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This paper addresses a predictive control strategy for a particular class of multi-agent formations with a time-varying
topology. The goal is to guarantee tracking capabilities with respect to a reference trajectory which is pre-specified for
an agent designed as the leader. Then, the rest of the agents, designed as followers, track the position and orientation of
the leader. In real-time, a predictive control strategy enhanced with the Potential Field methodology is used in order to
derive a feedback control action based only on local information within the group of agents. The main concern is that the
interconnections between the agents are time-varying, affecting the neighborhood around each agent. The proposed method
exhibits effective performance validated through some illustrative examples.
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1. Introduction

Control and coordination of multi-agent systems, such
as pedestrians in the crowd, vehicles, spacecraft and un-
manned vehicles, are emerging as a challenging field of
research. The advances in network design, information,
control synthesis and sensors technology allow nowadays
large groups of agents to be coordinated and controlled
in an effective manner for various tasks in evaluating the
safety of the social infrastructures (Helbing et al., 2000),
(Fang et al., 2010), efficient flow of traffic (Van den
Berg et al., 2004), (Baskar et al., 2006), water control
for irrigation canals, water supply and sewer networks
(Overloop et al., 2010), (Negenborn et al., 2009) and
deep space observation (Mesbahi and Hadaegh, 2001),
(Massion et al., 2008). In addition, there exist several
classes of multi-agent systems where the interconnections
between the agents could be time-varying (e.g. traffic con-
trol, pedestrian behavior etc.). Guaranteeing stability with
the existing cooperative control techniques is still an open
problem for multi-agent systems with time-varying (con-
strained) topologies. This paper addresses a new method-
ology based on predictive control in order to answer to

some of these difficulties; illustrative examples prove the
interest of the proposed methodology.

Collision avoidance is often the most difficult prob-
lem in the context of managing multiple agents, since
certain (static or dynamic) constraints are non-convex.
A common point of most publications dealing with the
collision avoidance problem is the hypothesis of punc-
tiform agents, which is far from the conditions in real
world applications. In many of them the relative po-
sitioning between agents becomes important, such as
large interferometer construction from multiple telescopes
(Schneider, 2009) or the air traffic management, two air-
craft are not allowed to approach each other closer than a
specific alert distance.

A key idea for the treatment of collision avoidance
problems is represented by Mixed-Integer-Programming
(MIP) (Osiadacz et al., 1990), (Richards and How, 2002),
(Bemporad and Morari, 1999), which has the ability to
include non-convex constraints and discrete decisions in
the optimization problem. However, despite its model-
ing capabilities and the availability of good solvers, MIP
has serious numerical drawbacks. As stated in (Garey and
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Johnson, 1979), mixed-integer techniques are NP-hard,
i.e. the computational complexity increases exponentially
with the number of binary variables used in the problem
formulation. A method for reducing the number of binary
variables is detailed in (Stoican et al., 2011) with an appli-
cation to the obstacles avoidance problem. Yet, the funda-
mental limitation of MIP complexity remains redoubtable.

A different class of methods for collision avoidance
problems uses artificial potential fields (Khatib, 1986)
to directly obtain feedback control actions steering the
agents over the entire workspace. One shortcoming of this
approach is the possible generation of traps (local min-
ima). Relevant research on generating so-called naviga-
tion functions that are free from local minima is available
in the literature (Rimon and Koditschek, 1992). How-
ever, generating a navigation function is computationally
involved and thus not suitable for many navigation prob-
lems.

There is a large literature dedicated to the formation
control for collections of vehicles using the potential field
approach. The authors of (Jadbabaie et al., 2003) and
(Tanner et al., 2007) investigate the motions of vehicles
modeled as double integrators. Their objective is for the
vehicles to achieve a common velocity while avoiding col-
lisions with obstacles and/or agents assumed to be points.
The derived control laws involve graph Laplacians for an
associated undirected graph and also nonlinear terms re-
sulting from artificial potential functions. In (Roussos and
Kyriakopoulos, 2010) a decentralized navigation of mul-
tiple agents operating in a spherical workspace is consid-
ered. Navigation functions are used to derive control laws
for point-like agents with an associated disc of predefined
radius around them.

