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Abstract—This paper analyzes the impact on the TCP-Reno
congestion control mechanism of a network coding (NC) layer
inserted in the TCP/IP stack. A multi-source multi-link model is
considered to study the equilibrium and dynamic properties of
the TCP-NC protocol with RED as active queue management
mechanism. The existence and uniqueness of some network
equilibrium is demonstrated and characterized in terms of
average throughput, loss rate, and queue length. Global stability
is proved in absence of forward delay, and the effects of the
NC redundancy factor and of the delay on the local stability of
TCP-NC-RED is studied around the equilibrium point. Results
provided by the proposed model are compared to those obtained
by simulation for N sources sharing a single link. TCP-NC-RED
becomes unstable when delay or capacity increases, as TCP-
Reno does. Its stability region is characterized as a function of
the redundancy factor.1

Index Terms- congestion control, network coding, queue man-
agement, stability.

I. INTRODUCTION

In [11], a new TCP-friendly protocol is proposed that
interfaces network coding (NC) with TCP by introducing a
new coding layer in the TCP/IP stack between TCP and IP.
The idea is to benefit from NC to improve TCP throughput. In
this layer TCP segments are encoded at the sender and decoded
at the receiver. In [10] the authors additionally describe several
important practical aspects of incorporating NC below TCP-
Reno [1], such as the TCP-compatible sliding window code,
and new rules for acknowledging bytes to the TCP layer.
Redundant packets are transmitted by the sender to mask
non-congestion losses, e.g., losses on the wireless part of the
network, from TCP congestion control. Simulation results in
[10], [11] show an improvement in TCP throughput for a
constant value of the redundancy factor ρ. The purpose of
ρ is to match the rate at which data are obtained at the
receiver to the sending rate of TCP. If ρ is too small, the losses
are not masked from TCP and the NC decoding probability
decreases. On the other hand if ρ is too large, the congestion
may increase, reducing the throughput. Thus, an adaptation
mechanism for ρ has been proposed in [8].

This paper characterizes the effect of NC on the equilibrium
and local stability of TCP-Reno. The equilibrium or average
throughput has been characterized in [4], where a framework

1This work has been partly supported by DIM-LSC SWAN.

is proposed to predict TCP-NC throughput when Vegas is used
as TCP congestion control. Here, we consider the tools from
control and optimization theory used to characterize TCP [2],
[5], [7], [12] to study TCP-NC as a distributed primal-dual
algorithm that maximizes some aggregate utility function.

In what follows, TCP-NC is briefly described in Section II,
details about the network model and properties of the TCP-
NC protocol are given in Sections III and IV, respectively.
Our model is evaluated in Section V and some conclusions
and futures research directions are drawn in Section VI.

II. PRINCIPLES OF THE TCP-NC PROTOCOL

The TCP-NC protocol introduces a NC layer between the
TCP and IP layers in the TCP/IP protocol stack [11]. The
sender stores packets generated by TCP in a coding buffer.
For every arrival from TCP, it transmits ρ random linear com-
binations of the most w recently arrived packets in the coding
buffer. To convey information about the linear combination,
an NC header is added to the coded packets, which contains
information about the coefficients used to mix the packets,
the first and last byte SEQ of each packet involved in the mix,
and the first byte that has not been acknowledged. The original
packets remain in the coding buffer until an appropriate TCP
ACK arrives from the receiver side.

On the receiver side, upon receiving a packet containing
a new linear combination, the decoder places it in the de-
coding buffer, appends the corresponding coefficients to the
decoding matrix (which contains the coefficients used to mix
already received packets), and performs Gaussian elimination.
This process helps determining whether the received packet
contains new information. Then the receiver sends a TCP
cumulative ACK to the sender requesting the first unseen
packet in order, like in conventional TCP. The Gaussian
elimination may result in a new packet being decoded. In this
case the decoder delivers this packet to the receiver TCP. Any
ACK generated by the receiver TCP is suppressed and not
sent to the sender. These ACKs may be used for managing the
decoding buffer. An important point is that the introduction of
the new NC layer does not require any change in the basic
features of TCP. For more detail, see [10].



