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Adaptive control scheme for maximum power point tracking of a
photovoltaic system connected to the grid.

Fernando Jaramillo-Lopez, Gilney Damm, Godpromesse Kenne and Francoise Lamnabhi-Lagarrigue

Abstract— An adaptive control scheme for maximum power
point tracking of a single-phase single-stage photovoltaic system
connected to the grid is presented.

The maximum power point depends on temperature and
solar irradiance, ambient conditions that are time-varying and
difficult to measure.

Two solutions are presented. Each solution derive an es-
timator that approximate three different parameters. These
parameters are functions of solar irradiance and temperature.
In this manner, we eliminate the necessity of climatic sensors.
The first solution, uses an adaptive estimator that is able
to estimate constant parameters, and the second one uses a
sliding mode estimator that is capable of estimate time-varying
parameters.

A complete analysis was done taking into account the non-
linearities showed by the closed-loop system. The Lyapunov
redesign technique was used to derive a controller that gives
globally asymptotically stable trajectories of the closed-loop
system. Computer simulations are presented to compare the
performance of both estimators and also to show the good
performance of the controller.

I. INTRODUCTION.

New policies and regulations have been developed to face
the growing energy needs and climate change. These facts
have stimulated the interest on renewable energy sources.
Solar photovoltaic is one of them. Photovoltaic systems
(PVS) converts sunlight directly into electricity by means
of a semiconductive process.

Grid-connected PVS usually consists of a photovoltaic
panel or array and a power conditioning system (PCS).

In [1] and [2], the authors analyze advantages and dis-
advantages of various single-phase grid-connected inverters
topologies. The single-phase single-stage central inverter
DC/AC topology was chosen in this work, because of its
simplicity and low price.

The output power of a photovoltaic array is function of
irradiance and temperature. To increase the efficiency of the
overall system, PVS always needs to work in its maximum
power point, to deliver the maximum amount of energy
(Fig. 1). Hence, an algorithm that can follow these power
changes is needed. This is the maximum power point tracking
(MPPT) algorithm.
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Fig. 1. MPP of a typical PV array for different environmental conditions.
a) Voltage vs. current curve at T = 25oC and different irradiance values.
b) Voltage vs. power curve at G = 1000W/m2 and different temp. values.

There are several MPPT algorithms like perturb and ob-
serve, incremental conductance, extremum-seeking among
others. They compute the value of the voltage corresponding
to the maximum power point. This voltage is then used as a
reference value in the controller. In [3] and [4] the authors
present some improvements and comparisons between these
algorithms.

Previous works on MPPT control of PVS were done
by splitting the problem in two parts: a control capable
of tracking the MPP and a control capable of deliver a
sinusoidal current in phase with the grid voltage.

Solutions like feedback linearization and sliding mode
techniques were applied to the first part.

Several solutions have been developed for the second part,
like the P+ resonant controller [5] and the adaptive resonant
controller [6]. However these solutions are linear based
techniques. Approximations that doesn’t take into account
the nonlinear behavior of the PV array.

An interesting solution that uses the nonlinear model of
PVS was presented in [7]. In this work, the MPPT and
the unity power factor tasks are satisfied with a single
passive control, based on the work of [8]. MPP tracking
is accomplished for time-varying environmental conditions,
with the help of an estimator that compute a reference for
the controller. However, global stability with the use of this



estimator is not proved.
In [9] an attempt to prove global stability for the whole

system was made. In this case, an estimation of the parameter
that depends on irradiance and temperature is used together
with the Lyapunov-based controller to prove global stabil-
ity. However, in that work it is assumed that another two
parameters that depends on temperature are known.

In this paper, we are presenting two solutions that uses an
adaptive scheme control that is capable of achieving MPP
tracking for changing environmental conditions and deliver
unity power factor current to the grid. In the first solution,
an adaptive estimator is designed, and in the second one,
a sliding mode estimator capable of estimate time-varying
parameters. Both, estimate parameters that depends on irra-
diance and temperature. No assumption about known param-
eters was made and global stability is proved in both cases,
taking into account the nonlinear model and the estimates
of the parameters. The main contribution consists in the full
analysis —nonlinear model, controller and estimators— of
the system, increasing of the robustness and elimination of
the necessity of irradiance and temperature sensors with these
estimators.