In the present paper, we revise the preliminary results
(Prodan et al., 2010), (Prodan et al., 2011) and introduce
enhancements in the control design method which enables
the decentralized decision making for a leader/followers
group of agents. The aim of this work is twofold:

• First, to provide a generic framework for non point-
like shapes which may define obstacles and/or safety
regions around an agent.

• Second, to offer a novel control strategy derived from
a combination of constrained receding horizon and
potential field techniques for the trajectory tracking
problem, applied to multi-agent systems with time-
varying topologies.

To the best of the authors’ knowledge, there does not ex-
ist a similar method in the open literature. The meth-
ods that we propose can be applied to various practi-
cal applications (e.g. motion control of wheeled mo-
bile robots (Michalek et al., 2009), path following control
of nonholonomic mobile manipulators (Mazur and Sza-
kiel, 2009), the control of a mobile offshore base viewed

as a string of modules that have to be kept aligned (Girard
et al., 2001)).

First, we introduce two different constructions which
take into consideration the shape of the convex region as-
sociated to a safety region of an agent or an obstacle. The
proposed constructions can be further used with the var-
ious potential or navigation functions existing in the lit-
erature in order to have a complete multi-agent system.
Second, through the rest of the paper a leader/followers
strategy for the trajectory tracking problem is proposed.
The agents are required to follow a pre-specified tra-
jectory while keeping a desired inter-agent formation in
time. We consider polyhedral safety regions for the agents
and obstacles. A specified trajectory is generated for
the leader using the differential flatness formalism (Fliess
et al., 1995). Differentially flat systems are well suited
to problems requiring trajectory planning as it circum-
vents the complexity of differential equations formalism
by transforming the model description in a algebraic form,
more suitable for open-loop control design. The most im-
portant aspect of flatness in our context (predictive con-
trol) is that it reduces the problem of trajectory genera-
tion to finding a trajectory of the so called flat output of
the system through the resolution of a system of algebraic
equations. Furthermore, for the followers, we propose a
Potential Field method which aims to follow the group
leader and respect the formation specifications. These are
realized through the use of a receding horizon approach
(Camacho and Bordons, 2004), (Rossiter, 2003), (Mayne
et al., 2000), both for the leaders and followers.

This paper is organized as follows. Section 2 presents
two constructions that take into account the shape of a
convex region defining an obstacle and/or a safety region
around an agent. Considering the dynamics of the agents,
Section 3 presents the trajectory tracking problem for a
leader/followers formation. A reference trajectory is gen-
erated for the leader and using predictive control the track-
ing error is minimized. For the followers, a potential func-
tion is embedded within Model Predictive Control (MPC)
in order to achieve the group formation with a collision
free behavior. Further on, Section 4 presents illustrative
simulation results. And finally, several concluding re-
marks are drawn in Section 5.

The following notations will be used through-
out the paper. Given a vector v ∈ Rn,
‖v‖∞ := maxi=1,··· ,n |vi| denotes the infinity norm
of v. Minkowski’s addition of two sets X and Y
is defined as X ⊕ Y =

{
x+ y : x ∈ X , y ∈ Y

}
.

The interior of a set S, Int(S) is the set of all in-
terior points of S. The collection of all possible
nc combinations of binary variables will be noted
{0, 1}nc = {(b1, . . . , bnc

) : bi ∈ {0, 1} ,∀i = 1, . . . , nc}.
Denote as Bnp = {x ∈ Rn : ‖x‖p ≤ 1} the unit ball of
norm p, where ‖x‖p is the p-norm of vector x. Let xk+1|k
denote the value of x at time instant k+ 1, predicted upon
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the information available at time k ∈ N.

