality having at our disposal UEs’ interaction
probabilities obtained by the novel sensing mechanism. Our
algorithmic approach authorizes the same RB to be allocated
in neighboring cells without creating interference and, con-
sequently, improve the frequency reuse. After defining the
WFCP we analyzed it from a theoretical point of view.

As the WFCP is NP-hard, we proposed a heuristic algorithm
of low complexity to solve it and confronted its performance
with those of a random one and of the exact one, the latter
being feasible for networks with very few UEs only.

In this paper we have built the solid fundaments for the
spatial frequency reuse scheme for the new generation of PMR
networks. The results of our heuristic algorithm, which we
have presented herein, encourage us to pursue the development
of its distributed versions keeping in mind their possible
implementation in future PMR protocols. The next natural step
will be the introduction of the scheduling of UEs’ demands
in time taking into account namely UEs’ priorities, traffic
prevision, and degradation of a transmission range in function
of the number of RBs emitted in the same slot. To validate
these approaches we will use the introduced methodology
of random generation of interference graphs. As we have
announced in Subsection III-D, we will also work on this
model at different granularity levels.
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