II. PROBLEM FORMULATION AND MATHEMATICAL
MODEL OF THE PHOTOVOLTAIC SYSTEM.

The system analyzed in this paper is shown in figure 2
and consists in a PV array of solar cells and a DC/AC PCS.
The states of the system are given by the capacitor voltage
(x1) and the inductor current (x2). The PCS is a full-bridge
inverter driven by a bipolar PWM scheme. The PWM gives
two discrete complementary signals s and s̄ which turn on
and off the four switches in the PCS. The PWM block is fed
by the control signal u ∈ [−1, 1].
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Fig. 2. Photovoltaic system analyzed in this paper.

A. Mathematical model.

The PV array is composed by PV cells arranged in series
and parallel. The PV cell model used in this work is the
single-diode model with no resistors. In [10] and [11], the
authors present some models and give explicit relations to get
the electric characteristics which are functions of irradiance
and temperature. A comparative analysis was made in [12],
and it is shown that all models have no significant differences
for MPPT purposes.

The I−V characteristic curve of a PV array with identical
cells is given by:

I = Iph(G)Np − Io(T )Np

[
exp

(
qV

nNskBT

)
− 1

]
(1)

where Iph is the photocurrent, that depends on irradiance G,
Io is the saturation current, that depends on temperature T ,
q is the absolute value of electron’s charge, n is the quality
factor of the diode, Np is the number of cells connected in
parallel, Ns is the number of cells connected in series, kB
is Boltzmann’s constant and T is the temperature of the P-N
junction. V is the capacitor voltage x1.

This equation can be written in a simpler way:

I(x1) = c1 − c2ec3x1 (2)

where c1 is function of irradiance and temperature and c2
and c3 are functions of temperature.

The model of the whole system is given by:

ẋ = f(t, x) +G(t, x)u (3)

where

f(t, x) ,

 I(x1)
C

−vg(t)
L

 , G(t, x) ,

 −x2

C

x1

L

 (4)

C and L are known values of the capacitor and the inductor
respectively, and vg the grid voltage. The signals that are
measured are the states x ∈ R2, the voltage grid vg ∈ R and
the PV array current I ∈ R, which is a common practice in
this type of circuits.
u is the control signal composed by the terms:

u = un + w + δ(t, x) (5)

δ(t, x) is an uncertain term that satisfies the matching condi-
tion (i.e. it enters at the same point that the control signal u),
w is the term that will be derived to compensate it and un is
the control component that turn the nominal system globally
asymptotically stable. In section IV, these components are
explained in detail.

The nominal system is the system without the uncertain
term δ(t, x), hence:

ẋ = f(t, x) +G(t, x)un (6)

where f(t, x) and G(t, x) are defined in the same way that
before.

The main tasks that the signal control u must fulfill are:
1) To track the maximum power point of the PV array,

despite of changes in the environmental variables irra-
diance and temperature.

2) To deliver a current in phase with the grid voltage (i.e.
unity power factor).

The controller needs two references to accomplish the
main tasks of the system. The first reference is the voltage
DC value in the capacitor x̄1∗ ∈ R+ and is given by the



MPPT algorithm. The second reference is the current value
in the inductor x2∗, which is taken from [9]:

x2∗ ,
2 vg(t) x̄1∗ I∗(x̄1∗, ci)

A2
(7)

where I∗ is the PV current (2) evaluated at x̄1∗ and vg is
assumed to be sinusoidal with constant amplitude A and
frequency ω, vg = Asin(ωt).

The parameters ci in I∗ are unknown. Therefore, two
different estimators were designed and presented here. They
allow to calculate the full I∗ expression.

Hence, the second reference becomes:

x̂2∗ ,
2 vg(t) x̄1∗ Î∗(x̄1∗, ĉi)

A2
(8)

where (̂·) indicate the estimate of (·).

III. ESTIMATORS DESIGN.

A reparametrization was made in order to be able to design
the next two estimators.

From (2) and (6) the derivative of the current I is:

İ = −c2c3ẋ1ec3x1

=
1

C
(ux2 − I)(θ1 − θ2I) = ΦT θ (9)

where:

θ ,

[
c1c3
c3

]
, ΦT ,

1

C

[
ux2 − I, −ux2I + I2

]
(10)

also consider the following estimator and observer errors
respectively, θ̃ = θ̂ − θ, Ĩ = Î − I for the next subsections.

