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Abstract:
Recently, a new family of methods has been proposed for characterizing accuracy in nonlinear
parameter estimation by Campi et al.. These methods make it possible to obtain exact, non-
asymptotic confidence regions for the parameter estimates under relatively mild assumptions
on the noise distribution, namely that the noise samples are independently and symmetrically
distributed.
The numerical characterization of an exact confidence region with this new approach is far from
being trivial, however. The aim of this paper is to show how interval analysis, which has been
used for a guaranteed characterization of confidence regions for the parameter vector in other
contexts, can contribute.

1. INTRODUCTION

When a vector p of parameters of some approximate
mathematical model is estimated from a noisy data vector
y, this is usually via the minimization of some cost
function J (p), for instance

J (p) = ‖y − ym (p)‖22 , (1)

where ym (p) is the vector of model outputs, assumed here
to be a deterministic function of p and ‖·‖2 is a (possibly
weighted) l2 norm. Then

p̂ = arg min
p
J (p) . (2)

This procedure is fraught with difficulties in the general
nonlinear case. The parameters of the model may not be
identifiable uniquely (i.e., there may be several values of
p̂ that yield exactly the same vector ym (p̂), in which case
there are several global minimizers of the cost function).
The numerical algorithm used to compute p̂ may also
get trapped at a parasitic local minimizer because of
inadequate initialization.

Even if a single numerical vector p̂ is obtained and if y
and ym (p̂) are reassuringly similar, it would be naive to
consider p̂ as the final answer to the estimation problem.
One should instead attempt to attach some quality tag
to p̂ by assessing the reliability of the numerical values
thus obtained. This is especially important if one wants
to estimate physically meaningful parameters of some
knowledge-based model in physics, chemistry, biology, etc.,
or if decisions have to be taken on the basis of the numer-
ical values of the model parameters to tune controllers or
to detect faults, for instance.

? This work has been partly supported by the ANR CPP.

A key issue is drawing conclusions that are as little
prejudiced as possible, and this paper presents a new
method for doing so in a guaranteed way, based on the
LSCR approach (Leave out Sign-dominant Correlation
Regions) recently developed by Campi et al. The paper
is organized as follows. The LSCR approach is recalled in
in Section 2. Section 3 shows how interval analysis can be
used to characterize the exact confidence regions provided
by LSCR in a global and guaranteed way. Examples are
treated in Section 4, and conclusions drawn in Section 5.

2. CHARACTERIZING PARAMETER
UNCERTAINTY WITH THE LSCR APPROACH

We assume in what follows that the system generating the
data belongs to the model set, and denote its parameter
vector by p∗. This gives meaning to the concept of a true
value for the parameter vector. It could be avoided by
stating that we want to characterize the set of all values
of p that are acceptable in a sense to be made precise.

In Campi and Weyer [2005], Dalai et al. [2007], Csáji
et al. [2012], two new approaches named LSCR and SPS
are described for the exact characterization of parame-
ter uncertainty in non-asymptotic conditions. Their most
striking feature is that they avoid a large number of the
usual assumptions about the noise corrupting the data. It
is not, for instance, necessary to assume that the noise is
Gaussian (or that it follows any other specific probability
distribution for that matter). Nor is it necessary to assume
that a bound δ on the size of the acceptable errors is
known. Both approaches require the noise samples to be
independently distributed with distributions symmetric
with respect to zero. LSCR is summarized in what follows,
since it is not limited to linear models, contrary to SPS.



LSCR defines, without any approximation, regions Θ to
which the parameter vector p∗ of the true system belongs
with some specified probability.

Let εt(p) be a prediction error, such that εt(p
∗) is a

realization of the noise corrupting the data at time t. The
procedure for computing one such confidence region is as
follows:

(1) Select two integers r > 0 and q > 0.
(2) For t = 1 + r, . . . , k + r = n, compute

cεt−r,r (p) = εt−r (p) εt (p) , (3)

(3) Compute

sεi,r (p) =
∑
k∈Ii

cεk,r (p) , i = 1, . . . ,m, (4)

where Ii is a subset of a set I of indexes and the
collection G of these subsets Ii, i = 1, . . . ,m, forms a
group under the symmetric difference operation, i.e.,
(Ii ∪ Ij)− (Ii ∩ Ij) ∈ G.

(4) Find the set Θε
r,q such that at least q of the functions

sεi,r (p) are larger than 0 and at least q are smaller
than 0.

