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Non-linear control of the longitudinal rotational dynamics of a flexible

aircraft

Elodie Duraffourg1, Laurent Burlion1, Tarek Ahmed-Ali2 and Françoise Lamnabhi-Lagarrigue3

Abstract— This paper studies the longitudinal inner loop
control design of a flexible aircraft over a large flight domain.
More precisely, the objective is to construct a stabilizing flight
control law to steer the angle of attack to a desired trim value
while suppressing the oscillation of the bending modes. A new
Lyapunov-based non-linear controller is designed to enhance
the transient of the flexible modes before reaching the zero
dynamics sub-manifold. Moreover, the local behavior of the
trajectories is finally modified by blending our controller with
a LQ controller in order to achieve the additional and practical
control objective of locally damping out the oscillations of the
bending modes.

I. INTRODUCTION

The problem of designing a semi-global or global asymp-

totic controller for a non-linear system of the following form
{

ẋ = f (x)+g(x)u
ż = fz(z,x)

(1)

where fz(0,0) = 0, the dynamics of z ∈R
r is called the zero

dynamics (when x = 0), the dynamics of x ∈ R
n is upper

triangular and u ∈ R is a challenging problem in the field

of non-linear control. Indeed, it is well known that when

the functions f and g are perfectly known the x-dynamics

can be transformed to a chain of integrators and the system

is in normal form [6]. Otherwise, the x-dynamics can be

controlled by a Backstepping controller [7] but in both cases

the work is not finished and two kind of problems arise

depending on the stability of the zero-dynamics.

The ’most difficult’ problem is surely the case of non

minimum phase non-linear systems for which there has been

a lot of advances in the last few years (see [8], [9], [10], [12],

[13] to cite a few). Although many results have been given

for some sub-classes of systems and many applications have

been proposed, it seems to us that the problem is still open.

Indeed, to the best of our knowledge, when (obviously) fz is

not linear with respect to some variables, there is a lack of

theoretical results when there are more than two components

of x in fz (see [9]). Moreover, most of the applications

considered have a one or two-dimensional zero dynamics

and it does not seem obvious to extend the results to larger

classes of systems.
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Concerning the problem of minimum phase non-linear sys-

tems, there is still no general global stabilization result

when we relax the assumptions of fz although the problem

is apparently less difficult and has been early solved by

simply stabilizing the x-dynamics by using a controller of

the form u = u(x) under some hypothesis on the growth

of fz. Indeed, it is known that the available result is only

semi-global when fz(z,x) depends only on one component

of x[2,n] := [x(2), . . . ,x(n)]. The interested reader will find

more details in [6] and [11] where a controller u = u(x,z)
is proposed and globally stabilizes some special classes of

minimum phase non-linear systems.

Our interpretation of this result is that a controller which

depends on z has led to a better result because it considered

the full state during the transient.

In this paper, we are interested in stabilizing the rotational

dynamics of a flexible aircraft (which belongs to the class of

single-input minimum phase non-linear systems) by using a

controller which depends on z too: our aim is to both enhance

the transient of the full state and the local behavior of the

closed loop system.

In our application, z is the vector formed by the flexible

modes and their derivatives. By using z in a controller which

is inspired by some recent papers [3], [4], we show that

we obtain a better transient of the flexible modes when

the flexible frequencies are within the bandwidth of the

controller i.e when there is a strong coupling between the

rigid and flexible modes (to highlight our results, the model

of the flexible airplane has been inspired from [5], [2] but

the flexible modes pulsations are quite low). Moreover, in

this paper, we also propose to study the local behavior of

the closed-loop system in the case where the damping of the

flexible modes are very low. To solve the problem of damping

out these modes, we propose to unite our controller with an

optimal LQ controller in the vicinity of the origin: we then

use the results of [1] in order to guarantee the stability of

this hybrid system.

