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An Energy-Efficient Framework for the Analysis of
MIMO Slow Fading Channels

Vineeth S. Varma, Samson Lasaulce, Merouane Debbah, and Salah Eddine Elayoubi,

Abstract—In this work, a new energy-efficiency performance
metric is proposed for MIMO (multiple input multiple output)
point-to-point systems. In contrast with related works on energy-
efficiency, this metric translates the effects of using finite blocks
for transmitting, using channel estimates at the transmitter
and receiver, and considering the total power consumed by
the transmitter instead of the radiated power only. The main
objective pursued is to choose the best pre-coding matrix used
at the transmitter in the following two scenarios : 1) the one
where imperfect channel state information (CSI) is available at
the transmitter and receiver ; 2) the one where no CSI is available
at the transmitter. In both scenarios, the problem of optimally
tuning the total used power is shown to be non-trivial. In scenario
2), the optimal fraction of training time can be characterized
by a simple equation. These results and others provided in the
paper, along with the provided numerical analysis, show that
the present work can therefore be used as a good basis for
studying power control and resource allocation in energy-efficient
multiuser networks.

Index Terms—Channel training, energy efficiency, finite block
length, green communication, imperfect channel state informa-
tion, MIMO.

I. INTRODUCTION

Over the past two decades, designing energy-efficient com-
munication terminals has become an important issue. This is
not surprising for terminals which have to be autonomous
as far as energy is concerned, such as cellular phones, un-
plugged laptops, wireless sensors, and mobile robots. More
surprisingly, energy consumption has also become a critical
issue for the fixed infrastructure of wireless networks. For
instance, Vodafone’s global energy consumption for 2007-
2008 was about 3000 GWh [1], which corresponds to emitting
1.45 million tons of CO2 and represents a monetary cost of
a few hundred million Euros. This context explains, in part,
why concepts like “green communications” have emerged as
seen from [2], [3] and [4]. Using large multiple antennas,
virtual multiple input multiple output (MIMO) systems, and
small cells is envisioned to be one way of contributing to
reducing energy consumption drastically. The work reported
in this paper concerns point-to-point MIMO systems in which
communication links evolve in a quasi-static manner, these
channels are referred to as MIMO slow fading channels.
The performance metric considered for measuring energy-
efficiency of a MIMO communication corresponds to a trade-
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off between the net transmission rate (transmission benefit)
and the consumed power (transmission cost).

The ultimate goal pursued in this paper is a relatively
important problem in signal processing for communications.
It consists of tuning the covariance matrix of the transmit-
ted signal (called the pre-coding matrix) optimally. But, in
contrast with the vast literature initiated by [5] in which
the transmission rate is of prime interest, the present paper
aims at optimizing the pre-coding matrix in the sense of
energy-efficiency as stated in [6]. Interestingly, in [6] the
authors bridge a gap between the pioneering work by Verdú
on the capacity per unit cost for static channels [7] and the
more pragmatic definition of energy-efficiency proposed by
[8] for quasi-static single input single output (SISO) channels.
Indeed, in [6], energy-efficiency is defined as the ratio of
the probability that the channel mutual information is greater
than a given threshold to the used transmit power. Assuming
perfect channel state information at the receiver (CSIR) and
the knowledge of the channel distribution at the transmitter, the
pre-coding matrix is then optimized for several special cases.
While [6] provides interesting insights into how to allocate
and control power at the transmitter, a critical issue is left
unanswered; to what extent do the conclusions of [6] hold
in more practical scenarios such as those involving imperfect
CSI? Answering this question was one of the motivations for
the work reported here. Below, the main differences between
the approach used in this work and several existing relevant
works are reviewed.

In the proposed approach, the goal pursued is to maximize
the number of information bits transmitted successfully per
Joule consumed at the transmitter. This is different from the
most conventional approach which consists in minimizing
the transmit power under a transmission rate constraint: [9]
perfectly represents this body of literature. In the latter and
related works, efficiency is not the main motivation. [10]
provides a good motivation as to how energy-efficiency can be
more relevant than minimizing power under a rate constraint.
Indeed, in a communication system without delay constraints,
rate constraints are generally irrelevant whereas the way en-
ergy is used to transmit the (sporadic) packets is of prime
interest. Rather, our approach follows the original works on
energy-efficiency which includes [11], [8], [12], [13], [14]. The
current state of the art indicates that, since [6], there have been
no works where the MIMO case is treated by exploiting the
cumulative distribution of the channel mutual information (i.e.,
the outage probability) at the numerator of the performance
metric. As explained below, our analysis goes much further
than [6] by considering effects such as channel estimation error



2 JOURNAL OF IEEE, TRANS IN SIGNAL PROCESSING

effects. In the latter respect, several works address the issue
of power allocation for outage probability minimization [15],
[16], [17] under imperfect channel state information. The latter
will serve as a basis for the analysis conducted in the present
paper. At this point, it is possible to state the contributions of
the present work.

In comparison to [6], which is the closest related work, the
main contributions of the paper can be summarized as follows:

• one of the scenarios under investigation concerns he case
where CSI is also available at the transmitter (only the
case with CSIR and CSI distribution at the transmitter is
studied in [6]).

• The assumption of perfect CSI is relaxed. In Sec. III,
it is assumed that only imperfect CSIT and imperfect
CSIR is available. Sec. IV considers the case with no
CSIT and imperfect CSIR. In particular, this leads us
to the problem of tuning the fraction of training time
optimally. Exploiting existing works for the transmission
rate analysis [18] and [19], it is shown that this problem
can also be treated for energy-efficiency.

• The realistic assumption of finite block length is made.
This is particularly relevant, since block finiteness is
also a source of outage and therefore impacts energy-
efficiency. Note that recent works on transmission under
the finite length regime such as [20] provide a powerful
theoretical background for possible extensions of this
paper.

• Instead of considering the radiated power only for the
cost of transmitting, the total power consumed by the
transmitter is accounted for. Based on works such as [21],
an affine relation between the two is assumed. Although
more advanced models can be assumed, this change is
sufficient to show that the behavior of energy-efficiency
is also modified.

The paper is therefore structured as follows. Sec. II de-
scribes the proposed framework to tackle the aforementioned
issues. Sec. III and IV treat the case with and without CSIT
respectively. They are followed by a section dedicated to
numerical results (Sec. V) whereas Sec. VI concludes the
paper with the main messages of this paper and some relevant
extensions.

II. SYSTEM MODEL

A point-to-point multiple input and multiple output com-
munication unit is studied in this work. In this paper, the
dimensionality of the input and output is given by the numbers
of antennas but the analysis holds for other scenarios such as
virtual MIMO systems [22]. If the total transmit power is given
as P , the average SNR is given by :

ρ =
P

σ2
(1)

where σ2 is the reception noise variance.The signal at the
receiver is modeled by :

y =

√
ρ

M
Hs+ z (2)

where H is the N ×M channel transfer matrix and M (resp.
N ) the number of transmit (resp. receive) antennas. The entries
of H are i.i.d. zero-mean unit-variance complex Gaussian
random variables. The vector s is the M -dimensional column
vector of transmitted symbols follows a complex normal dis-
tribution, and z is an N -dimensional complex white Gaussian
noise distributed as N (0, I). Denoting by Q = E[ssH ] the
input covariance matrix (called the pre-coding matrix), which
satisfies

1

M
Tr(Q) = 1 (3)

where Tr stands for the trace operator. The power constraint
is expressed as :

P ≤ Pmax (4)

where Pmax is the maximum available power at the transmitter.
The channel matrix H is assumed to evolve in a quasi-static

manner : the channel is constant for some time interval, after
which it changes to an independent value that it holds for
the next interval [18]. This model is appropriate for the slow-
fading case where the time with which H changes is much
larger than the symbol duration.

A. Defining the energy efficiency metric

In this section, we introduce and justify the proposed
definition of energy-efficiency of a communication system
with multiple input and output antennas, and experiences slow
fading.

