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Nonlinear Control Design and Analysis of a Multi-Terminal
VSC-HVDC System

Yijing Chen1, Jing Dai1, Gilney Damm2, Françoise Lamnabhi-Lagarrigue1

Abstract— This paper presents a nonlinear control strategy
based on dynamic feedback linearization control theory and
a backstepping-like procedure for a multi-terminal voltage-
source converter based high-voltage direct current (multi-
terminal VSC-HVDC) system. The controller is able to provide
global asymptotic stability for the power transmission system
consisting of N terminals. Furthermore it is shown that the
remaining zero dynamics (mostly representing the DC network)
are also exponentially stable, and then the whole system can be
shown asymptotically stable. These results are obtained by a
rigorous stability proof for the whole system under the proposed
controller, and its performance is illustrated by computer
simulations.

I. INTRODUCTION

With the development of wind, solar and other renewable
energy sources, there is an urgent need to integrate these
decentralized and relatively small-scale power plants into
the grid in an economical and environmentally friendly way.
Furthermore, the increase of electricity demand requires the
expansion of grid capacity. But it is very hard to increase
the grid through overhead AC lines, which occupy large
transmission line corridors. For both cases, Voltage-Source
Converter based High-Voltage Direct Current (VSC-HVDC)
multipoint networks could be a good solution.

At present, over 90 DC transmission projects exist in
the world, the vast majority for point-to-point two-terminal
HVDC transmission system and only two for multi-terminal
HVDC (MTDC) system. The traditional two-terminal HVDC
transmission system can only carry out point-to-point power
transfer. Under the requirements of the economic develop-
ment and the construction of the power grid, it is necessary to
require that the DC grid can achieve power exchanges among
multiple power suppliers and multiple power consumers.
Therefore, the MTDC system based on the two-terminal
HVDC system draws more and more attention. MTDC trans-
mission system is a DC transmission network connecting
more than two converter stations (AC/DC,DC/DC). It offers
a large transmission capacity (larger than the AC network)
and can provide a more flexible, efficient transmission way.
The main applications of MTDC system include the power
exchange among multi-points, integrating isolated asyn-
chronous networks, and integrating scattered power plants
like offshore renewable energy sources such as wind, hydro,
solar.

1Y. Chen, J. Dai and F. Lamnabhi-Lagarrigue are with Laboratoire des
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On the other hand, MTDC system brings several stability
problems. The strong interaction between DC and AC net-
works may lead to a significant decrease in the overall system
performance and even threaten the stability and safety of
the system. Therefore, it is important to perform a rigorous
mathematical stability analysis for the MTDC system.

A large amount of research on two-terminal VSC HVDC
control has been carried out [1], [2], [3], [4]. In [1], an
equivalent continuous-time averaged state-space model is
presented and a robust DC-bus voltage control scheme is
proposed highlighting the existence of fast and slow dynam-
ics that can be associated to the inner current control loop and
outer DC-bus voltage control loop. Reference [3] proposes
a control strategy under balanced and unbalanced network
conditions, which contains two sets of controller: a main
controller in the positive dq frame using decoupling control,
and an auxiliary controller using coupling control. However,
the above mentioned controllers were designed for a standard
two-terminal VSC-HVDC system, not for multi-terminal
VSC-HVDC system. In [5], [6], [7], control strategies of
VSC based multi-terminal were investigated. Reference [7]
uses a droop control scheme to control the DC voltage.
Reference [5] presents a multi-point DC voltage control and
[6] proposes a scheme for controlling and coordinating the
grid. However, the previously mentioned articles came from
the power systems’ community, and as a consequence, did
not provide stability proofs.

In the present paper, a control strategy is formally de-
signed with its mathematical stability analysis for a multi-
terminal HVDC system. The controller is developed fol-
lowing a dynamic feedback linearization strategy that, by
a naturally decoupled time-scale phenomenon, represents
a backstepping-like control strategy (see [8][9][10]). This
controller assures global asymptotic stability for the power
transmission system consisting of N terminals. In a second
step, the behavior of the remaining states of the system
(known as the zero dynamics) is analyzed, which is given
by the transmission network. And the zero dynamics are
shown to be exponentially stable. It can then be seen that
the whole MTDC system is asymptotically stable. This paper
is organized into five sections. In Section II, a dynamic
multi-terminal VSC HVDC model is given. In Section III, a
feedback control law is developed. Simulations are carried
out in Section IV. Conclusions are drawn in Section V.