The paper is organized as follows: in section II a theoretical

result is given which uses and extends the results of [3] to

a broader class of system thanks to the use of a modified

Lyapunov function. Thanks to this extension and after a

change of coordinates, this result is applied to the rotational

dynamics of the flexible aircraft in section III. Section IV

presents a method to damp out the oscillations of the bending

modes. We finally give our conclusions and some future

research directions.
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II. A THEORETICAL RESULT ON THE LYAPUNOV

BASED CONTROLLER DESIGN

This section formulates a theoretical result which is used

in section III to construct a stabilizing controller (of the form

u = u(x,z)) for the rotational dynamics of a flexible aircraft.

A. System under consideration and objectives

All along this section, the following non-linear system is

considered:
{

ẋ = u

ż = fz(z,x,u) := Azz+F(x)x+H(x)u
(2)

where (x,z) ∈ R×R
n−1 is the state, u in R is the control

input, fz is Input to State Stable (ISS) with respect to the

inputs x and u, H : R → R
n−1 and F : R → R

n−1 are C1

functions, and Az ∈ R
n−1×n−1 is Hurwitz. The dynamics of

z is called the ’flexible dynamics’. Az being Hurwitz, there

exist two symmetric positive definite matrices Pz and Qz in

R
n−1×n−1 such that

AT
z Pz +PzAz =−2Qz (3)

The objective is to design a globally stabilizing controller

to steer the state x of system (2) from an initial value to

a desired equilibrium referred to as xc. Thus the errors are

defined as δx = x− xc, δ z = z− zc, with zc = −A−1
z F(xc)xc

and system (2) is turned into:
{

δ̇x = u

δ̇ z = Azδ z+ F̄(x)δx+H(x)u
(4)

where F̄(x) = F(x)x−F(xc)xc
1.

Please note that this ’simple’ class (with respect to the x-

dynamics) has been chosen to suit our applicative part and

that the control design proposed in this section could be used

for a larger class of systems where x ∈R
nx>1 and where the

x-dynamics is upper-triangular.

B. Non-linear control design

A new Lyapunov-based controller inspired by [3] is de-

signed to achieve the control objectives.

Assumption 1: There exists a positive real HM such that:

∀x ∈ R ‖H(x)‖2 ≤ HM (5)

Thanks to Assumption 1, the integral of H is well-defined

and the following Lyapunov function candidate can be con-

sidered for system (4)

V =
c1

2
δx2 +

c2

2

[

δ zT Pzδ z−2δ zT Pz

∫ x

xc

H(s)ds

]

(6)

1F̄(x) is computed as follow:

F̄(x) =
F(x)x−F(xc)xc

x− xc
if x 6= xc

F̄(x) =
d(F(x)x)

dx
if x = xc

where c1, c2 are positive constants. Throughout this paper,

we use the following notation:

H (x)δx :=
∫ x

xc

H(s)ds (7)

Assumption 2: c1 and c2 are defined such that:

c2 <
c1λmin

(

Pz

)

H2
Mλmax

(

P2
z

) (8)

where λmin(A) represents the smallest eigenvalue of matrix

A and λmax(A) the highest one.

Proposition 1: Under Assumptions 1 and 2, the function

V is positive definite.

Proof 1: Assumption 1 yields ‖H (x)‖2 ≤ HM and

V ≥
c1

2
δx2 +

c2

2

[

δ zT Pzδ z−2|δ zT PzHMδx|
]

For all k > 0 we have:

−2|δ zT PzHMδx| ≥ −k2δx2 −
H2

M

k2
δ zT P2

z δ z

Consequently the function V satisfies:

V ≥
1

2

(

c1 − k2c2

)

δx2 +
c2

2
δ zT
(

Pz −
H2

M

k2
P2

z

)

δ z

V is positive definite if: c1 > k2c2 and Pz >
H2

M

k2
P2

z . Since we

have: Pz > λmin(Pz)In−1 and λmax

(

P2
z

)

In−1 > P2
z , with In−1

the identity matrix, the condition Pz >
H2

M

k2
P2

z is verified if:

λmin

(

Pz

)

≥
H2

M

k2
λmax

(

P2
z

)

We finally choose: k2 = H2
M

λmax

(

P2
z

)

λmin

(

Pz

) to get the result.