In [8], the authors study multiple access channels with SISO
links and use the properties of the energy efficiency function
defined as f(ρ)

P to establish a relation between the channel
state (channel complex gain) (h) and the optimal power (P ∗).
This can be written as:

P ∗ =
SNR∗σ2

|h|2
(5)

where SNR∗ is the optimal SNR for any channel state and
(when f is a sigmoidal/S-shaped function, i.e, it is initially
convex and after some point becomes concave) is the unique
strictly positive solution of

xf ′(x)− f(x) = 0 (6)

where 1 − f(.) is the outage probability. Formulating this
problem in the case of MIMO channels is non-trivial as there
is a problem of choosing the total transmit power as well as
the power allocation.

When the same (imperfect) CSI is available at the transmit-
ter and receiver, by estimating the channel for t time, and
sending the information to the transmitter for tf time, the
energy-efficiency νT is defined as:

νT (P,Q, Ĥ) =
R
(
1− t+tf

T

)
FL

[
IICSITR(P,Q, Ĥ)− R

R0

]
aP + b

(7)
where R is the transmission rate in bit/s, T is the block

duration in s, R0 is a parameter which has unit Hz (e.g., the
system bandwidth), and a > 0, b ≥ 0 are parameters to relate
the transmitter radiated power to its total consumed power ;
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we define ξ = R
R0

as the spectral efficiency. IICSITR(P,Q, Ĥ)
denotes the mutual information with imperfect CSITR (the
receiver also has the exact same CSI as the transmitter). This
form of the energy-efficiency is inspired from early definitions
provided in works like [8], and studies the gain in data rate
with respect to the cost which is the power consumed. The
numerator represents the benefit associated with transmitting
namely, the net transmission rate (called the goodput in [23])
of the communication and is measured in bit/s. The goodput
comprises a term 1− t+tf

T which represents the loss in terms of
information rate due to the presence of a training and feedback
mechanism (for duration t seconds and tf seconds resp. in
a T s long block) 1. The denominator of (7) represents the
cost of transmission in terms of power. The proposed form
for the denominator of (7) is inspired from [21] where the
authors propose to relate the average power consumption of a
transmitter (base stations in their case),to the average radiated
or radio-frequency power by an affine model.

The term FL(.) represents the transmission success proba-
bility. The quantity FL(.) gives the probability that the “in-
formation” denoted by Î as defined in [24]) is greater than or
equal to the coding rate (ξ), i.e., it is the complementary cumu-
lative distribution function of the information Î , Prob(Î ≥ ξ).
Formally, Î is defined as Î = log

PDFX,Y (x,y)
PDFX(x)PDFY (y) , where

PDFX,Y and PDFX represents the joint and marginal proba-
bility distribution functions, x and y are samples of the process
X and Y , which in this case represent the transmitted and
received signals. The average mutual information I = E(Î)
is used to calculate this probability and FL(.) depends on
the difference between I and ξ. FL(.) can be verified to be
sigmoidal (this is the cumulative probability distribution func-
tion of a variable with a single peaked probability distribution
function) and FL(0) = 0.5 (If ξ = I , FL(.) is the probability
that a random variable is equal to or larger than its mean).
When CSIT is available, it is possible to ensure that the data
transmission rate is just below the channel capacity. If this is
done, then there is no possibility of outage when the block
length is infinite [25]. However, in most practical cases, the
block length is finite and this creates an outage effect which
depends on the block length L [24].

The bounds on FL can be expressed as
FL(IICSITR(0, 0,H) − ξ) = 0 (no reliable communication
when transmit power is zero) and as FL → 1 when
P → ∞. This proposed form for this function,
FL(IICSITR(P,Q, Ĥ) − ξ), is supported by works
like [24] and [26]. An approximation for this function
based on the automatic repeat request protocol [27] is
FL(x) = Qfunc(−Tx), where Qfunc is the tail probability
of the standard normal distribution.

Therefore, in the presence of CSI at the transmitter, outage
occurs even when the mutual information is more than the
targeted rate due to the noise and finite code-lengths. In
this scenario, the energy-efficiency is maximized when the
parameters Q and P are optimized.

1In this case, we assume that the feedback mechanism is sufficient to result
in perfect knowledge of Ĥ at the transmitter. This is done because, assuming
a different imperfect CSI at the transmitter from the receiver creates too much
complexity and this problem is beyond the scope of a single paper.

In the absence of CSI at the transmitter, the earlier definition
of energy efficiency is not suitable since H is random, νT
is also a random quantity. Additionally, in this case, it is
impossible to know if the data transmission rate is lower
than the instantaneous channel capacity as the channel varies
from block to block. Therefore, in this case, the source of
outage is primarily the variation of the channel [28], and
using (7) directly is not suitable. As the channel information
is unavailable at the transmitter, define Q = IM

M , meaning that
the transmit power is allocated uniformly over the transmit
antennas; in Sec. IV-C, we will comment more on this assump-
tion. Under this assumption, the average energy-efficiency can
be calculated as the expectation of the instantaneous energy-
efficiency over all possible channel realizations. This can be
rewritten as:

νR(P, t) =
R
(
1− t

T

)
EH

(
FL

[
IICSIR(P,Q, Ĥ)− R

R0

])
aP + b

.

(8)
For large L, it has been shown in [28] (and later used in
other works like [6]) that the above equation can be well
approximated to :

νR(P, t) =
R
(
1− t

T

)
PrH

[
IICSIR(P, t, Ĥ) ≥ ξ

]
aP + b

(9)

where PrH represents the probability evaluated over the real-
izations of the random variable H. Here, IICSIR represents
the mutual information of the channel with imperfect CSI
at the receiver. Let us comment on this definition of energy
efficiency. This definition is similar to the earlier definition in
all most ways. Here the parameter t, represents the length of
the training sequence used to learn the channel at the receiver2.
The major difference here is that the expression for the success
rate is the probability that the associated mutual information
is above a certain threshold. This definition of the outage
is shown to be appropriate and compatible with the earlier
definition when only statistical knowledge of the channel is
available [28].

Although very simple, these models allow one, in particular,
to study two regimes of interest.

• The regime where b
a is small allows one to study not

only communication systems where the power consumed
by the transmitter is determined by the radiated power but
also those which have to been green in terms of electro-
magnetic pollution or due to wireless signal restrictions
(see e.g., [29]).

• The regime where b
a is large allows one to study not

only communication systems where the consumed power
is almost independent of the radiated power but also those
where the performance criterion is the goodput.

Note that when b = 0, t → +∞, T → +∞, and t
T → 0

equation (9) boils down to the performance metric investigated
in [6].

2In this case, the optimization is done over P and t assuming imperfect
CSI at the receiver. A parameter here not explicitly stated, but indicated
nevertheless, is M due to the number of transmit antennas affecting the
effectiveness of training
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B. Modeling channel estimation noise

Each transmitted block of data is assumed to comprise
a training sequence in order for the receiver to be able to
estimate the channel; the training sequence length in symbols
is denoted by ts and the block length in symbols by Ts.
Continuous counterparts of the latter quantities are defined
by t = tsSd and T = TsSd, where Sd is the symbol duration
in seconds. In the training phase, all M transmitting antennas
broadcast orthogonal sequences of known pilot/training sym-
bols of equal power on all antennas. The receiver estimates
the channel, based on the observation of the training sequence,
as Ĥ and the error in estimation is given as ∆H = H − Ĥ.
Concerning the number of observations needed to estimate the
channel, note that typical channel estimators generally require
at least as many measurements as unknowns [19], that is to
say Nts ≥ NM or more simply

ts ≥ M. (10)

The channel estimate normalized to unit variance is denoted
by H̃. From [19] we know that the mutual information is
the lowest when the estimation noise is Gaussian. Taking the
worst case noise, it has been shown in [18] that the following
observation equation

ỹ =

√
ρeff(ρ, t)

M
H̃s+ z̃ (11)

perfectly translates the loss in terms of mutual information3

due to channel estimation provided that the effective SNR
ρeff(ρ, t) and equivalent observation noise z̃ are defined prop-
erly namely,  z̃ =

√
ρ
M∆Hs+ z

ρeff(ρ, t) =
t

MSd
ρ2

1+ρ+ρ t
MSd

. (12)

As the worst case scenario for the estimation noise is assumed,
all formulas derived in the following sections give lower
bounds on the mutual information and success rates. Note that
the lower bound is tight (in fact, the lower bound is equal to
the actual mutual information) when the estimation noise is
Gaussian which is true in practical cases of channel estimation.
The effectiveness of this model will not be discussed here but
has been confirmed in many other works of practical interest
(see e.g., [31]). Note that the above equation can be utilized
for the cases of imperfect CSITR and CSIR as well as the
case of imperfect CSIR with no CSITR. This is because in
both cases, the outage is determined by calculating the mutual
information IICSITR or IICSIR respectively.