II. MODELING OF A MULTI-TERMINAL VSC-HVDC
SYSTEM

This section introduces the state-space model of a multi-
terminal VSC-HVDC system established in the synchronous
dq frame, which allows for a decoupled control on the active
and the reactive power, where the high-frequency PWM
characteristics of the power electronics are neglected. Only
the balanced condition is considered in this paper, i.e. the
three phases have identical parameters and their voltages and
currents have the same amplitude while phase-shifted 120◦

between themselves.
A converter of a multi-terminal VSC HVDC system con-

nected to other converters is shown in Fig. 1.

Fig. 1. One terminal in a multi-terminal VSC Transmission System

AC network

On the AC side of the converter station, the Kirchhoff
voltage law leads to the system expressed in dq synchronous
reference frame rotating at the pulsation ωi:

vlid −Rliilid − Lli
dilid
dt

+ ωiLliiliq − vid = 0 (1a)

vliq −Rliiliq − Lli
diliq
dt

− ωiLliilid − viq = 0 (1b)

By using Pulse Width Modulation (PWM) technology, the
amplitude of the converter output voltage vid and viq are
controlled by the modulation index as:

vid =
vidw
2
uci (2a)

viq =
viqw
2
uci (2b)

By neglecting the resistance of the converter reactor and
switching losses, the instantaneous active power and reactive
power on the AC side of the converters can be expressed as
follows:

Pli =
3

2
(vlidilid + vliqiliq) (3)

Qli =
3

2
(vliqilid − vlidiliq) (4)

DC line

By applying the Kirchhoff voltage and current laws to the
DC circuit, the DC side of the rectifier is modelled by the
following differential equations:

duci
dt

= − 1

Ci
ici +

1

Ci
ii (5)

dici
dt

=
1

Lci
uci −

Rci

Lci
ici −

1

Lci
ucc (6)

AC-DC power coupling

Considering the active power balance on both sides of the
converter, we have uciii = viAiliA+viBiliB+viCiliC . Thus,
ii can be expressed as the following equations:

ii =
3

4
(vidwilid + viqwiliq) (7)

The interconnection among N terminals, as shown in Fig. 2,
is represented as follows:
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Fig. 2. The interconnection of a multi-terminal VSC Transmission System

ducc
dt

=
1

Cc

N∑
i=1

ici (8)

Global model

The full state-space model of N -terminal VSC-HVDC
system is written as follows:

i̇lid = −Rli

Lli
ilid + ωiiliq −

1

Lli
vidw

uci
2

+
1

Lli
vlid

i̇liq = −Rli

Lli
iliq − ωiilid −

1

Lli
viqw

uci
2

+
1

Lli
vliq

u̇ci = − 1

Ci
ici +

1

Ci

3

4
(vidwilid + viqwiliq)

i̇ci =
1

Lci
uci −

Rci

Lci
ici −

1

Lci
ucc

u̇cc =
1

Cc
(
∑N

i=1 ici)

(9)
where i = 1, · · · , N .

The global state-space model of the multi-terminal VSC-
HVDC system is summarized as follows:

• State variables: ilid, iliq , uci, ici, ucc.
• Control variables: vidw, viqw.
• External parameters: vlid, vliq.
• External references provided by a higher level controller

named the HVDC secondary controller: u∗ci, Q
∗
li.

• The dimension of the system (9) is 4N + 1.

III. CONTROL SCHEME

In this part we will present the detailed synthesis of
the controller for one of the terminals, i.e. addressing the
converter’s DC voltage uci and reactive power Qli.

For the converter modelled by the first three equations of
the system (9), it is desired that the dq currents ilid, iliq and
the DC voltage uci track their reference values.



The control structure is mainly based on the following
physical considerations:

• The dynamics of the original system expressed by (9)
highlights a separation into fast and slow dynamics,
where the DC voltage equation represents the slow dy-
namics, and the dq current equations represent the fast
dynamics. Thus, this multitime-scale behaviour suggests
to apply a cascaded control system. The inner control
loop will control the fast dynamics ilid and iliq and the
outer control loop will regulate the slow dynamics uci
and control reactive power Qi. The outputs of the outer
control loop provides the current reference points in the
dq frame i∗lid and i∗liq for the inner loop system.