Proposition 2: Consider the system (2), with the control

law:

u(x,z) =−
λxδx+Γ(x,z)

∆(x)
(9)

with λx > 0 and:

Γ(x,z) = c2δ zT PzF̄(x)− c2

(

Azδ z+ F̄(x)δx
)T

PzH (x)

∆(x) = c1 − c2H(x)T PzH (x)

Under Assumptions 1 and 2, the closed loop system is

globally and asymptotically stable.

Proof 2: The time derivative of V is:

V̇ = δx
[

u∆(x)+Γ(x,z)
]

− c2δ zT Qzδ z (10)

Using assumption 2 and the fact that Pz is symmetric yield:

c1 >
c2H2

Mλmax(Pz)λmax(Pz)

λmin(Pz)
≥ c2H2

Mλmax(Pz)
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Then the function ∆ satisfies ∆(x)≥ c1 −c2H2
Mλmax

(

Pz

)

> 0

and the control law (9) is well-defined. The time derivative

of V is finally given by:

V̇ =−λxδx2 − c2δ zT Qzδ z (11)

which satisfies V̇ < 0. Lyapunov stability theorem proves

global and asymptotic stability of the origin of the closed

loop composed of system (2) and control law (9).

This result deserves a few additional comments:

• Remark 1: By comparison to a law of the form u=−λ̃xx

which would stabilize x and render the whole system

stable (since the zero dynamics is minimum phase and

fz is ISS), the control law (9) uses the flexible dynamics

z and should limit the interaction of the x-dynamics

on the transient of the z-dynamics. This fact will be

illustrated on our application in the next section.

• Remark 2: As opposed to [3], our Lyapunov function

uses an integral term: this is due to the non-linear gain

H(x) of the control law u in the flexible dynamics.

This integral enabled us to relax the assumptions on

the function H.

III. APPLICATION TO THE ROTATIONAL

DYNAMICS OF A FLEXIBLE AIRCRAFT

The model of the longitudinal dynamics of a flexible

hypersonic vehicle is given in [2]. Inspired by this model that

was first-developed in [5], the rotational dynamics, namely

the angle of attack α and pitch rate q, and the flexible

dynamics are considered in this study. The equations of

motion are written as:














α̇ = f0(α)α +C
η1
α η1 +C

η2
α η2 +q+Cc

α

q̇ = f1(α)α +C
η1
q η1 +C

η2
q η2 +Cvv

η̈1 = h1v−ω2
1 η1 −2ξ1ω1η̇1 +N

η
1 η2 + fη1

(α)α
η̈2 = h2v−ω2

2 η2 −2ξ2ω2η̇2 +N
η
2 η1 + fη2

(α)α
(12)

The flexible aircraft dynamics (12) is composed of two

rigid body state variables [α,q]T and four flexible states

z = [η1, η̇1,η2, η̇2]
T corresponding to the first two bending

modes. The interaction between rigid and flexible dynamics

is also considered. The control input is v. f0, f1, fη1
and fη2

are real functions of class C1. Moreover f0 is bounded.

We assume that the entire state [α,q,zT ]T is measured

and the system is initially at a trim flight condition. The

objective is to design a non-linear controller to steer the angle

of attack from an initial equilibrium to desired trim condition

αc, while suppressing the oscillations of the bending modes.

αc and the initial angle of attack trim are supposed to be in

an admissible range, referred to as A .