III. OPTIMIZING ENERGY-EFFICIENCY WITH IMPERFECT
CSITR AVAILABLE

When perfect CSITR or CSIR is available, the mutual
information of a MIMO system, with a pre-coding scheme

3It is implicitly assumed that the mutual information is taken between
the system input and output; this quantity is known to be very relevant to
characterize the transmission quality of a communication system (see e.g.
[30] for a definition).

Q and channel matrix H can be expressed as:

ICSITR(P,Q,H) = log

∣∣∣∣IM +
P

Mσ2
HQHH

∣∣∣∣ (13)

The notation |A| denotes the determinant of the (square)
matrix A. With imperfect CSIT, which is exactly the same
as the CSIR (i.e., both the transmitter and the receiver have
the same channel estimate Ĥ), a lower bound on the mutual
information can be found from several works like [15], [17]
etc. This lower bound for IICSITR is used, which is expressed
as:

IICSITR(P,Q, Ĥ) = log

∣∣∣∣IM + Ĥ
P

Mσ2(1 + ρσ2
E)

QĤH

∣∣∣∣
(14)

where Ĥ is the estimated channel and 1− σ2
E is the variance

of Ĥ. Considering the block fading channel model, from [15]
and [19] we conclude that σ2

E = 1
1+ρ t

M

. Simplifying :

IICSITR(P,Q, Ĥ) = log
∣∣∣IM +

ρeff

M
ĤQĤH

∣∣∣ . (15)

Having defined the mutual information to be used for (7), we
proceed with optimizing νT .

A. Optimizing the pre-coding matrix Q

Studying (7) and (15), we see that varying the power
allocation (or the corresponding pre-coding matrix) Q, affects
only the success rate FL(.) and the total power P is the only
term that is present outside FL(.). As FL(.) is known to be an
increasing function, if the total power is a constant, optimizing
the energy efficiency νT amounts to simply maximizing the
mutual information IICSITR(P,Q, Ĥ). This is a well docu-
mented problem and it gives a “water-filling” type of solution
[32]. Rewriting (13) as

IICSITR(P,Q, Ĥ) = log
∣∣∣IM +

ρeff
M

DSDH
∣∣∣ (16)

where the optimal covariance matrix Q = VSVH is achieved
through the singular value decomposition of the channel
matrix Ĥ = UDVH and an optimal diagonal covariance ma-
trix S = diag[s1, . . . , smin(M,N), 0, . . . , 0]. The water-filling
algorithm can be performed by solving:

si =

(
µ− 1

ρ∥di∥2

)+

, for i = 1, 2, · · · ,min(M,N) (17)

where di are the diagonal elements of D and µ is selected
such that Σ

min(M,N)
i=1 si = M . Here (x)+ = max(0, x), this

implies that si can never be negative. The actual number of
non-vanishing entries in S depends on the values of di as
well ρ (and thus P ). Examining (17), we can see that when
ρ → 0, the water-filling algorithm will lead to choosing sj =
M and si = 0 for all i ̸= j, where j is chosen such that
dj = max(di) (beamforming). Similarly for ρ → ∞, si =

M
min(M,N) (uniform power allocation).
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B. Determining the optimal total power

Q has been optimized in the previous section. From (7),
we see that the parameters that can be optimized in order to
maximize the energy efficiency are Q and P . Therefore, in
this section, we try to optimize P , the total power. Note that
for every different P , the optimal power allocation Q changes
according to (17) as ρ is directly proportional to P . Therefore
optimizing this parameter is not a trivial exercise. Practically,
P represents the total radio power, that is, the total power
transmitted by the antennas. This power determines the total
consumed power b+ aP , of base stations or mobile terminals
and so, optimizing this power is of great importance.

In this section, a theorem on the properties of
νT (P,QWF (P ), Ĥ) is provided, where QWF (P ) is the
power allocation obtained by using the water-filling algorithm
and iteratively solving (17) with power P . This procedure is
said to be “iterative” because, after solving equation 17, if
any sj < 0, then we set sj = 0 and the equation is resolved
until the all solutions are positive. For optimization, desirable
properties on νT (P,QWF (P ), Ĥ) are differentiability, quasi-
concavity and the existence of a maximum. The following
theorem states that these properties are in fact satisfied by
νT .

Theorem 3.1: The energy-efficiency function
νT (P,QWF (P ), Ĥ) is quasi-concave with respect to P

and has a unique maximum νT (P
∗,QWF (P∗), Ĥ), where P ∗

satisfies the following equation :

∂FL[IICSITR(P∗,QWF (P∗),Ĥ)−ξ]

∂P

(
P ∗ + b

a

)
(18)

−FL[IICSITR(P
∗,QWF (P∗), Ĥ)− ξ] = 0

where ∂
∂P is the partial derivative.

The proof of this theorem can be found in Appendix A.
From the above theorem and equation, we can conclude that
the optimal transmit power for imperfect CSITR depends on
several factors like

• the channel estimate Ĥ,
• the target spectral efficiency ξ,
• the ratio of the constant power consumption to the radio-

frequency (RF) power efficiency b
a ,

• the channel training time t and
• the noise level σ2.

Note that in this model, we always assume the CSI at the
transmitter to be exactly identical to CSI at the receiver.
Because of this, we take the feedback mechanism to be perfect
and take a constant time tf . Although in practice, tf plays a
role in determining the efficiency and the optimal power, in
our model tf is a constant and does not appear in the equation
for P ∗. In our numerical results we focus on the impact of
Ĥ, ξ and b

a on P ∗ and ν∗. The impact of t is not considered
for this case, but is instead studied where we have no CSITR
and imperfect CSIR, this choice helps in making the results
presented easier to interpret and understand.

C. An illustrative special case : SISO channels

A study on energy-efficiency in SISO systems have been
studied in many works like [8] and [7]. However, the approach

used in this paper is quite novel even for the SISO case and
presents some interesting insights that have not been presented
before. For the case of SISO, the pre-coding matrix is a scalar
and Q = 1. The optimal power can be determined by solving
(18). For a SISO system with perfect CSITR and CSIR, FL

can be expressed as

FL[IICSITR(P
∗,QWF (P∗), Ĥ)− ξ] =

Qfunction

(
L(1 + ∥h∥2ρ) ξ−log(1+∥h∥2ρ)

∥h∥2ρ

)
(19)

from [24]. Using this expression, we can find P ∗ maximizing
νT .