III. DYNAMIC MODEL

In this section we develop a model of TCP-NC/RED to
study the equilibrium and dynamic properties of the TCP-
NC protocol. We start with a non-linear model, study its
equilibrium properties in absence of forward delay using
optimization theory [2], [6], [12], and then linearize the model
around its equilibrium to study the effect of the delay and of
the redundancy factor ρ on the stability of the system.

A. Network Model

The model introduced in [6] is used to describe the network.
A network is represented by a set of |L| = L links, indexed
by ` = 1, . . . , L, with finite capacities c`. They are shared
by a set of |S| = S sources indexed by i. Each source i
uses a set Li ⊆ L of links to convey information through the
network to some receiver. The set Li defines an L×S routing
matrix R, with R`i = 1 if ` ∈ Li and R`i = 0 otherwise.
Following the notation in [6], each source i has an associated
TCP congestion window size wi(t), a NC redundancy factor
ρi, and an aggregate congestion measure or aggregate price
qi(t). Here the redundancy factor ρi is introduced to account
for NC layer. Each link ` has a congestion measure or price
p`(t) at time t.

Define the round trip time (RTT) τi(t) for source i as

τi(t) = di +
∑
`

R`i
b`(t)

c`
, (1)

where di is the round-trip propagation delay assumed to be
constant and b`(t) is the backlog (queue length) at link `. The
rate for the i-th source is

xi(t) =
wi(t)

τi(t)
. (2)

The aggregate input rate at link ` is the sum of the delayed
source rates

y`(t) =
∑
i

R`ixi(t− τf`i), (3)

where τf`i is the forward delay from source i to link `.
The active queue management (AQM) [6] models describe
how the congestion measure p`(t) at link ` is updated. The
congestion control problem involves a continuous interaction
between TCP algorithms implemented in the sources, and
AQM algorithms implemented in the links. The aggregate
congestion measure of user i (chosen here as the end-to-end
loss probability) is

qi(t) =
∑
l

R`ip`(t− τ b`i). (4)

It is the sum of delayed link loss probabilities, where τ b`i is
the backward delay from link ` to source i. The RTT time is
the sum of the forward and backward delays

τi(t) = τf`i(t) + τ b`i(t). (5)

As in [5], we assume that at each link the congestion measure
is modeled through a price mapping function m` that maps
the queue length b`(t) at link ` to a price p`(t).
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Fig. 1. Interactions between the TCP and the AQM mechanisms

Source i can observe only its own rate xi(t) and its
aggregate congestion measure qi(t). Link ` observes only its
own local congestion p`(t) and the aggregate flow rate y`(t).

TCP algorithms adjust the i-th source rate using some
function Fi based on qi(t) and ρi (to account for the presence
of the NC layer). The dynamics of the source rate is given by

ẋi(t) = Fi (xi(t), qi(t), ρi) , (6)

for all sources i.
AQM algorithms adjust link prices according to some

function G` based on the aggregate link rate on link `. In
the network side, the evolution of the congestion of link ` is

ṗ`(t) = G` (p`(t), y`(t)) . (7)

Fi depends on the considered TCP algorithm (Reno, Vegas,
etc.) and Gi depends on the AQM mechanism (FIFO, REM,
RED, etc.) [6], [7]. The interaction between the control at
sources and the control at links results in a feedback system,
see Figure 1. This network model is used in Section III-B to
derive the dynamics of TCP-NC combined with RED-AQM.