A. Transformation of the system

The first step consists in transforming the system (12) to

fit with the theory. That is made using the following change

of coordinates:

q∗ = f0(α)α +C
η1
α η1 +C

η2
α η2 +q+Cc

α (13)

η̄i = ηi −
hi

Cu
α, i ∈ 1,2 (14)

Indeed, substituting (13) into the first equation of (12) and

(14) into the flexible dynamics of (12) yields

α̇ = q∗ (15)

˙̄z = Azz̄+F(α)α +H(α)q∗ (16)

q̇∗ = Λ(q∗,α, z̄)+Cvδv (17)

with the following notations:

z̄ = [η̄1
˙̄η1 η̄2

˙̄η2]
T

Az =









0 1 0 0

−ω̄2
1 −2ξ̄1ω̄1 N̄

η
1 N̄

η̇
1

0 0 0 1

N̄
η
2 N̄

η̇
2 −ω̄2

2 −2ξ̄2ω̄2









H(α) =
[

0 f 1
q (α) 0 f 2

q (α)
]T

F(α) =
[

0 f 1
α(α) 0 f 2

α(α)
]T

(

N̄
η
1

N̄
η
2

)

=

(

N
η
1

N
η
2

)

−
1

Cv

(

0 h1

h2 0

)(

C
η1
q

C
η2
q

)

(

N̄
η̇
1

N̄
η̇
2

)

=−
1

Cv

(

0 h1

h2 0

)(

C
η1
α

C
η2
α

)

∀i ∈ {1,2}, ω̄2
i = ω2

i +
hi

Cv
Cηi

q , 2ξ̄iω̄i = 2ξiωi +
hi

Cv
C

ηi
α

f i
q∗(α)=−

hi

Cv

(

d f0(α)

dα
α+ f0(α)+C

η1
α

h1

Cv
+C

η2
α

h2

Cv
+2ξiωi

)

(

f 1
α(α)

f 2
α(α)

)

=

(

fη1
(α)

fη2
(α)

)

−
1

Cv

(

g(α)+ω2
1 −N

η
1

−N
η
2 g(α)+ω2

2

)(

h1

h2

)

g(α) = f1(α)+Cη1
q

h1

Cv
+Cη2

q

h2

Cv

Λ(q∗,α, z̄) = q∗
[d f0(α)

dα
α + f0(α)+C

η1
α

h1

Cv
+C

η2
α

h2

Cv

]

+ z̄T M+α
[

f1(α)+Cη1
q

h1

Cv
+Cη2

q

h2

Cv

]

M =
[

Cη1
q C

η1
α Cη2

q C
η2
α

]T

The trim state is then given by:
[

αc,qc,z
T
c

]T
where: qc = 0

and zc = [ηc
1 ,0,η

c
2 ,0]

T with:

(

ω̄2
1 −N̄

η
1

−N̄
η
2 ω̄2

2

)(

ηc
1

ηc
2

)

= αc







fη1
(αc)−

h1

Cv
f1(αc)

fη2
(αc)−

h2

Cv
f1(αc)







and the trim input is vc =−
1

Cv

(

f1(αc)αc+C
η1
q ηc

1 +C
η2
q ηc

2

)

.

Sub-system (15)-(16) belongs to the class of system de-

fined in section II, by taking x =α and u= q∗. Consequently

the theoretical result can be applied to this system.

B. Application of proposition 2

Before applying this result, the assumptions have to be

checked.

Since the objective is to make a change of the trim

conditions, α(0) and αc are both in A and if we succeed to

build a decreasing Lyapunov function V for the whole system

then |α| will remain bounded by |αc|+ |V−1(δα(t = 0),0)|.
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And thus f i
q∗ is bounded. Consequently, for all α(0) and αc

in A , there exists positive constants f i
m such that:

| f i
q∗ | ≤ f i

m, i ∈ {1,2} (18)

And ‖H(α)‖2 =
√

| f 1
q∗ |

2 + | f 2
q∗ |

2 ≤

√

f 1
m

2 + f 2
m

2
. So HM ex-

ists and assumption 1 is true.

Assumption 2 is guaranteed by choosing: c2 < c2max with:

c2max =
c1

H2
M

λmin(Pz)

λmax(Pz)
(19)

Proposition 2 can finally be applied to sub-system (15)-

(16). A control law, denoted q∗cmd, given by the application

of (9) to sub-system (15)-(16) is then available and actually

corresponds to an intermediate virtual control command for

sub-system (15)-(16).