In the case of high SNR (and high ξ), a solution to this
problem can be found as

lim
ρ→∞

FL(P, 1, h) = Qfunc

(
L[ξ − log(1 + ∥h∥2ρ])

)
. (20)

Solving (18)

−L∥h∥2

√
π(1+∥h∥2ρ∗)

exp
(
−L2

[
ξ − log(1 + ∥h∥2ρ∗)

]2) (
ρ∗ + b

aσ2

)
−Qfunc

(
L[ξ − log(1 + ∥h∥2ρ∗])

)
= 0 .(21)

From the above equation it can be deduced that if b =
0, for large ξ, log(1 + ρ∗) ≈ ξ. While for low SNR,
limρ→0 FL(P, 1, h) = Qfunc

(
L ξ−log(1+∥h∥2ρ)

∥h∥2ρ

)
and so, if

b = 0,

1√
π

[
L+ L ξ−|h∥2ρ∗

∥h∥2ρ∗

]
exp

(
−1
2

[
L ξ−∥h∥2ρ∗

∥h∥2ρ∗

]2)
(22)

− Qfunc

(
L ξ−∥h∥2ρ∗

∥h∥2ρ∗

)
= 0

Substitute x = L ξ−∥h∥2ρ∗

∥h∥2ρ∗ and we have

1√
π
[L+ x] exp

(
−1

2
x2

)
−Qfunc (x) = 0. (23)

As seen from the above equation, the value of x depends
only on L the block length. For example if L = 10, we get
x ≈ −1.3. So, ρ∗ = 1.14 ξ

∥h∥2 . Whereas if L = 100 we get
ρ∗ = 1.02 ξ

∥h∥2 . Note that these calculations are true only for
ξ → 0 so that ρ → 0 is satisfied.

The above equations signify that for finite block lengths, the
energy efficiency at ξ → 0 is lower than the value calculated
in [7] (of course, a direct comparison does not make sense as
in [7], infinite block lengths are assumed). This suggests that
a non-zero value of ξ might optimize the energy efficiency.
This value is evaluated in our numerical section and we find
that the energy efficiency is optimized at a non-zero power.

D. Special Case: Infinite code-length and perfect CSITR

When a very large block is used then the achiev-
able rate approaches the mutual information [25], i.e
limL→∞,ICSITR−ξ→0+ FL(ICSITR − ξ) = 1. Therefore in this
limit, we can now simplify (7) to:

νT (P,Q, Ĥ) =
R0

(
1− t+tf

T

)
ICSITR(P,Q, Ĥ)

aP + b
. (24)

This is done because we replace ξ with ICSITR to maximize
efficiency as FL is 0 when ICSITR < ξ, and choosing
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ξ → ICSITR maximizes efficiency. Water-filling optimizes
the efficiency in this situation as well, and so we use Q =
QWF (P ). It can be easily verified that for b → 0: νT is
maximized for P → 0. And in this case, water-filling also
implies that only the antenna with the best channel is used
to transmit. Interestingly, when in the domain of finite code-
lengths, our simulations indicate that there is a non-zero rate
and power that optimizes the energy-efficiency function.

For general b, νT is optimized for P ∗ satisfying:

∂ICSITR(P,QWF (P ), Ĥ)

∂P
(aP + b)− ICSITR(P,Q, Ĥ) = 0.

(25)
The above equation admits a unique maximum because

ICSITR(P,QWF (P ), Ĥ) is a concave function of P (can be
seen from Appendix A) and is mathematically appealing. For
limb→0 P

∗ = 0 and as b
a increases, P ∗ also increases. A

special case of this, with b = 0, and perfect CSITR, for a
SISO channel has been studied in [7].

IV. OPTIMIZING ENERGY-EFFICIENCY WITH NO CSIT AND
IMPERFECT CSIR

This problem has already been well analyzed in [6] when
perfect CSI is available at the receiver and b = 0. So, in this
paper we focus on the case when imperfect CSI is available
and is obtained through channel training. For IICSIR(P, t,H),
we use a lower bound on the mutual information obtained from
the equivalent observation equation (11), derived in [19]:

IICSIR(P, t, Ĥ) = log

∣∣∣∣IM +
1

M
ρeff

(
LP

σ2
, t

)
ĤĤH

∣∣∣∣ (26)

Note that here, Q = IM
M is used and has been shown to be

optimal in [6]. In this section our focus is to generalize [6]
to a more realistic scenario where the total power consumed
by the transmitter (instead of the radiated power only) and
imperfect channel knowledge are accounted for.

A. Optimal transmit power

By inspecting (9) and (26) we see that using all the available
transmit power can be suboptimal. For instance, if the available
power is large and all of it is used, then νR(P, t) tends to zero.
Since νR(P, t) also tends to zero when P goes to zero (see
[6]), there must be at least one maximum at which energy-
efficiency is maximized, showing the importance of using the
optimal fraction of the available power in certain regimes.
The objective of this section is to study those aspects namely,
to show that νR has a unique maximum for a fixed training
time length and provide the equation determining the optimum
value of the transmit power.

From [33] we know that a sufficient condition for the
function f(x)

x to have a unique maximum is that the function
f(x) be sigmoidal. To apply this result in our context, one can
define the function f by

f(ρeff) = Pr

[
log

∣∣∣∣IM +
1

M
ρeffHHH

∣∣∣∣ ≥ ξ

]
. (27)

For the SISO case, for a channel with h following a com-
plex normal distribution, it can be derived that f(ρ) =

exp
(
− 2ξ−1

ρ

)
which is sigmoidal. It turns out that proving

that f is sigmoidal in the general case of MIMO is a non-
trivial problem, as advocated by the current state of relevant
literature [6], [34], [35]. In [6], νR(P ) under perfect CSIR,
was conjectured to be quasi-concave for general MIMO, and
proven to be quasi-concave for the follwing special cases:

(a) M ≥ 1, N = 1;
(b) M → +∞, N < +∞, limM→∞

N
M = 0;

(c) M < +∞, N → +∞, limN→∞
M
N = 0;

(d) M → +∞, N → +∞, lim
M→+∞,N→+∞

M

N
= ℓ <

+∞;
(e) σ2 → 0;
(f) σ2 → +∞;

In the following proposition, we give a sufficient condition to
ensure that νR(P, t) is quasi-concave w.r.t P .

Proposition 4.1 (Optimization of νR(P, t) w.r.t P ): If
νR(P ) with perfect CSIR is quasi-concave w.r.t P , then
νR(P, t) is a quasi-concave function with respect to P , and
has a unique maximum.

This proposition is proved in Appendix B. The above propo-
sition makes characterizing the unique solution of ∂νR

∂P (P, t) =
0 relevant. This solution can be obtained through the root ρ∗eff
(which is unique because of [33]) of:

L

σ2

(
P +

b

a

)
τρ [(τ + 1)ρ+ 2]

[(τ + 1)2 + 1]
2 f ′(ρeff)− f(ρeff) = 0 (28)

with τ = ts
M . Note that P is related to ρ through P = σ2ρ

and ρ is related to ρeff through (12) and can be expressed as

ρ =
1

2τ
ρeff

√
(1 + τ)

2
+

4τ

ρeff
. (29)

Therefore (28) can be expressed as a function of ρeff and
solved numerically; once ρ∗eff has been determined, ρ∗ follows
by (29), and eventually P ∗ follows by (1). As a special case
we have the scenario where b = 0 and τ → +∞; this case
is solved by finding the unique root of ρ∗f ′(ρ∗)− f(ρ∗) = 0
which corresponds to the optimal operating SNR in terms of
energy-efficiency of a channel with perfect CSI (as training
time is infinite). Note that this equation is identical to that in
[8] and in this work, we provide additional insights into the
form of the function f(.).

Quasi-concavity is an attractive property for the energy-
efficiency as quasi-concave functions can be easily optimized
numerically. Additionally, this property can also be used in
multi-user scenarios for optimization and for proving the
existence of a Nash Equilibrium in energy-efficient power
control games [8], [36], [37].

B. Optimal fraction of training time

The expression of νR(P, t) shows that only the numerator
depends on the fraction of training time. Choosing t = 0
maximizes 1− t

T but the block success rate vanishes. Choosing
t = T maximizes the latter but makes the former term go
to zero. Again, there is an optimal trade-off to be found.
Interestingly, it is possible to show that the function νR(P

∗, t)
is strictly concave w.r.t. t for any MIMO channels in terms of
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(M,N), where P ∗ is a maximum of νR w.r.t P . This property
can be useful when performing a joint optimization of νR
with respect to both P and t simultaneously. This is what the
following proposition states.