2. PREREQUISITES
For safety and obstacle avoidance problems the feasible
region in the space of solutions is a non-convex set. Usu-
ally this region is considered as the complement of a
(union of) convex region(s) which describes an obstacle
and/or a safety region. Due to their versatility and rela-
tive low computational complexity the polyhedra are the
instrument of choice in characterizing these regions.

Let us define a bounded convex set in its polyhedral
approximation, a polytope S ⊂ Rn through the implicit
half-space description:

S =
{
x ∈ Rn : hax ≤ ka, a = 1, · · · , nh

}
, (1)

with ha ∈ R1×n, ka ∈ R and nh the number of half-
spaces. We focus on the case where ka > 0, meaning that
the origin is contained in the strict interior of the polytopic
region, i.e. 0 ∈ Int(S).

By definition, every supporting hyperplane for the set
S in (1):

Ha = {x ∈ Rn : hax = ka, a = 1, · · · , nh} (2)

will partition the space into two disjoint1 regions:

R+(Ha) = {x ∈ Rn : hax ≤ ka} (3)
R−(Ha) = {x ∈ Rn : −hax ≤ −ka} (4)

R+
a and R−a denote in a simplified formulation the com-

plementary regions associated to the ath inequality of (1).
In the following, we are interested in measuring the

relative position of an agent to such a region. In other
words, we require a function which measures if and when
a given state is inside or outside the polyhedral set (1).
The forthcoming constructions will be introduced in a re-
pulsive potential function to take into account the shape of
the convex region in terms of (1). The repulsive potential
will be further used in a predictive control context in order
to derive a control action such that the collision avoidance
inside the formation is satisfied.

2.1. Polyhedral function. Consider the class of (sym-
metrical) piecewise linear functionals defined using the
specific shape of a polyhedral set. The following defini-
tions will be instrumental for the rest of the paper.

Definition 1 (Minkowski function – (Blanchini, 1995))
Any bounded convex set S induces a Minkowski function
defined as

µ(x) = inf
{
α ∈ R, α ≥ 0 : x ∈ αS

}
(5)

1The relative interiors of these regions do not intersect but their clo-
sures have as common boundary the affine subspace Ha.

Definition 2 (Polyhedral function – (Blanchini, 1995))
A polyhedral function is the Minkowski function of the
polyhedral bounded convex set S defined in (1). This
function has the following expression:

µ(x) = ‖Fx‖∞, (6)

where F ∈ Rnh×n is a full column matrix with Fa = ha

ka
,

a = 1, · · · , nh.

In fact, any polytope can be defined in terms of the
Minkowski function (5). Indeed there always exists a full
column matrix F ∈ Rnh×n such that the polytope S in
(1) is equivalently defined as

S =
{
x ∈ Rn : µ(x) ≤ 1

}
, (7)

with µ(x) defined by (6). From the avoidance point of
view, the Minkowski function (5) denotes the inclusion
of a value x to the given polytope (7) if µ(x) ∈ [0, 1].
Conversely, if µ(x) > 1 then x is outside the polytope
(7).

Remark 1 Note that if ka < 0 in (1), the origin is not
contained in the strict interior of the polytopic region, i.e.
0 /∈ Int(S), then the polyhedral function can be brought
to the form (6) by imposing

Fa =
ha(x− xs)
ka − haxs

, a = 1, · · · , nh, (8)

with xs ∈ Rn the analytic center of the polytope (1).

Note that, the polyhedral function (6) is piecewise
affine and continuous. This means that each of the in-
equalities which compose its definition can provide the
maximum, an explicit description of these regions being

Xa =
{
x ∈ Rn : ha

ka
x > hb

kb
x,∀ a 6= b, a, b = 1, · · · , nh

}
.

(9)
The entire space can thus be partitioned in a union of dis-
joint regions Xa which are representing in fact cones with
a common point in the origin (respectively in xs for the
general case evoked in Remark 1).