This set is such that the probability that p∗ belongs to it
can be computed exactly

Pr
(
p∗ ∈ Θε

r,q

)
= 1− 2q/m. (5)

The shape and size of Θε
r,q depend not only on the values

given to q and r but also on the group G and its number
of elements m. A procedure for generating a group of
appropriate size is suggested in Gordon [1974].

The set Θε
r,q may be defined more formally as

Θε
r,q = Θε,−

r,q ∩Θε,+
r,q , (6)

with

Θε,−
r,q =

{
p ∈ P such that

m∑
i=1

τε,−i (p) > q

}
, (7)

Θε,+
r,q =

{
p ∈ P such that

m∑
i=1

τε,+i (p) > q

}
, (8)

where P is the prior domain for p and where

τε,−i (p) =

{
1 if − sεi,r (p) > 0,

0 otherwise,
(9)

and

τε,+i (p) =

{
1 if sεi,r (p) > 0,

0 otherwise.
(10)

The set Θε,−
r,q contains all values of p ∈ P such that at

least q of the functions sεi,r (p) are smaller than 0, whereas

Θε,+
r,q contains all values of p ∈ P such that at least q of

the functions sεi,r (p) are larger than 0.

When the model studied is driven by an input ut, one
may obtain a similar confidence region by substituting
cut−s,s (p) = ut−s (p) εt (p) for cεt−r,r (p) = εt−r (p) εt in
the procedure above, thus replacing autocorrelations by
intercorrelations. One then computes a set Θu

s,q, again
such that

Pr
(
p∗ ∈ Θu

s,q

)
= 1− 2q/m. (11)

The fact that the set Θε
r,q (or Θu

r,q) obtained by this
approach is exact does not mean that its volume is

minimal, and the resulting confidence region may turn out
to be much too large to be useful. One may then intersect
several such regions. For a given value of q and m, assume
that nε confidence regions Θε

r,q and nu confidence regions
Θu

s,q have been obtained for nε values of r and nu values
of s. The probability that p∗ belongs to the intersection
Θ of these (nε + nu) regions then satisfies

Pr (p∗ ∈ Θ) > 1− (nε + nu)2q/m. (12)

The price to be paid for taking the intersection of several
confidence regions is that the probability that p∗ belongs
to the resulting confidence region is no longer known
exactly, as only a lower bound for this probability is
available.

3. GUARANTEED CHARACTERIZATION VIA
INTERVAL ANALYSIS

For the LSCR approach (as well as for the other ap-
proaches to build confidence regions), a key issue is the
guaranteed and global numerical characterization of the
confidence region. However, and rather surprisingly, this
issue seems seldom addressed outside the community of
bounded-error estimation. We concentrate here on LSCR
confidence regions, but other types of confidence regions
could benefit of a similar treatment.

3.1 Problem statement

In LSCR, one has to characterize an intersection of sets
defined as

Ψq =

{
p ∈ P such that

m∑
i=1

τi (p) > q

}
, (13)

where τi (p) is some indicator function

τi (p) =

{
1 if fi (p) > 0,

0 otherwise,
(14)

and where fi (p) depends on the model structure, the
measurements, and the parameter vector p.

Characterizing Ψq may be alternatively formulated as a
set-inversion problem Jaulin and Walter [1993]

Ψq = P ∩ τ−1 ([q,m]) , (15)

with

τ (p) =

m∑
i=1

τi (p) , (16)

which may be efficiently solved via interval analysis Moore
[1966], Jaulin et al. [2001]. The next sections briefly recall
the basic notions of interval analysis required.

3.2 Inclusion functions and centered forms

Interval analysis considers closed interval [x] = [x, x] of
R and extends all arithmetic operations and elementary
functions on real numbers to intervals.

For arithmetic operations,

[x] ◦ [y] = {x ◦ y | x ∈ [x] , y ∈ [y]} , (17)

where ◦ ∈ {+,−, ·, /}. The set (17) is easily evaluated from
the bounds of [x] and [y] for the addition, subtraction,
multiplication, and division when 0 /∈ [y].



The range of a continuous function f : D ⊂ R → R over
an interval [x] ⊂ D

f ([x]) = {f (x) | x ∈ [x]} (18)

is again easily obtained when f is monotonic from eval-
uations involving the bounds of [x]. For elementary non-
monotonic functions, such as all trigonometric functions,
simple algorithms may be put at work to evaluate (18).
Nevertheless, in the general case, obtaining (18) requires
the (global) minimization and maximization of f over [x],
which is a complicated matter.