Proposition 4.2 (Maximization of ν(P ∗(t), t) w.r.t t):
The energy-efficiency function νR(P

∗(t), t) is a strictly
concave function with respect to t for any P ∗(t) satisfying
∂νR

∂P (P ∗, t) = 0 and ∂2νR

∂P 2 (P
∗, t) < 0, i.e, at the maximum of

νR w.r.t. P .
The proof of this proposition is provided in Appendix C.

The parameter space of νR is two dimensional and continuous
as both P and t are continuous and thus the set ν(P ∗(t), t) is
also continuous and the proposition is mathematically sound.
The proposition assures that the energy-efficiency can been
maximized w.r.t. the transmit power and the training time
jointly, provided νR(P, t) is quasi-concave w.r.t P for all t.
Based on this, the optimal fraction of training time is obtained
by setting ∂νR

∂t (P, t) to zero which can be written as:(
Ts

M
− τ

)
ρ2(ρ+ 1)

[τρ+ ρ+ 1]
2 f

′(ρeff)− f(ρeff) = 0 (30)

again with τ = ts
M . In this case, following the same reasoning

as for optimizing the νR w.r.t. P , it is possible to solve
numerically the equation w.r.t. ρeff and find the optimal ts,
which is denoted by t∗s .

Note that the energy-efficiency function is shown to be
concave only when it has already been optimized w.r.t P .
The optimization problem studied here is basically, a joint-
optimization problem, and we show that once ν(P, t) is
maximized w.r.t P for all t, then, ν(P ∗(t), t) is concave w.r.t t.
A solution to (30) exists only if νR has been optimized w.r.t
P . However, in many practical situations, this optimization
problem might not be readily solved as the optimization w.r.t
P for all t has to be implemented first.

The following proposition describes how the optimal train-
ing time behaves as the transmit power is very large:

Proposition 4.3 (Optimal t in the high SNR regime): We
have that: lim

P→+∞
t∗s = M for all MIMO systems.

The proof for this can be found in Appendix D.

C. Optimal number of antennas

So far we have always been assuming that the pre-coding
matrix was chosen to be the identity matrix i.e., Q = IM .
Clearly, if nothing is known about the channel, the choice
Q = IM is relevant (and may be shown to be optimal by
formulating the problem as an inference problem). On the
other hand, if some information about the channel is available
(the channel statistics as far as this paper is concerned), it
is possible to find a better pre-coding matrix. As conjectured
in [5] and proved in some special cases (see e.g., [34]), the
outage probability is minimized by choosing a diagonal pre-
coding matrix and a certain number of 1’s on the diagonal.
The position of the 1’s on the diagonal does not matter since
channel matrices with i.i.d. entries are assumed. However, the
optimal number of 1’s depends on the operating SNR. The
knowledge of the channel statistics can be used to compare the
operating SNR with some thresholds and lead to this optimal

number. Although we consider (9) as a performance metric
instead of the outage probability, we are in a similar situation
to [6], meaning that the optimal pre-coding matrix in terms
of energy-efficiency is conjectured to have the same form and
that the number of used antennas have to be optimized. In the
setting of this paper, as the channel is estimated, an additional
constraint has to be taken into account that is, the number
of transmit antennas used, M , cannot exceed the number of
training symbols ts. This leads us to the following conjecture.

Conjecture 4.4 (Optimal number of antennas): For a given
coherence time Ts, νR is maximized for M∗ = 1 in the limit of
P → 0. As P increases, M∗ also increases monotonically until
some P+ after which, M∗ and t∗s decreases. Asymptotically,
as P → ∞, M∗ = t∗s = 1.

This conjecture can be understood intuitively by noting that
the only influence of M on νR is through the success rate.
Therefore, optimizing M for any given P and t amounts to
minimizing outage. In [5], it is conjectured that the covariance
matrices minimizing the outage probability for MIMO chan-
nels with Gaussian fading are diagonal with either zeros or
constant values on the diagonal. This has been proven for the
special case of MISO in [34], we can conclude that the optimal
number of antennas is one in the very low SNR regime and
that it increments as the SNR increases. However, the effective
SNR decreases by increasing M (seen from expression of ρeff
and τ ) , this will result in the optimal M for each P with
training time lower than or equal to the optimal M obtained
with perfect CSI. Concerning special cases, it can be easily
verified that the optimal number of antennas is 1 at very low
and high SNR.

At last, we would like to mention a possible refinement
of the definition in (9) regarding M . Indeed, by creating a
dependency of the parameter b towards M one can better
model the energy consumption of a wireless device. For
instance, if the transmitter architecture is such that one radio-
frequency transmitter is used per antenna, then, each antenna
will contribute to a separate fixed cost. In such a situation the
total power can written as aP + Mb0 where b0 is the fixed
energy consumption per antenna. It can be trivially seen that
this does not affect the goodput in any manner and only brings
in a constant change to the total power as long as M is kept
a constant. Therefore, the optimization w.r.t P and t will not
change but it will cause a significant impact on the optimal
number of antennas to use.

V. NUMERICAL RESULTS AND INTERPRETATIONS

We present several simulations that support our conjectures
as well as expand on our analytical results. All simulations
are performed using Monte-Carlo simulations as there is no
expression available for the outage of a general MIMO system.

A. With imperfect CSITR available

The FL we use here is based on the results in [24], FL =
Qfunc(

ξ−IICSITR(P,QWF ,H)√
2ρ

(1+ρ)L

), L being the code-length. This is

the Gaussian approximation that is very accurate for L large
enough and from simulations we observe that for L ≥ 10 the
approximation is quite valid.
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First of all, numerical results are presented that support
and present our analytical results through figures. The first
two figures shown assume imperfect CSITR obtained through
training and use a 2× 2 MIMO system. The quasi-concavity
of the the energy-efficiency function w.r.t the transmit power
is shown in Figure 1 for ξ = 1 and ξ = 4, and ts = 2 and
ts = 10. This figure shows that for a higher target rate, a
longer training time yields a better energy-efficiency. We also
observe that using a higher ξ can results in a better energy-
efficiency as in this figure. This motivates us to numerically
investigate if there is also an optimal spectral efficiency to
use, given a certain Ts, b

a and L. Figures 3 and 2 present the
results of this study.

Surprisingly, we observe that our plots are quasi-concave
and so there is an optimal target rate to use for each channel
condition and code-length. In Figure 2, νT is always optimized
over P and Q. Observe that ν∗T (ξ) is also quasi-concave
and has a unique maximum for each value of di and ts
(representing the channel Eigen-values as from equations (16),
(17) and training time lengths). di is ordered in an ascending
order, i.e. in this case, with d21 ≤ d22. The parameters used
are: M = N = 2, R0 = 1bps, Ts = 100, L = 100 and
b
a = 1 mW with ts = 2, 10 and 20 for d21 = 1, d22 = 3,
and ts = 2 for d21 = d22 = 1.This figure also implies that
the training time and target rate can be optimized to yield the
maximum energy-efficiency for a given coherence-time and
channel fading. For infinite code-length the plot is maximized
at the solution of (25). While for Figure 3, perfect CSIT is
assumed with b = 0, at infinite block length, the optimal
transmit rate/power is zero as expected (also seen from (25)).
However, remarkably, for finite code-lengths there is a non-
zero optimal rate and corresponding optimal power as seen
from the figure.

Finally in Figure 4, we compare our energy efficiency func-
tion that uses optimized power allocation to uniform power
allocation, and present the gain from having CSIT. In both
cases, the training time and the transmit power is optimized
and we plot the optimized energy efficiency v.s Pmax. Note
that the optimized PA always yields a better performance when
compared to UPA and at low power, UPA has almost zero
efficiency while the optimal PA yields a finite efficiency. The
gain observed can be considered as the major justification in
using non-uniform power allocation and sending the channel
state information to the transmitter. However, when the block
length is small, imperfect CSIT results in a smaller gain as
seen from the relatively larger gap between Ts = 100 and
Ts = 10000 when compared to the size of the gap in UPA.