Practically, the polyhedral function (5) can be repre-
sented in the form

µ(x) = Fax, ∀ x ∈ Xa, a = 1, · · · , nh (10)

and the piecewise affine gradient is defined as:

5 µ(x) = Fa, ∀ x ∈ Xa, a = 1, · · · , nh. (11)

Remark 2 Strictly speaking the generalized gradient
(11) is multivalued (the Minkowski function induced by a
polytope is not differentiable in the classical sense, rather
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it is differentiable almost everywhere). However, an uni-
vocal candidate can be selected for the computations and
such an approach is used in the rest of the paper. We men-
tion that alternatively the explicit use of multivalued ex-
pression of the gradient would not bring computational
difficulties as long as the range of variation is bounded
and can be represented by the extreme values in practice.

2.2. Sum function. The polyhedral functions pre-
sented in the previous section represent the basis for the
construction of ”exclusion” functions (or penalty func-
tions).

Consider again the polytope defined in (1), and a
piecewise linear function (introduced in (Camacho and
Bordons, 2004)):

ψ(x) =

nh∑
a=1

(hax− ka + |hax− ka|). (12)

The function (12) is zero inside the convex region (1) and
increases linearly in the exterior, as the distance to the
frontier is augmented.

The definition (12) describes in fact a continuous
piecewise affine function over a partition of the state-
space. Over each of the polyhedral cells composing this
partition, the absolute values of |hax−ka| are constant re-
sulting in a fixed affine form for ψ(x). In order to explic-
itly describe the regions composing the partition, several
additional theoretical notions will be introduced.

Definition 3 (Hyperplane arrangements – (Ziegler, 1995))
A collection of hyperplanes H = {Ha} with
a = 1, · · · , nh partition the space in an union of
disjoint cells defined as follows:

A(H) =
⋃

l=1,...,γ(nh)

( ⋂
a=1,··· ,nh

Rσl(a)(Ha)

)
︸ ︷︷ ︸

Al

, (13)

where σl ∈ {−,+}nh denotes all feasible combinations
of regions (3) and (4) obtained for the hyperplanes in H
and γ(nh) denotes the number of feasible cells.

Note that the number of regions in the hyperplane
arrangement is usually much greater than the number of
regions (9) associated to the polyhedral function (10).

Therefore, the piecewise affine function (12) can be
alternatively described as:

ψ(x) = 2

nh∑
a=1

σl={+}

(hax−ka), ∀ x ∈ Al, l = 1, · · · , γ(nh).

(14)

The piecewise affine gradient of (14) is defined as:

5 ψ(x) = 2

nh∑
a=1

σl={+}

hTa , ∀ x ∈ Al, l = 1, · · · , γ(nh).

(15)

2.3. Exemplification for the construction of repulsive
potential functions. In this subsection the previous the-
oretical tools will be integrated in order to describe two
types of piecewise affine functions which measure the po-
sition of a state with respect to the frontier of a polyhedral
set defined in (1).

In order to exemplify their influence in a collision
avoidance problem, we propose several repulsive potential
functions constructed through the use of the formulations
(10) and (14). The potential functions take into account
the shape of a convex region as in Figure 1, which can de-
fine a safety region for an agent and/or an obstacle. For
the given convex region, Figure 2 and Figure 3 illustrate
the polyhedral function and the sum function defined ac-
cording to (10) and (14), respectively.

Fig. 1. A convex region.

Fig. 2. Polyhedral function (10) of the convex region in Fig-
ure 1.

Furthermore, for the control design purpose, the con-
struction based on the polyhedral function defined in (10)
is proposed for the generation of a repulsive potential:

Vµ(µ(x)) = c1e
−(µ(x)−c2)2 , (16)
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Fig. 3. Sum function (14) of the convex region in Figure 1.

Fig. 4. Repulsive potential using the polyhedral function in Fig-
ure 2.