Interval analysis makes it possible, through the no-
tion of inclusion functions, to obtain guaranteed outer-
approximations of f ([x]). An inclusion function [f ] ([x])
of a function f (x) is such that

∀ [x] ⊂ D, f ([x]) ⊂ [f ] ([x]) , (19)

with [f ] ([x]) an interval. A minimal inclusion function
provides the smallest interval containing f ([x]) for all
[x] ⊂ D.

Various types of inclusion functions have been considered.
The simplest one is the natural inclusion function [fn] ([x]),
obtained by replacing, in the formal expression of f , all
occurrences of the real variable x by its interval coun-
terpart [x] and by performing all operations and elemen-
tary function evaluations on intervals. The centered form
[fc] ([x]) takes advantage of the mean-value theorem to
get a potentially more accurate approximation. It assumes
that f is differentiable, and for any m ∈ [x], is defined as

[fc] ([x]) = f (m) + ([x]−m) [f ′] ([x]) , (20)

where [f ′] ([x]) is an inclusion function of the first deriva-
tive of f . Usually, m is taken as the midpoint of [x],
m = mid ([x]).

Inclusion functions are in general pessimistic, i.e., they
provide coarse outer-approximations of the range of func-
tion, especially for large intervals and when they are many
occurrences of the same real variables. Pessimism de-
creases when the width of the interval argument decreases,
however.

All these notions are extended to interval vectors or boxes,
which are Cartesian product of intervals, and to vector-
valued functions. See, e.g., Jaulin et al. [2001] for more
details.

3.3 SIVIA

Consider a set-inversion problem where one has to charac-
terize the set

X = [x] ∩ f−1 (Y) , (21)

where f : D ⊂ Rn → Rm, Y ⊂ Rm, and [x] ⊂ D is
some initial search box for X. The aim of the Set Inverter
Via Interval Analysis (SIVIA) Jaulin and Walter [1993]
is to provide an inner approximation X and an outer
approximation X of X, represented by subpavings, i.e.,
unions of non-overlapping boxes. The distance between X
and X is indicative of the quality of the approximation of
X. SIVIA requires an inclusion function [f ] to be available
for f .

SIVIA iteratively partitions the box [x] into subboxes on
which the following tests are applied. Consider a given
subbox [x̃] of [x]. If [f ] ([x̃]) ⊂ Y then (19) implies that

f ([x̃]) ⊂ Y and thus that [x̃] ⊂ X. In this case, [x̃] is stored
in X and in X. If [f ] ([x̃]) ∩ Y = ∅ then (19) implies that
f ([x̃]) ∩ Y = ∅ and thus that [x̃] ∩ X = ∅. In this case, [x̃]
is not considered any further. If none of the two previous
tests is true, [x̃] is undetermined. In this case, if [x̃] is large
enough, i.e., if the largest width of its component intervals
is larger than some precision parameter ε, [x̃] is bisected
into [x̃1] and [x̃2] on which the previous tests are applied
again. If [x̃] is too small to be bisected, it is stored in X.

The efficiency of SIVIA is conditioned by the accuracy of
the inclusion function available for f .

To address the set inversion problem introduced in Sec-
tion 3.1 with SIVIA, an inclusion function for τ is nec-
essary, which will be based on inclusion functions for the
τi’s, and consequently for the fi’s.

3.4 Contractors for guaranteed characterization

Large enough undetermined boxes need to be bisected by
SIVIA. Indetermination often results from range overes-
timation by inclusion functions. As a consequence, boxes
have to be bisected many times to allow one to conclude on
the position of the resulting boxes with respect to X. This
entails intractable computational complexity, even for a
moderate dimension of p.

Contractors Jaulin et al. [2001] partly address this issue.
A contractor Cf ,Y associated with the generic set-inversion
problem (21) is a function taking a box [x] as input and
returning a box

Cf ,Y ([x]) ⊂ [x] (22)

such that

[x] ∩ X = Cf ,Y ([x]) ∩ X, (23)

so no part of X in [x] is lost. It allows parts of the
candidate box [x] that do not belong to X to be eliminated,
without the need to perform any bisection. Various types
of contractors have been proposed in the literature, e.g.,
the contractors by interval constraint propagation, by par-
allel linearization, the Newton contractor, the Krawczyk
contractor, etc.