B. With no CSIT

We start off by confirming our conjecture that for a general
MIMO system, νR(P, t) has a unique maximum w.r.t P .
We also confirm that optimal values of training lengths
and transmit antennas represented by t∗s and M∗ are as
conjectured.

Once the analytical results have been established, we ex-
plore further and find out the optimal number of antennas
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Fig. 2. Optimal energy-efficiency (νT (P ∗,QWF )) in bits/J v.s spectral
efficiency (ξ) for a MIMO system with imperfect CSITR, M = N = 2,
R0 = 1bps, Ts = 100, L = 100 and b

a
= 1 mW.

and training time when νR has been optimized w.r.t P .
For this we use the optimized energy efficiency defined as
ν∗(P, t) = max{νR(p, t)∥p ∈ [0, P ]}. As we know νR to
be quasi-concave w.r.t P and having a unique maximum,
this newly defined ν∗ will indicate what is the best energy
efficiency achievable given a certain amount of transmit power
P . Hence, plotting ν∗ against P for various values of M or
ts can be useful to determine the optimal number of antennas
and training time while using the optimal power.

In the following plots we take σ2

L = 1mW so that P can
be expressed in dBm easily. Also note that b

a has the unit of
power and is expressed in Watts (W). We also use Sd = 15
µs from LTE standards [38].

Figure 5 studies the energy efficiency as a function of the
transmit power (P ) for different values of b

a and illustrates the
quasi-concavity of the energy efficiency function w.r.t P . The
parameters used are R = 1600, ξ = R

R0
= 16, Ts = 55 and

M = N = t = 4.
Figure 6 studies the optimized energy efficiency ν∗ as a

function of the transmit power with various values of ts.
The figure illustrates that beyond a certain threshold on the
available transmit power, there is an optimal training sequence
length that has to be used to maximize the efficiency, when
the optimization w.r.t P has been done, which has been
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Fig. 3. Optimal energy-efficiency (νT (P ∗,QWF )) v.s spectral efficiency
(ξ) for a MIMO system with perfect CSITR, M = N = 2, R0 = 1bps and
b
a
= 0.
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= 1 mW.

proven analytically in proposition 4.2. The parameters are
R = 1Mbps, ξ = 16, b

a = 0, M = N = 4, b
a = 0 and

Ts = 55.
Figure 7 studies the optimal training sequence length ts as

a function of the transmit power P . Note that in this case,
we are not optimizing the efficiency with respect to P and
so this figure illustrates proposition 4.3. With P large enough
ts = M becomes the optimal training time and for P small
enough ts = Ts − 1 as seen from the figure. The parameters
are R = 1600, b

a = 0 W, ξ = 16 and Ts = 10. (We use
Ts = 10, as if the coherence time is too large, the outage
probabilities for low powers that maximize the training time,
such that t∗s = Ts − 1, become too small for any realistic
computation.)

Figure 8 studies the optimal number of antennas M∗ as
a function of the transmit power P with the training time
optimized jointly with M . With P large enough M = ts = 1
becomes the optimal number of antennas and for P small
enough M = 1 as seen from the figure. This figure illustrates
conjecture 4.4. The parameters are R0 = 1Mbps, b

a = 10 mW
and Ts = 100.

From all of our theoretical and numerical results so far,
we can conclude that given a target spectral efficiency ξ, a
coherence block length Ts and number of receive antennas,

there is an optimal transmit power P ∗, transmit antennas M∗

and training time t∗s to use that optimizes the energy efficiency.
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discontinuity is due to the discreteness of ts.

VI. CONCLUSION

This paper proposes a framework for studying the problem
of energy-efficient pre-coding (which includes the problem
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of power allocation and control) over MIMO channels under
imperfect channel state information and the regime of finite
block length. As in [8], energy-efficiency is defined as the ratio
of the block success rate to the transmit power. But, in contrast
with [8] and the vast majority of works originating from it, we
do not assume an empirical choice for the success rate such as
taking f(x) = (1− e−x)L, L is the block length. Instead, the
numerator of the proposed performance metric is built from
the notion of information, and more precisely from the average
information (resp. mutual information) in the case where CSIT
is available (resp. not available). This choice, in addition
to giving a more fundamental interpretation to the metric
introduced in [8], allows one to take into account in a relatively
simple manner effects of practical interest such as channel
estimation error and block length finiteness. Both in the case
where (imperfect) CSIT is available and not available, it is
shown that using all the available transmit power is not opti-
mal. When CSIT is available, whereas determining the optimal
power allocation scheme is a well known result (water-filling),
finding the optimal total amount of power to be effectively
used is a non-trivial choice. Interestingly, the corresponding
optimization problem can be shown to be quasi-convex and
have a unique solution, the latter being characterized by an
equation which is easy to solved numerically. When CSIT is
not available, solving the pre-coding problem in the general
case amounts to solving the Telatar’s conjecture. Therefore, a
new conjecture is proposed and shown to become a theorem
in several special cases. Interestingly, in this scenario, it is
possible to provide a simple equation characterizing the opti-
mal fraction of training time. Numerical results are provided
to sustain the proposed analytical framework, from which
interesting observations can be made which includes : block
length finiteness gives birth to the existence of a non-trivial
trade-off between spectral efficiency and energy efficiency ;
using optimal power allocation brings a large gain in terms of
energy-efficiency only when the channel has a large enough
coherence time,demonstrating the value of CSIT and channel
training.

The proposed framework is useful for engineers since it
provides considerable insights into designing the physical layer

of MIMO systems under several assumptions on CSI. The
proposed framework also opens some interesting research
problems related to MIMO transmission, which includes :
finding the optimal pre-coding matrix for the general case of
i.i.d. channel matrices under no CSIT. Even in the case of large
MIMO systems, this problem is not solved ; extending the
proposed approach to the case of Rician channels with spatial
correlations ; tackling the important case of multiuser MIMO
channels ; considering the problem of distributed energy-
efficient pre-coding.

APPENDIX A
PROOF OF THEOREM 3.1

In order to prove that νT (P,QWF (P ),H) is quasi-
concave with respect to P and has a unique maximum
νT (P

∗,QWF (P∗),H), we exploit the result in [33] which
states that if f(x) is an “S”-shaped or sigmoidal function, then
f(x)
x is a quasi-concave function with a unique maximum. An

“S”-shaped or sigmoidal function has been defined in [33] in
the following manner. A function f is “S” shaped, if it satisfies
the following properties:

1) Its domain is the interval [0,∞).
2) Its range is the interval [0, 1).
3) It is increasing.
4) (“Initial convexity”) It is strictly convex over the interval

[0, xf ], with xf a positive number.
5) (“Eventual concavity”) It is strictly concave over any

interval of the form [xf , L], where xf < L.
6) It has a continuous derivative.

Considering the non-constant terms in νT , we see that what
we have to show is that FL(IICSITR(P,QWF (P ),H) − ξ) is
“S”-shaped w.r.t P . We already have that FL(x) is sigmoidal,
therefore all we have to show is that FL(g(P )) is also sig-
moidal where g(P ) = IICSITR(P,QWF (P ),H)− ξ. Trivially,
when P = 0, FL(IICSITR(P )) = 0 and limP→∞ FL = 1. The
rest can be proved using the following arguments:

• g(P ) is continuous: As P varies, QWF (P ) also is modi-
fied according to the iterative water-filling algorithm. This
results in using one antenna for low ρ to all antennas for
high values of ρ.
There exists certain “threshold” points of the total power,
P th
i , i = {1, . . . ,M}, at which the number of anten-

nas used changes. The convention being, for P th
i−1 ≤

P ≤ P th
i , i number of antennas are used (s for the

rest are set to zero). P th
0 = 0 and P th

M = ∞ . If
ICSITR(P,QWF (P ),H) is continuous at these points,
then g(P ) is continuous. It can also be observed that in all
other points, ICSITR(P,QWF (P ),H) can be expressed as
ΣJ

i=1 log(1 + αi + βisi), J ≤ min(M,N). (α and β is
obtained from solving (17).) A “threshold” point occurs
when P = P th

j sj = 0 is obtained by solving (17).
The left hand limit is that j − 1 antennas are used and
so, ICSITR(P,QWF (P ),H) = Σj−1

i=1 log (1 + αi + βisi).
The right hand limit will be obtained by solving (17),
with s1 → 0 (assuming without loss of generality that
d21 is the smallest). This will yield a solution which can
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be easily seen to be the same as the left hand limit as
p1 → 0.