Fig. 5. Repulsive potential using the sum function in Figure 3.

where the parameters c1 and c2 are positive constants rep-
resenting the strength and effect ranges of the repulsive
potential.

An alternative repulsive potential using the sum func-
tion described in (14) will be given by:

Vψ(ψ(x)) =
c3

(c4 + ψ(x))2
, (17)

with c3 and c4 positive constants representing the strength
and effect ranges of the repulsive potential (17).

Both, Figure 4 and Figure 5 illustrate the proposed
functions (16), (17), respectively for the given convex re-
gion in Figure 1. As it can be seen, both functions have
a high value inside the polytopes and a low value outside

them. The repulsive potential will be further used in order
to derive a control action such that the collision avoidance
inside the formation is satisfied.

3. TRAJECTORY TRACKING FOR A
LEADER/FOLLOWERS FORMATION

This section presents the formation trajectory tracking
problem. The agents are required to follow a pre-specified
trajectory while preserving a tight inter-agent formation in
time. Each agent has an associated polyhedral safety re-
gion as defined in (1). Using a leader/followers approach,
we generate a reference trajectory for the leader and for-
mulate a receding horizon optimization problem in order
to minimize the tracking error. For the followers, we pro-
pose a gradient method combined with a receding horizon
approach which aims to follow the group leader and re-
spect the collision avoidance formation specifications.

A set of Na linear systems (vehicles, pedestrians or
agents in a general form) will be used to model the behav-
ior of individual heterogeneous agents. The ith system is
described by the following continuous time dynamics:

ẋi(t) = Ac,ix
i(t) +Bc,iu

i(t) i = 1, · · · , Na, (18)

where xi(t) ∈ Rn are the state variables and ui(t) ∈ Rm
is the control input vector for the ith agent. The compo-
nents of the state are: the position pi(t) and the velocity
vi(t) of the ith agent such that xi(t) = [pi(t) vi(t)]T .

The problem of generating a reference trajectory for
the leader (i.e. i = l in (18)) is next summarized, along
the line in (Van Nieuwstadt and Murray, 1998).

3.1. Trajectory generation. The idea is to find a tra-
jectory (xl(t), ul(t)) that steers the model of the leader
(18) with i = l from an initial state x0 to a final state xf ,
over a fixed time interval [t0, tf ]. Using the flatness theory
(Fliess et al., 1995), (Van Nieuwstadt and Murray, 1998),
(Suryawan et al., 2010), the system is parameterized in
terms of a finite set of variables zl(t) and a finite number
of their derivatives:

xl(t) = ξ(zl(t), żl(t), · · · , zl,(q)(t)), (19)
ul(t) = η(zl(t), żl(t), · · · , zl,(q)(t)),

where zl(t) = Υ(xl(t), ul(t), u̇l(t), · · · , ul,(q)(t)) is
called the flat output2. The generation of a reference tra-
jectory will be based on the class of polynomial functions.
Using the parametrization (19) and imposing boundary
constraints for the evolution of the differentially flat sys-
tems (De Doná et al., 2009) one can generate a reference
trajectory zlref (t) by the resolution of a linear system of

2Hereafter we assume that the characteristics necessary for flat tra-
jectory (controllability and the existence of a flat output) are respected
for the leader agent.
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equalities. Therefore, the corresponding reference state
and input for the system (18), with i = l are obtained by
replacing the reference flat output zlref (t), with t ∈ [t0, tf ]
in (19):

xlref (t) = ξ(zlref (t), żlref (t), · · · , zl,(q)ref (t)), (20)

ulref (t) = η(żlref (t), z̈lref (t), · · · , zl,(q)ref (t)),

where t ∈ [t0, tf ].
In the rest of the paper, we use the discrete analog

to the reference signals in (20). That is, a corresponding
discrete-time model for the equations (18) is constructed
upon a chosen sampling period Ts by considering the time
instants tk = kTs:

xi(k + 1) = Aix
i(k) +Biu

i(k), k ∈ N, i = 1 : Na,
(21)

where xi(0) corresponds to the boundary condition in (20)
and ui(k) = ui(tk). The pairs (Ai, Bi) are given by:

Ai = eAc,iTs , Bi =

∫ Ts

0

eAc,i(Ts−θ)Bc,idθ.