In the specific problems considered here, the role of x is
taken by p. The fact that the function τ introduced in (16)
is not differentiable forbids the use of most classic contrac-
tors, so a specific contractor is needed. The new contractor
proposed is implemented in two steps. It assumes that the
functions fi involved in (14) are differentiable. First, a set
of m possibly overlapping subboxes of [p] are built, trying
to remove all values of p from [p] such that fi (p) < 0,
i = 1, . . . ,m. Second, the union of all non-empty inter-
sections of at least q of these boxes is computed to get a
possibly contracted box.

Box contraction using the fi’s The first step uses the
centered inclusion function of fi, which, for some m ∈ [p],
may be written as

[fi,c] ([p]) = fi (m) + ([p]−m)
T

[gi] ([p]) (24)

= fi (m) +

np∑
j=1

([pj ]−mj) [gi,j ] ([p]) , (25)



where gi is the gradient of fi. Using (25), we build a
contractor Cfi,[0,∞[ for the set of all values of p ∈ [p] such
that fi (p) > 0 as follows.

For the k-th component [pk] of [p], when 0 /∈ [gi,k] ([p]),
Cfi,[0,∞[ associates the contracted interval[

p′i,k
]

= [pk] ∩

((
([fi,c] ([p]) ∩ [0,∞[)− fi (m)

−
np∑

j=1,j 6=k

([pj ]−mj) [gi,j ] ([p])

)
/ [gi,k] ([p]) +mk

 .

(26)

When 0 ∈ [gi,k] ([p]), Cfi,[0,∞[ leaves [pk] unchanged, i.e.,[
p′i,k
]

= [pk] . (27)

Proposition 1. For all [p′i], i = 1, . . . ,m, built using (26)
and (27), one has

[p′i] ⊂ [p] (28)
and

[p′i] ∩ f−1i ([0,∞[) = [p] ∩ f−1i ([0,∞[) . (29)

Proof [p′i] ⊂ [p] is true by construction. To prove (29),
it remains to be proven that [p] ∩ f−1i ([0,∞[) ⊂ [p′i] ∩
f−1i ([0,∞[). Consider p0 ∈ [p] ∩ f−1i ([0,∞[). For each

index k such that 0 ∈ [gi,k] ([p]), [pk] =
[
p′i,k

]
, thus

p0k ∈
[
p′i,k

]
, and only the indices k such that 0 /∈ [gi,k] ([p])

have to be considered. For any m ∈ [p], the mean-value
theorem implies that there exists ζ ∈ [p] such that

fi
(
p0
)

= fi (m) +

np∑
j=1

(
p0j −mj

)
gi,j (ζ) . (30)

Since p0 ∈ f−1i ([0,∞[),

fi
(
p0
)
∈ [0,∞[ . (31)

Provided that gi,k (ζ) 6= 0, (30) implies that the k-th
component of p0 satisfies

p0k =

(
fi
(
p0
)
− fi (m)

−
np∑

j=1,j 6=k

(
p0j −mj

)
gi,j (ζ)

)
/gi,k (ζ) +mk. (32)

Since [fi,c] (·), introduced in (25), is an inclusion function
for fi (·), (31) combined with the fact that p0 ∈ [p] and
ζ ∈ [p], implies that

p0k ∈ [pk] ∩

((
(([fi,c] ([p]) ∩ [0,∞[)− fi (m)

−
np∑

j=1,j 6=k

([pj ]−mj) [gi,j ] ([p])

)
/ [gi,k] ([p]) +mk


(33)

∈ [p′k] , (34)

provided that 0 /∈ [gi,k] ([p]). Thus for each k, p0k ∈
[p′k]. Since p0 also belongs to f−1i ([0,∞[), p0 ∈ [p′i] ∩
f−1i ([0,∞[), which completes the proof. �
Considering the m functions fi and applying all the
contractors Cfi,[0,∞[, i = 1, . . . , n, to [p], one obtains a
list of m possibly contracted boxes

1 [p] = ∅;
2 Reindex the boxes [pi] in such a way that

p
1
6 p

2
6 · · · 6 p

n
;

3 For i = q to n

4 if
∑n

j=1

(
p
i
∈ [pj ]

)
> q

5 p = p
i
; break;