• We have shown g(P ) to be a finite sum of logarithms of a
monomial expansion of P in certain intervals (marked by
P th
i ) . For each interval it is trivial to see that FL(g(P ))

is also “S”-shaped. As g(P ) is continuous, FL(g(P )) is
“S”-shaped for all P .

• From Lemma B proved in Appendix B we can show
that FL(g(P ))

aP+b is also “S”-shaped by a simple change of
variable x = aP + b. Thus, we have νT (P,QWF (P ),H)
as a quasi-concave function with a unique maximum.

• With imperfect CSI, the only change is in
IICSITR(P

∗,QWF (P∗), Ĥ) now given from
(15). The water-filling algorithm now replaces
H with Ĥ and so on. This maintains the
continuity of g(P ). However we now have
IICSITR(P,QWF (P ), Ĥ) = Σj

i=1 log
(
1 + αi+βisi

1+ρσ2
E

)
.

From [19] we have 1
1+ρσ2

E
as a concave function and

so even in this case, we have FL(g(P )) as a sigmoidal
function and νT (P,QWF (P ), Ĥ) as quasi-concave with a
unique maximum. As it is continuous and differentiable,
the maximum can be found as the unique solution to the
equation:

∂FL[IICSITR(P∗,QWF (P∗),Ĥ)−ξ]

∂P

(
P ∗ + b

a

)
(31)

−FL[IICSITR(P
∗,QWF (P∗),H)− ξ] = 0

where ∂
∂P is the partial derivative.

QED

APPENDIX B
PROOF OF PROPOSITION 4.1

An “S”-shaped function has been defined in [33] in the
following manner. A function f is “S” shaped, if it satisfies
the properties as mentioned in Appendix A.

Lemma 1: If f is a “S” shaped function, the composite
function f ◦g(x) is also “S” shaped if g satisfies the following
properties:

1) g also satisfies conditions 1, 3, 4 and 6 but with g(0) =
b, b > 0.

2) lim
x→∞

f ′(x)g′(x) = 0.
3) g′′(x) is a decreasing function such that lim

x→∞
g′′(x) = 0.

The proof for the above Lemma is at the end of this section.
In [6], the authors prove that the energy efficiency function

with perfect CSI defined as the goodput ration to transmitted
RF signal power is a quasi concave function by showing that
the success rate function, f(ρ) is “S” shaped for the following
cases:

(a) M ≥ 1, N = 1;
(b) M → +∞, N < +∞;
(c) M < +∞, N → +∞;

(d) M → +∞, N → +∞, lim
M→+∞,N→+∞

M

N
= ℓ <

+∞;
(e) σ2 → 0;
(f) σ2 → +∞;

So, if we can show that the success rate function in our
situation is also “S” shaped, our proof is complete for all the
cases mentioned above. From (11) we know that the worst
case mutual information in the case of imperfect CSI with
training is mathematically equivalent to that of perfect CSI but
with ρ replaced by ρeff . Thus it is possible to replace f(ρ), in
the case of perfect CSI, by f(ρeff), when we study the case
of imperfect CSI, and so we can study the energy efficiency
function given by:

νR(P, t) = Rζ
f(ρeff(p(x)))

x
(32)

where x is a new variable that represents the total consumed
power and p(x) = L(x−b)

aσ2 . p′(x) > 0 and p′′(x) = 0 and
ρ′eff(ρ) > 0 and lim

ρ→∞
ρ′′eff(ρ) = 0. Thus ρeff and p satisfy the

conditions on g detailed in Lemma B. Hence we have proven
that the numerator is “S” shaped with respect to x and then
it immediately follows from the results in [33] that νR has
a unique maximum and is quasi-concave for all the specified
cases.

Proof of Lemma
Here we show that f ◦ g also satisfies all the properties of

the “S” function as described in [33].
1) Its domain is the domain of g which is clearly the non-

negative part of the real line; that is, the interval [0,∞).
2) Its range is the range of f , the interval [0, 1).
3) It is increasing as both f and g are increasing.
4) (“Initial convexity”). Note that f(g(x))′′ =

f ′′(y)g′(x) + g′′(x)f ′(y), with y = g(x). As all
terms in this expansion are positive in the interval
[0, xf ], f ◦ g is also convex in this interval. Also
note that as g′ and f ′ are strictly positive and g′′ is
decreasing, thus for y > xf once f(g(x))′′ < 0 it stays
negative till infinity. This implies that if there is an
inflexion point, it is unique.

5) (“Eventual concavity”) Consider h(x) = f(g(x))′ =
f ′(y)g′(x), due to the initial convexity and increasing
nature of h, h(xf ) = k, k > 0. lim

x→∞
f(g(xf ))

′ = 0.
As h is continuous the mean value theorem imposes
h′(x) < 0 at some point. This implies that there exists
some point xd > 0 such that f ◦ g is concave in the
interval [xd,∞] and convex before it.

6) It has a continuous derivative. (all the functions used
here are continuous)

Hence, f ◦ g is “S” shaped.
QED

APPENDIX C
PROOF OF PROPOSITION 4.2

Let us consider the second partial derivative of νR with
respect to t. (Note that this is possible as t is a real number
with the unit of time while ts is a natural number.) From (32),
νR(P, t) = K−1(1− t

T )f(ρeff), with K−1 = R
x a constant if

P is held a constant.

K∂2ν

∂t2
= (1− t

T )f
′′(ρeff)ρ

′
eff(t)

2 + (1− t
T )f

′(ρeff)ρ
′′
eff(t)

− 2
T f

′(ρeff)ρ
′
eff(t) (33)
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In the above sum, it can be easily verified that the terms
f ′(ρeff)ρ

′
eff(t) and f ′(ρeff) are positive and that ρ′′eff(t) < 0.

Thus if we have f ′′(ρeff) < 0, then νR(t) is strictly concave.
The only way νR depends on P is through f(ρeff )

aP+b and Rζ
stays a constant if only P changes. So if we use the fact that
we are working at a maximum of νR with respect to ρ, i.e
∂ν
∂ρ = 0 and ∂2ν

∂ρ2 < 0, we have ∂ν
∂ρ as:

0 = f ′(ρeff)ρ
′
eff(ρ)ρ

−1 − f(ρeff)ρ
−2 (34)

And, substituting (34) in ∂2ν
∂ρ2 < 0, that is:

f ′′(ρeff)(ρ
′
eff)

2ρ−1 − 2f ′(ρeff)ρ
′
effρ

−2 + 2f(ρeff)ρ
−3 < 0

f ′′(ρeff)(ρ
′
eff)

2ρ−1 +
2

ρ
(0) < 0

f ′′(ρeff) < 0 (35)

Thus, using (35) in (33), we have the result that νR(P ∗, t)
is strictly concave w.r.t t.

QED

APPENDIX D
PROOF OF PROPOSITION 4.3

The equation that describes the optimal training time t∗s can
be written as:

(T − t∗s)f
′(ρeff)ρ

′
eff(t)t=Sdt∗s

− f(ρeff) = 0 (36)

Now, let us study the optimal training time t∗s in the very
high SNR regime, ie. when ρ → ∞. (Note that P → ∞ is
equivalent to ρ → ∞).

High SNR regime: Applying the limit of ρ → ∞ in (36),
we get that

Ts − t∗s = lim
ρ→∞

f(tρ(1 + t)−1)

ρf ′(tρ(1 + t)−1)
(37)

We know from various works including [6] that
lim
ρ→∞

f(tρ(1 + t)−1) = 1. Now let us consider f ′( t
1+tρ).