A. Adaptive estimator.

An adaptive estimator [13] capable of estimate constant
parameters is designed in this subsection.

The estimator is given by:

˙̂
I = −λ(Î − I) + ΦT θ̂ (11)

˙̂
θ = −ΓΦ(Î − I) (12)

where λ > 0 and Γ is a square diagonal matrix 2 x 2 with
positive values.

Let us assume the following:
Assumption 1-A. The parameters vector θ is constant, i.e.

θ̇ = 0

Lemma 1. Consider the observer (11) and the estimator (12),
satisfying assumption 1-A, then the product ΦT θ̃ converges
to zero.
Proof. Let’s first rewrite the estimation errors as:

˙̃I = −λĨ + ΦT θ̃ (13)

˙̃
θ = −ΓΦĨ (14)

Consider the following Lyapunov candidate function

V =
1

2
|Ĩ|2 +

1

2
θ̃TΓ−1θ̃ , β(Ĩ , θ̃) (15)

Its time derivate is

V̇ = −λ|Ĩ|2 + ĨTΦT θ̃ − θ̃TΦĨ = −λ|Ĩ|2 (16)

By Barbalat’s lemma, we can conclude that:

Ĩ → 0 as t→∞

Therefore, it is clear by (13) that ΦT θ̃ → 0 as t→∞
Furthermore, if the regressor Φ(t) satisfies the persistent

excitation condition [14]:∫ t+T0

t

Φ(τ)ΦT (τ)dτ ≥ αIm ∀ t ≥ t0 (17)

where Im is the identity matrix and t0, T0 and α are positive
constants, then we can in addition conclude that

θ̃ → 0 as t→∞

. ���

B. Sliding mode estimator.

In [15] a new framework for nonlinear systems time-
varying parameter estimation using sliding mode techniques
was proposed.

The following notation is used in this subsection:

|xT |G = (|x1|, |x2|, ... |xn|)

diag(A) is the column vector whose elements are the
diagonal elements of a given square diagonal matrix A.

The function sign(·) : Rn → Rn is defined as

sign(xT ) = (sign(x1), sign(x2), ... sign(xn)) (18)

with
xT = (x1, x2, ... xn)

and

sign(xi)


= −1 for xi < 0

= [−1, 1] for xi = 0

= 1 for xi > 0

Now, let us assume the following:
Assumption 1-B. The derivatives of the parameters vector θ
are bounded and these bounds are known:

θ̇i(t) ≤ µθi
where µθi are known positive numbers and i = 1, 2.

In order to design the time-varying parameter estimator
consider the following adaptive observer for the current I:

˙̂
I = vI + ΦT θ̂ (19)

where
vI = −KIsign(Î − I) (20)

thus ˙̃I = vI + ΦT θ̃. For KI sufficiently chosen large

KI > |ΦT θ̃| (21)

and assuming that θ̂ is bounded (the proof will be shown
later) then a sliding mode regime occurs on the manifold
Ĩ = 0 and 0 = vIeq + ΦT θ̃ then

vIeq = −ΦT θ̃ (22)



The following approximation is used (see the work of
Utkin [16]):

vIeq =
1

1 + τs
vI (23)

where s is the Laplace operator and τ → 0 is a positive
constant.

Hence
θ̃ = −(ΦΦT )−1ΦvIeq (24)

and finally
˙̂
θ = −Kθsign(θ̃) (25)

Let us choose the gain matrix for the estimator such that:

diag(Kθ)i > µθi (26)

Lemma 2. Consider the observer given by (19) and (20);
the estimator given by (23)-(25); satisfying assumption 1-B,
(21) and (26); then the estimated parameters θ̂ will converge
to their real values θ(t) in finite time.
Proof. Consider the following Lyapunov candidate function

V =
1

2
θ̃T θ̃ , β(θ̃) (27)

Its time derivative is:

V̇ = θ̃T
˙̃
θ = −|θ̃T |Gdiag(Kθ)− θ̃T θ̇

≤ −|θ̃T |G(diag(Kθ)− µθ) (28)

and due to the inequality (26), V̇ is negative-definite for
θ̃ 6= 0. Therefore the estimation error θ̃ will converge to 0
in finite time. ���

C. Persistent excitation condition.

It is not necessary that the regressor Φ(t) satisfies the
persistent excitation condition (17), because the estimates are
just used in the calculation of I∗(x̄1∗, ci). The only necessary
condition is that the estimators approximate the current I
by means of its dynamics: ˙̂

I(Ĩ ,ΦT θ̂) → İ(x1, ci) and it is
satisfied if:

ΦT θ̂ → ΦT θ

IV. CONTROLLER DESIGN.

In order to accomplish the control objectives, the problem
has been divided in two parts:

1) To find the control portion that renders the nominal
system (6) globally asymptotically stable (GAS).

2) To find the control portion that compensates the un-
certain term δ(t, x) and gives the whole system (3)
GAS.

A. Controlling the nominal system.

In this part of the analysis it is considered that the x2∗
reference is well known, i.e. Ĩ(t) = 0.

According to the idea given in [8], the control is decom-
posed in two parts: one for the steady-state stage u∗n and
another for the dynamic stage eun.

The reference system is:

ẋ∗ = f(t, x∗) +G(t, x∗)u∗n (29)

Hence, the control component for the steady state is:

u∗n =
Lẋ2∗ + vg(t)

x1∗
(30)

Consider the tracking errors and the variable control:

e = x− x∗, eun = un − u∗n

ė = ẋ− ẋ∗ =

[
I(x1)−I∗

C
0

]
+

[
− e2u∗n

C − (e2+x2∗)eun

C
e1u∗n
L + (e1+x1∗)eun

L

]
Let us propose the Lyapunov candidate function

Vn =
C

2
e21 +

L

2
e22

Its time derivative is:

V̇n = Ce1ė1 + Le2ė2

= e1(I − I∗)− e1[e2u∗n + (e2 + x2∗)eun]

+e2[e1u∗n + (e1 + x1∗)eun]

= −c2e1(ec3x1 − ec3x1∗)− eun(e1x2∗ − e2x1∗)

Consider the controller for the error dynamics of the
nominal system:

eun , e1x2∗ − e2x1∗ (31)

thus

V̇n = −c2e1(ec3x1 − ec3x1∗)− (e1x2∗ − e2x1∗)2 (32)

From the fact that the first term of the right side of (32)
is < 0 ∀ e1 6= 0, the nominal system is GAS.

B. Controlling the whole system.

The control part of the nominal system was established
in (30) and (31). These equations are functions of ẋ2∗ and
x2∗, and these values are not exactly known. Therefore, the
control for the whole system is

u = u∗n(x2∗) + eun(x2∗) + ∆u∗ + ∆eu

= u∗n + eun + δ(t, x) (33)

where

δ(t, x) , ∆u∗ + ∆eu =
L∆ẋ2∗
x1∗

+ e1∆x2∗ (34)

is the uncertain term, and ∆ẋ2∗, ∆x2∗ are the perturbations
due to the transients in the observer, i.e. Ĩ 6= 0.

In order to derive the controller for the whole system the
next assumption is needed.
Assumption 2. The uncertain term is bounded and known,
i.e.

||δ(t, x)||2 < ξ

where ξ is a known positive number.
Since this uncertain term satisfies the matching condition,

the Lyapunov redesign technique [17] is used to derive a
term w that will compensate it.

u = un + δ(t, x) + w (35)

where un = u∗n + eun



The closed-loop system becomes

ẋ = f(t, x) +G(t, x)un +G(t, x)[w + δ(t, x)] (36)

and

ė = f(t, x) +G(t, x)un − ẋ∗ +G(t, x)[w + δ(t, x)]

Consider the Lyapunov candidate function for the whole
system:

V =
C

2
e21 +

L

2
e22 + β (37)

where β was defined for each estimator in (15) and (27).
Let us omit the arguments of the functions. The time

derivative of V is:

V̇ =
∂V

∂e
{f +Gun − ẋ∗}+

∂V

∂e
{G[w + δ]}+ β̇

= V̇n + β̇ +
∂V

∂e
Gw +

∂V

∂e
Gδ (38)