6 Reindex the boxes [pi] in such a way that
p1 > p2 > · · · > pn

7 For i = q to n
8 if

∑n
j=1 (pi ∈ [pj ]) > q

9 p = pi; break;

Algorithm 1. [p] = q-relaxed intersection ([p1] , . . . , [pn])

L =
{
Cf1,[0,∞[ ([p]) , . . . , Cfm,[0,∞[ ([p])

}
(35)

= {[p′1] , . . . , [p′m]} . (36)

Some of them may be empty, in which case, [p′i] = ∅
indicates that there is no p ∈ [p] such that fi (p) > 0.
Our aim is to evaluate a subbox [p′] of [p] such that
Ψq ∩ [p′] = Ψq ∩ [p].

Building a q-relaxed intersection During the second step,
the contractor builds a box [p′] enclosing the q-relaxed
intersection P Jaulin and Walter [2002], Jaulin [2009, 2011]
of the boxes in L = {[p′1] , . . . , [p′m]}, i.e., the union of all
intersections of at least q boxes in L

P =

q⋂
j∈{1,...,m}

[
p′j
]
. (37)

=
⋃

J ⊂ [1, . . . ,m]
card (J) > q

⋂
j∈J

[
p′j
]
, (38)

and satisfying
P ⊂ [p′] ⊂ [p] . (39)

Proposition 2. For any box [p′], satisfying (39), one has

Ψq ∩ [p′] = Ψq ∩ [p] ,

with Ψq as defined in (13).

Proof Assume that there exists p0 ∈ [p] such that p0 ∈
Ψq ∩ [p] but p0 /∈ Ψq ∩ [p′]. Since p0 ∈ Ψq ∩ [p], p0 ∈ Ψq.
According to (13),

∑m
i=1 τi (p0) > q. There are thus at

least q functions τi such that τi (p0) > 1. Assume, without
loss of generality, that τ1 (p0) > 1, . . . , τq (p0) > 1. Since
τi (p0) > 1, i = 1, . . . , q, by definition of Cfi,[0,∞[, one
has p0 ∈ [p′i], i = 1, . . . , q and p0 ∈

⋂
i=1,...,q [p′i]. By

definition of P and [p′], p0 ∈
⋂

i=1,...,q [p′i] ⊂ P ⊂ [p′],
which contradicts the initial assumption. �
Algorithm 1 formalizes a computation carried out on an
example in Jaulin [2011]. It aims at building an outer
approximating interval of the q-relaxed intersection of m
scalar intervals. The extension to boxes is obtained by
applying Algorithm 1 componentwise.

Consider a list L = {[p1] , . . . , [pm]} of m scalar intervals.
Algorithm 1 builds the smallest interval containing the
union of all intersections of q intervals with a complexity
O (m logm). This is the smallest interval containing P as
defined by (37) in the scalar case. At Steps 4 and 8 of
Algorithm 1, (p ∈ [pj ]) = 1 if p ∈ [pj ] and (p ∈ [pj ]) = 0
otherwise.



When L is a list of boxes of the same dimension, one may
simply apply Algorithm 1 component by component.

4. EXAMPLES

Two examples are considered in what follows to illustrate
the guaranteed characterization of exact confidence re-
gions provided by LSCR.

All computations were carried out with Intlab Rump
[2001], the interval-analysis toolbox for Matlab.

4.1 Exponential model
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Fig. 1. Paving of search space obtained in the exponential
case for the characterization of Θε

r=1,q=3
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Fig. 2. Subpavings of search space obtained in the expo-
nential case for the characterization of Θε

r=1,q=3, with
the contractors of Section 3.4

Consider first a system such that

yt = a∗ exp (−b∗t) + wt (40)

where, for t = 0, T, . . . , (n− 1)T , the wt’s are assumed to
be realizations of iid N

(
0, σ2

)
variables.

Take as a model

ymt (p) = a exp (−bt) , (41)

which is nonlinear in p = (a, b)
T

. For the true value of the
parameter vector, the prediction errors defined as

εt (p) = yt − ymt (p) , (42)

with ymt (p) taken from (41), are iid N
(
0, σ2

)
. Their

distribution is thus symmetric, and LSCR applies.