B. TCP-NC/RED-AQM Model

To describe the dynamics of TCP-NC, we focus on the
congestion avoidance phase of TCP-Reno, in which a large
continuous flow set up by TCP spends most of the time. We
derive the fluid model approximations from the packet level
description of the TCP-NC protocol and study its dynamics.
At time t, ρixi(t) is the rate at which packets are sent to the
receiver. A fraction of these packets is acknowledged at a rate
E[RACKs] and each ACK increments the size wi(t) of the TCP
congestion window by 1/wi(t). Negative acknowledgments,
at an average rate of E[RNACKs], return back to the sender,
each one reducing wi(t) by βwi(t). The constant β is the
rate at which xi(t) is decreased each time there are losses
(typically β = 1/2). The dynamic of the source rate during
the congestion avoidance phase of TCP-Reno with NC may
be described as follows

ẋi(t) =
1

wi(t)
E[RACKS]− βwi(t)E[RNACKS] (8)



Accounting for the effects of the NC layer, E[RNACKS] is

E[RNACKS] = xi(t− τi(t))qi(t)−
(ρi − 1)(1− qi(t))xi(t− τi(t))−

(ρi−1)xi(t−τi(t))−1∑
k=0

[k − (ρi − 1)xi(t− τi(t))]×(
ρxi(t− τi(t))

k

)
(qi(t))

k
(1− qi(t))ρixi(t−τi(t))−k (9)

The first term in (9) is the rate at which packets are lost;
this term appears also in TCP-Reno without NC. The second
and third terms in (9) are related to NC. The second is the
rate at which NC compensate losses, and the third expresses
the fact that xi(t) packets/s are enough to perform network
decoding at the receiver. The rate at which ACKs are received
is E[RACKS] = ρixi(t − τi(t)) − E[RNACKS]. In congestion
avoidance phase, xi(t)qi(t) ≥ (1−qi(t))(ρi−1)xi(t), and (9)
can be approximated as

E[RNACKS] ≈ xi(t−τi(t))qi(t)−(ρi−1)(1−qi(t))xi(t−τi(t))
(10)

Combining (8) and (10), the evolution of source rates under
the control of TCP-NC (6) may be rewritten as

ẋi(t) = xi(t− τi(t)) (ρi − 1 + (1− qi(t)) ρi)
1

wi(t)
−

βxi(t− τi(t)) (1− (1− qi(t)) ρi)wi(t). (11)

To study the evolution of the queue length in each link `, we
consider random early detection (RED) as AQM mechanism.
With RED-AQM, b`(t) evolves as follows [6]

ḃ`(t) = (y`(t)− c`)+b`(t) (12)

where (a)
+
z = a if z > 0, and (a)

+
z = max(0, a) if z =

0. RED averages the instantaneous queue length b`(t) by an
exponentially weighted average r`(t), given by

ṙ`(t) = −α`c`(r`(t)− b`(t)) (13)

for some constant 0 < α` < 1. Given r`(t), the local
congestion measure p`(t) at link ` is given by

p`(t) = m`(r`(t)) =


0, r`(t) ≤ b`,
γ`(r`(t)− b`), b` < r`(t) < b`,

η`r`(t)− (1− 2p`), b` < r`(t) < 2b`,

1, rt(t) ≥ 2b`,

(14)

where b`, b`, p`, are the parameters of the RED algorithm.
Morover, γ` = p`/(b` − b`) and η` = (1− p`)/b`.

IV. PROPERTIES OF TCP-NC, CONSTANT REDUNDANCY

In this section we characterize some equilibrium and dy-
namic properties of TCP-NC. To study the equilibrium of a
network characteristic (average throughput, loss rate, delay,
etc.) under the TCP-NC-AQM control, we will use the fact
that the equilibrium of (6) and (7) can be easily characterized

by studying its underlying optimization problem, where we
maximize the aggregate utility of the users subject to link
capacity constrains [2]. To prove the global stability of the
algorithm we assume the absence of forward delay, τf`i = 0.
The local stability is studied by linearizing the system around
the equilibrium as a function of the round-trip time and the
redundancy factor.