We can derive the w term as follows:
∂V

∂e
Gw +

∂V

∂e
Gδ ≤ ∂V

∂e
Gw + ξ

∥∥∥∥∂V∂e G
∥∥∥∥
2

and now we can choose:

w , −ξ
∂V
∂e G

||∂V∂e G||2
= −ξ −e1x2 + e2x1

| − e1x2 + e2x1|
(39)

Theorem 1. Consider the system given by (3)-(4); the
estimator given by (11)-(12)|(19)-(25); the controller given
by (30), (31) and (39); satisfying assumptions 1-A|1-B and
2, then, the whole system is globally asymptotically stable.
Proof. Using (39) one can write:

∂V

∂e
Gw +

∂V

∂e
Gδ ≤ −ξ

∥∥∥∥∂V∂e G
∥∥∥∥
2

+ ξ

∥∥∥∥∂V∂e G
∥∥∥∥
2

= 0 (40)

then, from (16), (28), (32), (38) and (40), V̇ is negative
definite and the whole system is GAS with the controller
given by un + w. ���

V. SIMULATION RESULTS.

Numerical simulations were made in the Simulink/Matlab
platform to verify the performance of the estimators and the
controller. Two scenarios were simulated. In the first one,
realistic variations were applied to the irradiance signal and
a ramp to the temperature signal, for both estimators. Graphs
a) and b) in figure 3 show these variations.

The adaptive estimator is not able to track step changes
since it was designed for constant parameters, and the second
scenario was simulated just for the sliding mode estimator.
It consists in step changes in both variables, irradiance and
temperature. Its values were changed by 50%. This is one of
the worst conditions for MPPT in PVS, and because of this,
a standard simulation scenario.

For both simulations, the initial conditions in the plant
were zero and in the estimators 1x10−5.

Figures 3 and 4 show the results for the first scenario.
The graphs c) and d) in figure 3 show the first reference

x1∗, given by the MPPT algorithm, and the capacitor voltage
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Fig. 3. a) Irradiance signal b) Temperature signal c) x1∗ and x1 signals in
the adaptive estimator d) x1∗ and x1 signals in the sliding mode estimator

x1 for both estimators. The performance of the controller is
very good in both cases. The results are pretty similar.

The maximum power point current I∗ and the maximum
power point current estimated Î∗ are shown in graphs a) and
b) in figure 4. The adaptive estimator shows bigger deviations
from I∗.

Graphs c) and d) in figure 4 show the output power in
both estimators. The results are similar. This is the maximum
power that the PVS can deliver with the irradiance and
temperature given.

Figure 5 shows the results for the second scenario.
The step changes in irradiance and temperature for the

sliding mode estimator are shown in graphs a) and b) in
figure 5. The values were changed by 50%.

The graphs c), d) and e) in the same figure show that
the controller and the estimator present a good performance,
even under these demanding conditions. Some noticeable
ripple appears after the step variations, due not only to the
variation speed but also to the variation level (50%).

The output power is shown in graph e) of the same figure.
It clearly follows the environmental variations.

VI. CONCLUDING REMARKS AND FUTURE RESEARCH.
Two solutions for the MPPT of PVS were presented.

For the first adaptive scheme control (ASC), an adaptive
estimator was designed. It is capable of estimate constant
parameters. For the second ASC, a sliding mode estimator
was designed. It is capable of estimate time-varying param-
eters.

A Lyapunov function that proves GAS of the system was
derived. The analysis includes the dynamics of the estimators
and the uncertainty in the second reference x2∗.

Even when GAS was demonstrated for the system in-
cluding estimators and perturbations, there is one subject
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Fig. 4. a) I∗ and Î∗ signals in the adaptive estimator b) I∗ and Î∗ signals
in the sliding mode estimator c) Theoretical maximum power and output
power in the adaptive estimator case d) Theoretical maximum power and
output power in the sliding mode estimator case

that can enrich the analysis, it is the inclusion of the
MPPT algorithm in the closed-loop system analysis. We are
currently investigating how to achieve this.

Numerical simulations were made to verify the perfor-
mance of the solutions. Both ASC have good performance
under realistic conditions. The sliding mode ASC has the
better performance. It can works well even under very
demanding conditions.
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