• We consider dq frame right orientation such that vliq =

0, then (4) can be written as, Qli = −3

2
vlidiliq, which

means that the reactive power is directly controlled il1q .
A backstepping-like procedure is carried out for designing

the control scheme. In the first step, the backstepping-like
procedure requires the fast dynamics AC currents ilid and
iliq to follow their reference trajectories (yet to be designed),
which means to eliminate the dq current errors ĩlid and ĩliq
where ĩlid = ilid − i∗lid, ĩliq = iliq − i∗liq .

Following a feedback linearization objective, we design
the control laws:

uid = i̇lid , ˙̃
ilid + i̇∗lid (10a)

uiq = i̇liq , ˙̃
iliq + i̇∗liq (10b)

The currents ilid and iliq are controlled independently by
the auxiliary inputs uid and uiq obtaining the new systems
as follows:

vidw =
2Lli

uci
(−Rli

Lli
ilid + ωiiliq +

1

Lli
vlid − uid) (11a)

viqw =
2Lli

uci
(−Rli

Lli
iliq − ωiilid +

1

Lli
vliq − uiq) (11b)

To assure that the errors ĩlid and ĩliq will converge to zero,
as well as good steady states, it is proposed the following
augmented state:

ϕ̇id = ĩlid (12a)
˙̃
ilid = −kidĩlid − λidϕid (12b)

and

ϕ̇iq = ĩliq (13a)
˙̃
iliq = −kiq ĩliq − λiqϕiq (13b)

where kid, kiq , λid and λiq are positive constants. Thus, we
have:

uid = −kidĩlid − λidϕid + i̇∗lid (14a)

uiq = −kiq ĩliq − λiqϕiq + i̇∗liq (14b)

The second step of the backstepping-like procedure de-
termines the behaviour of the converter, which include DC
voltage control and reactive power control. The outputs of

this step provide the dq current reference values for dq
currents.

The trajectory i∗liq is obtained directly from the reactive
power’s reference provided by the secondary level (possibly
from the AC voltage controller):

i∗liq = −2

3

Q∗
li

vlid
(15)

One of the goals of the proposed controller is to keep the
DC voltage constant at its reference point u∗ci. It is this DC
voltage controller that provides i∗lid to the inner controllers.

Placing (11) into the third euqation of (9), we have:

u̇ci = − 1

Ci
ici +

3

2

1

Ciuci
[ilid(−Rliilid + vlid − Lliuid)

+ iliq(−Rliiliq + vliq − Lliuiq)]
(16)

Then, by substituting (11) into (16), the DC voltage dynamics
is given by:

u̇ci =− 1

Ci
ici +

3

2

1

Ciuci
·

[ilid(−Rliilid + vlid + Llikidĩlid + Lliλidϕid − Llii̇
∗
lid)

+iliq(−Rliiliq + vliq + Llikiq ĩliq + Lliλiqϕiq − Llii̇
∗
liq)

(17)

Since it is aimed to maintain the DC voltage uci at its set
value, the desired dynamics of voltage error ũci is expressed
as:

ϕ̇ci = ũci (18a)
˙̃uci = −kciũci − λciϕci (18b)

where ũci = uci − u∗ci. The above equation can also be
written as:

u̇ci = −kciũci − λciϕci + u̇∗ci (19)

Since the desired values for u∗ci, Q
∗
li are constant, u̇∗ci and

i̇∗liq are taken as zero.
It is then clear that to transform the actual dynamics (17)

into the desired (18b), it’s necessary to apply the control:

i̇∗lid =− 2

3

uci
ilid

Ci

Lli
(−kciũci − λciϕci +

ici
Ci

) +
uci
2Lli

iliq
ilid

viqw

+ (−Rli

Lli
ilid + ωiiliq +

vlid
Lli

+ kidĩlid + λidϕid)

(20)

The main result of this paper can be then summarized in the
form of the theorem:

Theorem 1: The multi-terminal VSC-HVDC system de-
scribed by (9) under the control laws (11)-(20) is globally
asymptotically stabilized to the actual reference values u∗ci
and Q∗

li. Furthermore, this result is independent of the
network’s parameters Lci, Rci, Cci.