A. Equilibrium and utility maximization framework
Let (x∗i , w

∗
i , q
∗
i , . . . , p

∗
` ) denotes the equilibrium point of

user i and link `. It satisfies{
0 = Fi (x

∗
i , q
∗
i , ρi)

0 = G` (p
∗
` , y
∗
` )

(15)

We consider the utility maximization framework introduced
in [5], [7], where the equilibrium source rate vector x∗ and
the equilibrium price vector p∗ of (6)-(7) are the primal and
dual optimal solutions to an equivalent utility maximization
problem. A fixed point of (6) defines an implicit relationship
between x∗i and q∗i , expressed as

q∗i = fi(x
∗
i , ρi) (16)

where fi is a positive, strictly monotone decreasing func-
tion [6]. This assumption allows to introduce the duality
between the optimal solution of a utility maximization problem
and the equilibrium of (6) and (7) by defining Ui, the utility
function of user i as ∂Ui(x

∗
i )

∂x∗
i

= fi(x
∗
i ). Using the assumptions

on fi, one deduces that Ui has a positive decreasing derivative
and is therefore monotone increasing and strictly concave.

Now, consider the problem of maximizing the aggregate
utility formulated in [2]

max
x≥0

∑
i

Ui(xi)

subject to Rx ≤ c
(17)

where the constraint says that at each link ` the aggregate rate
y` does not exceed the capacity. An optimal rate vector x∗

exists since the objective function Ui is continuous and the
feasible solution set is compact [6]. It is unique since Ui is
strictly concave.

The key to understand the equilibrium of (6)-(7) is to regard
the vectors x and p as primal and dual variables, respectively,
and (F,G) = (Fi, G`, i ∈ S, ` ∈ L) as distributed primal-dual
algorithms to solve the primal problem (17) and its Lagrangian
dual

min
p≥0

∑
i

max
xi≥0

(Ui(xi)− xiqi) +
∑
`

p`c`. (18)

Hence the dual variable is a precise measure of congestion
in the network. The dual problem has an optimal solution
since the primal problem is feasible. The equilibrium points
(x∗, p∗) of (6) and (7) are interpreted as the optimal solution
of the primal-dual problem, and that (F,G) iterates on both
the primal and dual variables to solve both problems. The rate
vector x∗ is optimal if and only if there exists p∗ ≥ 0 such
that

∂Ui(x
∗
i )

∂x∗i
= q∗i =

∑
`

R`ip
∗
` (19)



and y∗` =
∑
iR`ix

∗
i ≤ c`, with equality if pl ≥ 0. The

last condition is the complementary slackness conditions. This
condition indicates that all bottlenecks are fully utilized at
equilibrium or that the AQM should match the input rate to
link capacity to maximize the utilization at every bottleneck
link. Any AQM algorithm that stabilizes queues possesses this
property, and generates a Lagrange multiplier p∗ that solves
the dual problem, as is the case for classical TCP without
NC [2], [6].

In summary, the utility Ui of source i is completely deter-
mined by the source dynamics Fi, i.e., by the TCP algorithm.
The link dynamics Gi guarantees complementary slackness
condition, and the prices p∗ play the role of the Lagrange
multipliers of the dual problem. The strict concavity of Ui
guarantees the existence and uniqueness of the optimal rates
x∗ of (17) and the global convergence of the algorithms, and
p∗ is unique when R has full row rank. Thus, (6) and (7) solve
the utility maximization problem given by (17) in a distributed
way. Moreover, various TCP-AQM protocols can be modeled
as different distributed primal-dual algorithms (F,G) to solve
the primal optimization problem (17) and its dual (18).

1) Global stability in absence of forward delay, τf`i = 0:
Neglecting the forward delay, from the equilibrium of (11)
obtained for ẋi = 0, one deduces the average aggregate price
seen by user i

q∗i =
β (ρi − 1) (x∗i τ

∗
i )

2 + 1

ρi (1 + β(x∗i τ
∗
i )

2)
= f(x∗i ). (20)

The utility function of TCP-NC using (19) and (20) is

Ui(xi) =
1− (ρi − 1)√

βτiρi
tan−1

(√
βτixi

)
+

(
ρi − 1

ρi

)
xi.