C. Control of the whole system

An additional step of Backstepping is necessary to control

the whole system through control input v. Consider the

following Lyapunov function candidate for system (15)-(16)-

(17)

V∞ =V (δα,δ z̄)+
c3

2
δq∗

2
(20)

with c3 a positive constant, δq∗ = q∗ − q∗cmd and V the

Lyapunov function (6) applied to sub-system (15)-(16). As-

sumptions 1 being true, function V∞ is positive definite. The

derivative of V∞ is given by:

V̇∞ = δq∗
[

δα∆(α)+ c3

(

Λ(q∗,α, z̄)+Cvδv− q̇∗cmd

)]

− c2δ z̄T Qzδ z̄−λα δα2

Consider the feedback control law:

δv=
1

Cv

[

q̇∗cmd−Λ(q∗,α, z̄)−
1

c3

(

δα∆(α)+λqδq∗
)

]

(21)

The expression of V̇∞ is:

V̇∞ =−λα δα2 −λqδq∗
2 − c2δ z̄T Qzδ z̄ (22)

with λq > 0 which satisfies V̇∞ < 0 and proves the stability

of the equilibrium of the closed loop system (12).

Note that in this application the stability proof requires the

initial trim to be in A .

D. Simulation results

The controller has been tested with:

f0(α) =C2
α sin(α)+C1

α

f1(α) =C2
qα +C1

q

fη1
(α) = N2

η1
α +N1

η1

fη2
(α) = N2

η2
α +N1

η2

The damping of the bending modes is chosen equal to

0.01. The aircraft is initially trimmed with α(0) =−10◦ and

the admissible set for α ranged from −35◦ to 35◦. At time

equals to 1s, trim conditions are changed and desired angle

of attack is αc = 25◦.

Fig. 1: Evolution of the angle of attack, pitch rate and flexible
modes, controlled with the flexible Backstepping law

Fig. 2: Limitation of the interaction of the angle of attack
dynamics on the transient of the flexible modes
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The evolution of the angle of attack, pitch rate and flexible

modes are shown on figure 1. Even if the bending modes are

badly damped, the states converge to their equilibria.

We finally make a comparison between the controller we

just defined referred to as ’flexible Backstepping’ and a

classical Backstepping approach using only the rigid-body

state. Figure 2 shows that the flexible Backstepping controller

enhanced the transient of the flexible modes, as it was noticed

in remark 1.

IV. DAMPING OF THE BENDING MODES

Besides providing the stability of the closed-loop system,

we want to suppress the oscillations of the bending modes.

A. Limitation of the control law

The Lyapunov function V∞ enables to bound the energy

of the bending modes. Indeed (22) yields c2δ z̄T Qzδ z̄ ≤−V̇∞

and by integration one obtains
∫ +∞

0
δ z̄T Qzδ z̄ ≤

1

c2
V∞(0) (23)

Hence, if c2 increases the bending modes can be better

damped. However, increasing c2 will violate assumption 2.

Moreover tuning c1 is useless. Indeed if δ z̄(0) = 0 and

δq∗ = 0 we have:
∫ +∞

0
δ z̄T Qzδ z̄ ≤

c1

2c2
δα(0)2 (24)

And if we choose c2 =
c1λmin

(

Pz

)

H2
Mλmax

(

P2
z

) (1−ε) with 0 < ε < 1,

we get:

∫ +∞

0
δ z̄T Qzδ z̄ ≤

δα(0)2H2
Mλmax

(

P2
z

)

2λmin

(

Pz

)

(1− ε)
(25)

This result is independent of c1. That means that tuning the

control parameters is not sufficient to suppress the bending

modes. Figure 3 illustrates this fact. Besides when control

parameter c2 increases, angle of attack and pitch rate behav-

ior are deteriorated. Thus this control law does not ensure the

complete control objective, particularly the damping of the

flexible modes. Consequently another method, that consists

in changing the local behavior of the trajectories is proposed.