Proof: In the considered case, the N converters drive
the DC voltage. It is desired to keep uci and Qli at their
reference values u∗ci and Q∗

li. Thus the outputs of the system
can be defined as:

y = [uci Qli]
T (21)



From the previous section, we know that i∗lid, i∗liq are defined
by (15) and (20).

To simplify our problem, at first, we shift the reference
values of the whole system to the origins and the following
new state variables are introduced:

x̃ = [̃ilid ĩliq ũci ĩci ũcc]
T (22)

where ĩci = ici − i∗ci, ũcc = ucc − u∗cc with i∗ci and u∗cc the
equilibrium values of ici and ucc.

And the new output error variables as follows:

ỹ = [ũci Q̃li]
T (23)

where Q̃li = Qli −Q∗
li.

The system (9) can be expressed in the new error variables
as:

d̃ilid
dt

= −Rli

Lli
ĩlid + ωĩiliq −

1

Lli
vidw

ũci
2

d̃iliq
dt

= −Rli

Lli
ĩliq − ωĩilid −

1

Lli
viqw

ũci
2

dũci
dt

= − 1

Ci
ĩci +

1

Ci

3

4
(vidw ĩlid + viqw ĩliq)

d̃ici
dt

=
1

Lci
ũci −

Rci

Lci
ĩci −

1

Lci
ũcc

dũcc
dt

=
1

Cc
(
∑N

i=1 ĩci)

(24)

where i = 1, · · · , N .
Now in order to analyze the stability of the new system

(24), we first divide the state varibles x̃ into two parts:

η = [̃ici ũcc]
T , (25a)

ξ = [̃ilid ĩliq ũci]
T . (25b)

The system (24) can be considered as in the normal form:

η̇ = f1(η, ξ) , (26a)

ξ̇ = f2(η, ξ, u) . (26b)

with
u = f3(η, ξ). (27)

This is the standard nonlinear zero dynamics form [9]. If
a system is in the normal form (26), when ξ is identically
zero, the behaviour of the system (26) is governed by the
differential equation:

η̇ = f1(η, 0) (28)

The dynamics of (28) correspond to the ”internal” behaviour
of the system, which are called the zero dynamics of the
system. Suppose that η = 0 of the zero dynamics of the
system (26) is globally asymptotically stable and ξ is also
globally asymptotically stable under the feedback control law
(27), then the whole system (26) is stabilized by the feedback
control law (27) at (η, ξ) = (0, 0)[9].

The next step is to study the behaviours of η, ξ respec-
tively. Applying the controller (11) and (12) (13) (18), the
closed-loop error system can be written as:

ζ̇ = Aζ (29)

where ζ = [ϕid ĩlid ϕiq ĩliq ϕci ũci]
T and A =

diag(Aid, Aiq, Aci) with

Aid =

(
0 1

−λid −kid

)
Aiq =

(
0 1

−λiq −kiq

)
Aci =

(
0 1

−λci −kci

) (30)

It is easy to verifier that matrix A is Hurwitz. Thus, ζ is
globally exponentially stable with the proposed control law
(11). It is now necessary to study the behaviour of the state
variables η when ξ converge to zero. In fact, when ξ = 0, η
is governed by the following differential equation:



˙̃
ic1
˙̃
ic2
...

˙̃
icN
˙̃ucc


=



−Rc1

Lc1
0 . . . 0 − 1

Lc1

0 −Rc2

Lc2
. . . 0 − 1

Lc2
...

...
...

...
...

0 0 . . . −RcN

LcN
− 1

LcN
1

Cc
− 1

Cc
. . . − 1

Cc
0




ĩc1
ĩc2
...
ĩcN
ũcc


(31)

Thus, the zero dynamics of the system (24) is:

f1(η, 0) = Bη (32)

where B =



−Rc1

Lc1
0 . . . 0 − 1

Lc1

0 −Rc2

Lc2
. . . 0 − 1

Lc2
...

...
...

...
...

1

Cc
− 1

Cc
. . . − 1

Cc
0


.

The characteristic polynomial of matrix B is in the fol-
lowing form:

f(λ) = λN+1 +

N∑
i=0

aiλ
i (33)

where λ are the eigenvalues of matrix B and ai, i = 0, . . . , N
are positive.