(21)
This utility function differs from the one found for TCP-
Reno in [2] in the amplitude of the inverse tangent and in
the addition of a linear term. Both are due to the effect of the
NC layer. Nevertheless, the utility for TCP-NC-Reno is still
concave and yields a unique equilibrium point. The average
throughput is found by considering again the equilibrium
of (11), ẋi(t) = 0, leading to

x∗i =

√
ρi − 1 + (1− q∗i )ρi
β (1− (1− q∗i ) ρi)

1

τ∗i
. (22)

To study the global stability of TCP-NC, consider the follow-
ing function used in [9]

V (p) =
∑
`

(c` − y∗` ) p` +
∑
i

∫ qi

q∗i

(
x∗i − (U ′i)

−1
(σ)
)
dσ.

(23)
One can show that (23) is a Lyapunov function, even when
considering NC, V (p) ≥ 0, V̇ (p) ≤ 0,∀p` ≥ 0. By the
Lyapunov theorem one deduces that the system is globally
stable in the absence of forward delay [3].

B. Dynamics of TCP-NC-RED: linearized model
So far we studied the equilibrium point of the TCP-NC

model. In this section, the TCP-NC-RED equations are lin-
earized to study the effect of the delay and of the redundancy

factor around the equilibrium point. Assuming R has full rank,
there is a unique equilibrium (w∗i , q

∗
i , τ
∗
i ). Expressing (11) as

a function of the congestion window, one obtains

ẇi(t) =
wi(t− τ∗i ) (ρi − 1 + (1− qi(t)) ρi)

τi(t− τ∗i )
1

wi(t)
−

βwi(t− τ∗i ) (1− (1− qi(t)) ρi)wi(t)
τi(t− τ∗i )

, (24)

where b∗` denotes the equilibrium queue lengths and τ∗i =

di +
∑
`R`i

b∗`
c`

the equilibrium RTT. Let δwi(t) = wi(t) −
w∗i . By linearizing (24) around the equilibrium, we obtain the
linearized window dynamics

δwi(t) = −
2β (1− (1− q∗i ) ρi)w∗i

τ∗i
δwi(t)−

ρ2i
(1− (1− q∗i ) ρi) τ∗i

δqi(t). (25)

In a similar way, with δp`(t) = p`(t)− p∗` and by linearizing
(14) around the equilibrium, we obtain the linearized price
dynamics

δp`(t) = −α`c`δp`(t) + α`c`γ`δb`(t). (26)

For the purpose of linearizing the link dynamics of RED,
the non-bottleneck links can be ignored. The linearized queue
length dynamics around the equilibrium RTT is given in [6]

δb`(t) =
∑
i

R`i
δwi

(
t− τf∗`i

)
τ∗i

−

∑
i

∑
k

R`iRki
w∗i

(τ∗i )
2ck

δbk

(
t− τf∗`i

)
, (27)

Expressing (25), (26), and (27) in the Laplace domain, we get

δw(s) = −(sI +D1)
−1D2R

T
b (s)δp(s) (28)

δp(s) = (sI +D3)
−1D4δb(s) (29)

δb(s) = (sI +Rf (s)D5R
TD6)

−1Rf (s)D7δw(s) (30)

where the Di are diagonal matrices, defined as

D1 = diag
(
− 2β(1−(1−q∗i )ρi)w

∗
i

τ∗
i

)
D2 = diag

(
ρ2i

(1−(1−q∗i )ρi)τ∗
i

)
D3 = diag (αlcl) D4 = diag (αlclγl)

D5 = diag
(

w∗
i

(τ∗
i )

2

)
D6 = diag

(
1
cl

)
D7 = diag

(
1
τ∗
i

)
and where Rf (s) and Rb(s) are the forward and backward
delay matrices, with [Rf (s)]`i = e−τ

f
`is if ` ∈ Li and

[Rf (s)]`i = 0 else, and [Rb(s)]`i = e−τ
b
`is if ` ∈ Li, and

[Rb(s)]`i = 0 alse.
Using (28)-(30), one can derive the loop gain L(s) =

δq(s)/δw(s) as

L(s) = Rf (s)D7(sI +D1)
−1D2R

T
b (s)(sI +D3)

−1×
D4(sI +Rf (s)D5R

TD6)
−1. (31)

which may be used to characterize stability.