B. Modification of the local behavior

In this section we use the notation X to designate the state

X = [α q zT ]T

Given a global non-linear controller which guarantees the

global stability of an equilibrium, Theorem 3 of [1] gives

a sufficient condition to unite this control law with a local

optimal one.

Since we have a semi-global non-linear controller, we

propose to build a local optimal one to apply this result.

The following notations are used for the linearised system:

δ Ẋ = AδX +Bδv (26)

where δX = X −Xc, δv = v− vc, A in R
n×n and B in R

n×1

are the matrix of the first approximation of system (12).

Fig. 3: Influence of control parameter c2 on the bending modes

Fig. 4: Modification of the local trajectories with the ’flexible
backstepping’ controller
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The pair of matrices (A,B) is controllable. We choose to

use a LQ controller that makes the following cost as small

as possible to minimize the energy of the bending modes:

J =
∫ t

0
δXT QδX +δvT Rδv

with Q a n× n matrix and R a positive real. The optimal

local controller is given by:

δv0 = K0δX =−
1

R
BT P0δX (27)

where P0 in R
n×n is a symmetric positive definite solution

of the associated Ricatti equation P0A+AT P0 −P0BR−1P0 =
−Q.

The sufficient condition is formulated as: if there are Km,1

in R
1×n, Km,2 in R

1×n and Pm a definite positive matrix in

R
n×n such that:

P0(A+BKm,1)+(A+BKm,1)
T P0 < 0 (28)

Pm(A+BKm,1)+(A+BKm,1)
T Pm < 0 (29)

Pm(A+BKm,2)+(A+BKm,2)
T Pm < 0 (30)

P∞(A+BKm,2)+(A+BKm,2)
T P∞ < 0 (31)

where the matrix P∞ = ∂ 2V∞

∂ 2X
(Xc). Then there exists a contin-

uous function v such that the origin of the non-linear system

is globally and asymptotically stable and there exists a time

from which the local behavior predominates.

We employ the usual linear matrix inequality (LMI) tools

to test this sufficient condition through the algorithm:

• given P0, solve (28) to get Km1
,

• given P∞, solve (31) to get Km2
,

• given Km1
and Km2

, solve (29)-(30) to get Pm,

Consider the local controller (27), we apply this result

to the controller we have designed in this paper, that is

the flexible Backstepping. We call ’flexible Backstepping

united’ the union of these controllers. Figure 4 illustrates this

result. The bending modes are better damped. After about 10

seconds the oscillations vanish.

V. CONCLUSIONS

In this paper we have presented a non-linear controller

design for the longitudinal rotational dynamics of a flexible

aircraft. Even if the system is minimum phase, the flexible

modes are used by the flight control law in order to obtain

a better transient of the full state of the system. Moreover,

the local behavior of the trajectories have been modified to

achieve the control objectives particularly to damp out the

bending modes.

Let us also remark that we have illustrated our results on a 2-

flexible modes model although there is no obstacle to apply

them to a similar system with a large number of flexible

modes.

In the future, the entire longitudinal dynamics of a flexible

aircraft will be considered and a non-linear observer will

be added to address the output Feedback problem since the

flexible modes are usually not measured.

REFERENCES

[1] M. Sahnoun, V. Andrieu and M.Nadri, Nonlinear and locally optimal
controllers design for input affine systems, International Journal of
Control, Vol 85, Issue 2, Pages 159-170, February 2012.

[2] L. Fiorentini, A. Serrani, M. Bolender and D. Doman, Nonlinear
Robust Adaptative Control of Flexible Air-Breathing Hypersonic Ve-
hicles, Journal of Guidance, Control and Dynamics, vol. 32, no. 2,
pp. 402-417, 2009.

[3] M. Reyhanoglu and J. Hervas, Point-to-Point Liquid Container Trans-
fer via a PPR Robot with Sloshing Suppression, in Proc. American
Control Conference, Montréal, pp. 5490-5494, 2012.
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