For all λ, Re(λ) is negative and as consequence, B is
Hurwitz and then the zero dynamics of the system (24) η̇ =
f1(η, 0) is globally exponentially stable.

From the above proof, the designed control law (11) can
globally exponentially stabilize ξ and the zeros dynamics
(28) is also globally exponentially stable. Finally the whole
system (24) is globally asymptotically stabilized at (η, ξ) =
(0, 0) by the proposed controller.

IV. SIMULATION RESULTS

The proposed controller is tested in computer simulations
presenting a three-terminal VSC-HVDC system, which is
shown in Fig. 3. These three VSC terminal operate in DC
voltage control mode. The parameter values are presented in
Table I. We choose the pulsation ωi = 314, the capacitor
Ci = 12× 10−6F and the RMS value of vli = 230× 103V.



TABLE I
PARAMETER VALUES OF EACH AC AREA.

Rli Lli Rci Lci

AC 1 13.79 31.02e-3 0.2085 0.0024

AC 2 12.79 33.02e-3 0.2 0.001

AC 3 13.57 40.02e-3 0.235 0.0035

TABLE II
SEQUENCE OF EVENTS ASSUMED IN SIMULATION

Time (s) Events
0 Initial settings:

uc1 = 101 KV, uc2 = 100 KV, uc3 = 99.8 KV
1 Set the reference values:

uc1 = 101.2 KV, uc2 = 101 KV, uc3 = 99.9 KV
4 Set the reference value: uc1 = 102.2 KV
5 Set the reference value: uc2 = 102.0 KV
6 Set the reference value: uc3 = 100.9 KV

The feedback control gains are given as kid = 100, λid =
100, kiq = 100, λiq = 100, kci = 25, λci = 5. The sequence
of values listed in Table II is used when carrying out the
simulations. And In our simulations, all reactive powers Ql1,
Ql2 and Ql3 are set up to zero which allow unitary power
factor, which means that i∗l2q , i∗l2q and i∗l3q are zero.
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Fig. 3. A three-terminal VSC-HVDC Transmission System

Simulation results are shown in Fig. (4)-(9). The regulation
behaviours of each converter’s DC voltage are illustrated
in Fig. (4), (5) and (6) where the black curve represents
each DC voltage’s reference value and the red one is its
responses. At the start of the simulation, these terminals work
at their initial reference values, then at t = 1s, there are
a step change for each DC voltage reference values. Fig.
(4)-(6) indicate that each DC voltage uci reaches its new
reference value before t = 2s. At t = 4s, we only give a
step change for u∗c1, after then uc1 achieve its new reference
value before t = 5 as can be seen in Fig. (4). During t = 4s
to t = 5s, uc2 and uc3 keep unchanging and are still at
their own reference values as shown in Fig. (5) and (6). At
t = 5s and t = 6s, when the reference values for uc2 and
uc3 are reset, respectively, we find that, they attain their new
references and have no effect to uc1.

The converter’s quadrature current iliq are always very
close to zero no matter how the DC voltage reference value
change. The reason is that the quadrature current is controlled
by the reactive controller. If the reference value of Qli is
always zero, iliq remains close to zero.
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Fig. 4. DC voltage control uc1 reference and response
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Fig. 5. DC voltage control uc2 reference and response

Fig. (7), (8) and (9) illustrate each converter’s direct
current ilid. We can see that, once the DC voltage reference
value change, the direct current also change and reach a
new reference point. It is true since i∗lid is controlled by
DC voltage controller.

V. CONCLUSIONS

In this paper, a nonlinear controller has been designed
for the multi-terminal VSC-HVDC system. This controller
is a cascade control system that exhibits a multitime-scale
behaviour. The proposed control law is based on dynamic
feedback linearization strategy and a backstepping-like pro-
cedure. A detailed stability analysis by means of the zero
dynamics approach for the nonlinear system shows that the
MTDC system is asymptotically stable. Simulation results
also clearly show that the proposed control strategy con-
tributes significantly to regulating DC-bus voltage and it
highlights dynamic performances.
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Fig. 8. DC voltage control il2d response
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Fig. 9. DC voltage control il3d response