V. VERIFICATION AND STABILITY REGION

In this section we present the properties of the linearized
model (31) and the effect of the delay and of the redundancy
on the stability region of TCP-NC.

Consider N identical sources sharing a single link |L| = 1
with capacity c, RED as AQM, and equal redundancy factors
ρi = ρ. In this case, dropping the subscripts from (28), the
transfer function between the congestion window and the loss
congestion measure is

δw(s) =
ρ2

p∗z(ρ)

e−τ
b∗s

τ∗s+ 2βz(ρ)p∗w∗
δp(s), (32)

where z(ρ) = 1−(1−p∗)ρ
p∗ . The equilibrium congestion window

is given by w∗ = τ∗c
N , where τ∗ is the equilibrium RTT. The

equilibrium price p∗

p∗ =
β(ρ− 1)(w∗)2 + 1

ρ (1 + β(w∗)2)
,

is obtained from (20). From (28)-(29), the transfer function
between the congestion measure and the congestion window
is

δp(s) =
αcγ

s+ αc

Ne−τ
f∗s

τ∗s+ e−τf∗s
δw(s) (33)

Using (30), (32), and (33) the close-loop transfer function of
the system is

LNC(s) =
αcγ

s+ αc

1

τ∗s+ e−τf∗s

Nρ2e−τ
∗s

z(ρ)p∗ (τ∗s+ 2βz(ρ)p∗w∗)
(34)

The first factor of (34) is due to the queue averaging (13),
the second one describes the relation between the congestion
window and the buffer size, and the third one illustrates the
effect of TCP-NC. Considering a similar scenario without NC,
the transfer function for the standard TCP-Reno is obtained
from (34) by taking ρ = 1

LTCP (s) =
αcγ

s+ αc

1

τ∗s+ e−τf∗s

Ne−τ
∗s

p∗ (τ∗s+ 2βp∗w∗)
(35)

The closed-loop system is stable if and only if the close-
loop function (34) does not encircle the point (−1, 0) as s
traverses the closed D contour in the complex plane. The
pure delay term in (34) adds significant phase at frequencies
of the order of 1/τ∗ and higher, and the loop gain at the
crossover frequency will determine stability. To character-
ize the stability region, we examine the Nyquist plot of
LNC(jω) considering N = 20, 30, . . . , 60 sources, with link
capacity c = 8, 9, . . . , 15 packets/ms, and equal propagation
delays d = 50, 55, 60, . . . , 100 ms. A constant packet size of
1000 bytes is assumed. For each (N, c) pair, we determine
the delay dM (N, c) at which the Nyquist plot intersects the
real axis closest to −1. This is the delay at which the system
with parameters (N, c) transits from stability to instability.
For this delay the critical frequency fM (N, c) at which the
phase of LNC(jω) equals −π is also computed. Note that the
computation of LNC(jω) requires the equilibrium RTT τ∗,
which is equal to the sum the of propagation delay dM (N, c)

and the equilibrium queuing delay. The queuing delays is
computed from the equilibrium model. For all evaluations, the
following RED parameters have been used: b` = 540 packets,
b` = 40 packets, α` = 10−4, and p` = 0.1.

The previous simulation scenario is implemented in OPNET
using the FTP persistent sessions. The TCP-Reno-NC protocol
and RED with explicit congestion notification (ECN) marking
are used, as well as the same parameter values for N , c, d,
and packet size. For each (N, c) pair, the queue and TCP
congestion window trajectories are examined to determine
the critical delay dS(N, c) at which the system transits from
stability to instability. This delay is measured at 5 ms accuracy.
The fundamental frequency of oscillation fS(N, c) is obtained
from the FFT of the queue trajectory.