The characterization of Θε
r,q (or Θu

s,q) is addressed using
SIVIA. For that purpose, inclusion functions for the indi-

1

k
01

k
21

k
12

2

u

Fig. 3. Two-compartment model

cator functions τε,−i and τε,+i introduced in (9) and (10)
are provided

[
τε,−i

]
([p]) =


1 if sup

([
sεi,r
]

([p])
)
< 0,

0 if inf
([
sεi,r
]

([p])
)
> 0,

[0, 1] else,

(43)

and

[
τε,+i

]
([p]) =


1 if inf

([
sεi,r
]

([p])
)
> 0,

0 if sup
([
sεi,r
]

([p])
)
< 0,

[0, 1] else.

(44)

In (43) and (44),
[
sεi,r
]

is an inclusion function for sεi,r.

Consider n = 64 measurements collected regularly with a
period T = 0.1 s, with a∗ = 2, b∗ = 0.2, and σ2 = 0.01. The
initial search set in parameter space is taken as P = [0, 5]×
[0, 5], and the precision parameter as ε = 0.005. Figure 1
represents guaranteed inner and outer approximations of
the set Θε

r=1,q=3 obtained for q = 3, which corresponds to
a 90% confidence region. This set turns out to contain the
true value of the parameter vector, which should of course
not always be true.

With the same experimental conditions, Figure 1 repre-
sents guaranteed inner and outer approximations of the
set Θε

r=1,q=3 obtained for q = 3, when the contractors of
Section 3.4 are employed. As can be seen, the contractors
are only efficient for small boxes close to the solution set.

4.2 Compartmental model

Consider now the two-compartment model described by
Figure 3. The system output satisfies

yt = α (p∗) (exp (λ1 (p∗) t)− exp (λ2 (p∗) t)) + wt, (45)

where p = (k01, k12, k21)
T

,

α (p) = k21/

√
(k01 − k12 + k21)

2
+ 4k12k21, (46)

λ1,2 (p) = −1

2
((k01 + k12 + k21)

±
(

(k01 − k12 + k21)
2

+ 4k12k21

)−1/2)
(47)

and the wt’s are realizations of iid N
(
0, σ2

)
variables, for

t = 0, T, . . . , (n− 1)T . Data have been generated with

p∗ = (1, 0.25, 0.5)
T

. The variance of the measurement
noise is σ2 = 10−4. The sampling period is T = 0.2 s,
and n = 64. To facilitate illustration, only k01 et k12 are
estimated. The value k∗21 of k21 is assumed known.

Since the measurement noise is additive, the LSCR
method applies directly, as in the previous example. For

a given value p = (k01, k12, k
∗
21)

T
of the parameter vec-

tor, the prediction errors are εt (p) = yt − ymt (p) , with
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Fig. 4. Paving of search space P = [0, 5] × [0, 5] obtained
in the two-compartment model case for the char-
acterization of the confidence region Θε

r,q; the two
bottom subfigures are zooms on the two disconnected
components of Θε

r,q

ymt (p) = α (p) (exp (λ1 (p) t)− exp (λ2 (p) t)), for t =
0, T, . . . , (n− 1)T .

Here, the set Θε
r,q has been characterized with r = 1 and

q = 3, which corresponds to a 90 % confidence region,
see Figure 4. The initial search set in parameter space is
P = [0, 5] × [0, 5] and ε = 0.001. The results show that
the confidence region consists of two disconnected subsets,
a consequence of the lack of global identifiability of the
considered model, which is only locally identifiable. The
values of k01 and k12 may be exchanged without changing
the model output. Figure 4 (bottom) focuses on the two
confidence subsets, one of which turns out to contain the
actual value of the two unknown parameters, although this
is not guaranteed, of course.

5. CONCLUSIONS AND PERSPECTIVES

Interval analysis provides tools to evaluate guaranteed
inner and outer-approximations of non-asymptotic confi-
dence regions defined by LSCR. Illustrations have been
provided for two models with outputs nonlinear in their
parameters. Applications to the characterization of confi-
dence regions defined by SPS may be found in Kieffer and
Walter [2012].

Accurate inclusion functions are particularly difficult to
obtain for the functions involved in LSCR, due to the many
occurrences of the parameters involved in the evaluation of
(4). Symbolic manipulations of the expressions involved to
reduce the number of occurrences of the parameters may
be particularly useful to improve the efficiency of SIVIA
and to design better contractors than those considered in
Section 3.4.1.

The availability of efficient contractors is mandatory to
address the problems of characterizing confidence regions
for models with a large number of parameters.
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