For a MISO system we know from [39] that:

fMISO(ρeff) =
γ
(
M, 2ξ−1√

ρeff

)
Γ(M)

(38)

where Γ is the Gamma function and γ is the lower incomplete
Gamma function. Now we can use the special property of the

incomplete gamma function, lim
x→0

γ(M,x)

xM
= 1/M detailed in

[40] to determine lim
ρ→∞

ρf(ρeff)
′ ∝ ρ

−M/2
eff . Plugging this into

(37) we have:

lim
ρ→∞

Ts − t∗s =
1 + t

t
ρ
M/2
eff (39)

Thus νR is optimized when ts → −∞, but as M ≤ ts < Ts,
we have lim

ρ→∞
t∗s = M for all MISO systems.

Now for any MIMO system in general, using the eigen
value decomposition of HHH we have the eigenvalue de-
composition log2 |IM + ρ

MHHH | = log2(Π
L
i=1(1 + λi)),

where L = min(M,N) and λi are the eigenvalues of HHH .
Applying the limit on ρ and ignoring lower order terms we
have

lim
ρ→∞

f(ρeff) = Pr

[
ΠL

i=1λi ≥
2ξ

ρLeff

]
. (40)

We can observe that the above expression is a cumulative dis-
tribution function of ΠL

i=1λi and so it’s derivative is simply the
PDF of ΠL

i=1λi. For ρ → ∞ we have f ′(ρeff) = Pr[ΠL
i=1λi =

2ξ

ρL
eff

] As we know that the in general, if the number of transmit
antennas are the same, Pr[λMISO > x] ≤ Pr[ΠL

i=1λi > x] for
any x > 0 [35] . Thus f ′

MIMO(ρeff) < f ′
MISO(ρeff), implying

that for all MIMO systems lim
ρ→∞

t∗s = M from (37) and (39).

REFERENCES

[1] D. Lister, “An Operator’s View on Green Radio”, Proc. IEEE Internat.
Conf. on Commun, Workshops (ICC Workshops ’09), 1st Internat.
Workshop on Green Commun. (GreenComm ’09) (Dresden, Ger, 2009).

[2] J. Palicot, and C. Roland, “On The Use Of Cognitive Radio For
Decreasing The Electromagnetic Radiations”, URSI 05, XXVIII General
Assembly, New Delhi, India, October 23-29, 2005.

[3] GreenTouch, “Communications Turns Totally Green”, Press Release, Jan.
11, 2010.

[4] Mobile VCE, Virtual Centre of Excellence in Mobile and Personal Com-
munications, Core 5 Research Programme, “Green Radio - Sustainable
Wireless Networks”, Feb. 2009.

[5] E. Telatar, “Capacity of Multi-antenna Gaussian Channels”, European
Trans. Telecommunications, Vol. 10 (1999), pp. 585-595.

[6] E.V. Belmega, and S. Lasaulce, “Energy-efficient pre-coding for multiple-
antenna terminals”, IEEE. Trans. on Signal Processing, 59, 1, Jan. 2011.
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the Finite Blocklength Regime,” IEEE Trans. Information Theory, vol.
56, no. 5, pp. 2307–2359, May 2010.

[21] F. Richter, A. J. Fehske, and G. Fettweis, “Energy Efficiency Aspects of
Base Station Deployment Strategies for Cellular Networks”, Proceedings
of VTC Fall, pp. 1-5, Dresden, 2009.

[22] S. K. Jayaweera, “A virtual MIMO-based cooperative communications
architecture for energy-constrained wireless sensor networks”, IEEE
Trans. Wireless Commun., vol. 5, pp. 984-989, May 2006.

[23] F. Meshkati, H. V. Poor, S. C. Schwartz, and N. B. Mandayam, “An
energy-efficient approach to power control and receiver design in wireless
data networks,” IEEE Trans. Commun., vol. 52, pp. 1885-1894, Nov.
2005.

[24] D. Buckingham, and M.C. Valenti, “The information-outage probability
of finite-length codes over AWGN channels”, IEEE Information Sciences
and Systems, 2008. CISS 2008.

[25] C.E. Shannon, “A Mathematical Theory of Communication”, Bell Sys-
tem Technical Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948.

[26] J. Hoydis, R. Couillet, P. Piantanida, and M. Debbah, “A Random Matrix
Approach to the Finite Blocklength Regime of MIMO Fading Channels”,
IEEE International Symposium on Information Theory (ISIT), pp. 2181
- 2185, Cambridge, 2012.

[27] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-Layer Combining of
Adaptive Modulation and Coding with Truncated ARQ Over Wireless
Links, IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1746-1755,
Sept. 2004.

[28] L.H. Ozarow, S. Shamai, and A.D. Wyner, ”Information theoretic
considerations for cellular mobile radio”, IEEE Vehicular Technology,
vol. 43, No. 2, pp 359-378, May. 1994.

[29] FCC Sec.15.249, Operation within the bands 902-928 MHz, 2400-
2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz, Oct. 2011.

[30] T. M. Cover, and J. A. Thomas, “Elements of information theory”,
Wiley-Interscience, New York, NY, 1991.

[31] S. Lasaulce, and N. Sellami, “On the Impact of using Unreliable Data
on the Bootstrap Channel Estimation Performance”, Proc. IEEE SPAWC,
Italy, June 2003, pp. 348-352.

[32] D. Love, R. Heath, V. Lau, D. Gesbert, B. Rao, and M. Andrews, “An
overview of limited feedback in wireless communication systems”, IEEE
Journal on Selected Areas Communications, vol 26, pp. 1341-1365, 2008.

[33] V. Rodriguez, “An Analytical Foundation for Ressource Management in
Wireless Communication”, IEEE Proc. of Globecom, San Francisco, CA,
USA, pp. 898-902, Dec. 2003.

[34] E. A. Jorswieck, and H. Boche, “Outage probability in multiple antenna
systems”, European Transactions on Telecommunications, vol. 18, pp.
217-233, 2006.

[35] A. Edelman, “Eigenvalues and Condition Numbers of Random Matri-
ces”, PhD thesis, Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA, 1989.

[36] S. Lasaulce, and H. Tembine, “Game Theory and Learning for Wireless
Networks: Fundamentals and Applications”, Academic Press, pp. 1-336,
Aug. 2011, ISBN 978-0123846983.

[37] S. Lasaulce, M. Debbah, and E. Altman, Methodologies for analyzing
equilibria in wireless games, IEEE Signal Processing Magazine, vol. 26,
no: 5, pp. 41-52, Sep. 2009.

[38] 3GPP TR 36.814 v0.4.1, “Further Advancements for E-UTRA”, Physi-
cal Layer Aspects, Feb. 2009.

[39] M. Alexander, F. A. Graybill, and D. C. Boes (1974). “Introduction to
the Theory of Statistics” (Third Edition, p. 241-246). McGraw-Hill. ISBN
0-07-042864-6.

[40] Digital Library of Mathematical Functions, Incomplete Gamma func-
tions, 8.11. [Online] Available: http://dlmf.nist.gov/8.11#i

Vineeth S Varma was born in Tripunithura, India.
He is currently doing his PhD at LSS under the
supervision of Dr. Samson Lasaulce. He obtained
his Bachelors in Physics with Honors from Chennai
Mathematical Institute, India in 2008. He then pro-
ceeded to join the Erasmus Mundus course in Optics
and obtained Masters in Science and Technology
from Friedrich-Schiller-University of Jena in 2009
and Warsaw University of Technology in 2010. His
areas of interest are Physics, Applied mathematics
and Telecommunication. Since December 2010 he

is working on his PhD aimed at finding the fundamental limits of energy on
telecommunication and optimizing energy efficiency in networks. He is the
recipient of the 2012 ACM VALUETOOLS best student paper award.

Samson Lasaulce received his BSc and Agrégation
degree in Physics from École Normale Supérieure
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cessing from École Nationale Supérieure des
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