Figure 2 shows the results of our model predictions and
of the simulation results obtained from OPNET. Figure 2(a)
shows the critical delay dM (N, c) computed using (34), and
the critical delay dS(N, c) obtained from OPNET simulations.
Each data point corresponds to a particular value of (N, c). The
solid lines is the geometric locus where all the points should
be if the prediction from the model would perfectly agree with
the simulation results. Figure 2(b) represents the corresponding
critical frequencies fS(N, c) and fM (N, c). It can be observed
from Figure 2 that our predictions are acceptable, since the
resolution for the delay is 5 ms.

delay (OPNET) (ms)

(a) Round Trip propagation delay
(ms) at critical frequency

Frequency (OPNET) (Hz)

(b) Critical Frequency (Hz)

Fig. 2. Model vs OPNET simulation

Figures 3(a) and 3(b) show the OPNET simulation results
corresponding to the trajectories of the sizes of the congestion
window and of the queue when N = 20 sources share a link
of capacity c = 9 packets/ms, with a round trip propagation
delay d = 50 ms. Figure 3(a) shows the size of an individual
window and the average window size for the 20 sources,
both as a function of time. Oscillations are present in the
individual window, and more important the average size shows
a deterministic limit cycle, that is also present in the queue
trace, Figure 3(b). In this case, the protocol is in unstable
regime. This result can be predicted from the model (34)
by plotting its Nyquist diagram for the considered scenario.
Figure 3(c) shows that the Nyquist diagram encircles the point
−1 + j0, leading to an unstable closed-loop system.

Figure 4 shows the stability region for the TCP-NC and
TCP-Reno protocols using ρi = ρ = 1.2 for all users. For
each N the critical delay dM (N, c) is plotted versus the
capacity c of the common link. Each curve separates the stable
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Fig. 3. Congestion window trajectory, queue trajectory, and Nyquist stability
diagram for N = 20, c = 9 packets/ms and d = 50 ms
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Fig. 4. Critical stability region of TCP-Reno and TCP-NC with ρi = 1.2
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Fig. 5. Critical stability region of TCP-NC with N = 60 for various ρ

region, below the curve, from the unstable one, above it. The
TCP-NC curve is dotted, and the TCP-Reno one is solid.
TCP-Reno and TCP-NC become unstable when the delay or
capacity become large, and the stability region increases with
the number of users sharing the link, as with the standard TCP-
Reno without NC [6]. The reduction in the stability region of
TCP-NC with respect to the standard TCP-Reno is a result of
the redundancy factor. Thus, increasing the redundancy factor
increases instability.

Figure 5 shows the stability region for TCP-Reno and TCP-
NC for redundancy factors ρi = 1.05, 1.1, 1.15, 1.2 when N =
60 users share the network. Similar to the last experiment, for
each pair (ρi, c) the critical delay dM (N, c) is plotted versus
the capacity c of the common link. Taking the stability region
of TCP without NC as reference, one can observe a reduction
of the size of the stability region for TCP-NC as ρi increases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have used tools from control theory to
describe the dynamics of the TCP-NC protocol. We showed
that TCP-NC solves a concave utility maximization problem,
which yields a unique equilibrium point. We proposed a multi-
link multi-source model that can be used to study the stability
of a general TCP-NC-RED network. The theoretical model
we developed and simulation results have shown that TCP-
NC becomes unstable when the network scales up in delay
and capacity, as the standard TCP-Reno does, but additionally
the stability region of TCP-NC reduces, compared to standard
TCP-Reno, when the redundancy factor increases. In future
work we want to derive stability conditions for the original
TCP-NC, and develop a new model to study global and local
stability of TCP-NC with an adaptive redundancy factor.
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