Considering the discrete-time model of the leader
(21) with i = l, we compare the measured state and input
variables with the reference trajectory (xlref (k), ulref (k))
which satisfies the nominal dynamics:

xlref (k + 1) = Alx
l
ref (k) +Blu

l
ref (k). (22)

Further on, the tracking error between the leader’s
state (21) and the state reference (22) becomes:

x̃l(k + 1) = Alx̃
l(k) +Blũ

l(k), (23)

with ũl(k) = ul(k)−ulref (k), x̃l(k) = xl(k)−xlref (k).
Since the reference trajectory is available before-

hand, an optimization problem which minimizes the track-
ing error for the leader can be formulated in a predictive
control framework (Goodwin et al., 2006), (Maciejowski,
2002). Consequently, the leader must follow the reference
trajectory from the initial position to the desired position,
using the available information over a finite time horizon
in the presence of constraints 3.

3.2. Predictive control for the leader. In what follows
we present the predictive control problem, where an opti-
mization is performed to compute the control law for the
leader. The discrete model of the leader (i.e. i = l in (21))

3The flat trajectory can also be generated to enforce obstacle avoid-
ance at the trajectory planning stage. In this framework the obstacles can
be modeled in terms of a convex safety region around each agent, as in
(1). Even if the reference trajectory is generated over the entire interval
[t0, tf ], intermediary points can be added along the trajectory in order
to avoid obstacles at a specific time subinterval by redesigning of the flat
trajectory.

is used in a predictive control context which permits the
minimization of the tracking error.

A finite receding horizon implementation of
the optimal control law is typically based on
the real-time construction of a control sequence
ũl = {ũl(k|k), ũl(k + 1|k), · · · , ũl(k +Nl − 1|k)}
that minimizes the finite horizon quadratic objective
function:

ũ∗ = arg
ũl

min(‖x̃l(k +Nl|k)‖P+ (24)

+

Nl−1∑
s=1

‖x̃l(k + s|k)‖Q +

Nl−1∑
s=0

‖ũl(k + s|k)‖R),

subject to:
x̃l(k + s+ 1|k) = Alx̃

l(k + s|k) +Blũ
l(k + s|k),

x̃l(k + s|k) ∈ Xl, s = 1, · · · , Nl,
ũl(k + s|k) ∈ Ul, s = 1, · · · , Nl,

(25)
Here Q = QT � 0, R � 0 are positive definite weight-
ing matrices, P = PT � 0 defines the terminal cost and
Nl denotes the prediction horizon for the leader. The op-
timization problem (24) has to be solved subject to the
dynamical constraints (25). In the same time, other se-
curity or performance specifications can be added to the
system trajectory. These physical limitations (velocity,
energy or forces) are stated in terms of hard constraints
on the internal state variables and input control action as
in (25). Note that the sets Xl, Ul have to take into ac-
count the reference tracking type of problem delineated in
(24). Thus, the absolute limitations have to be adjusted
according to the reference signals. In the original state
space coordinates, these constraints will describe a tube
around the reference trajectory. A finite horizon trajec-
tory optimization is performed at each sample instant, the
first component of the resulting control sequence being
effectively applied. Then, the optimization procedure is
reiterated using the available measurements based on the
receding horizon principle (Camacho and Bordons, 2004).

3.3. Decentralized predictive control for the follow-
ers. In this subsection, we present a control strategy
which is a combination of MPC and Potential Field con-
trol approach. The goal is to control the agents to achieve
a formation while following the specified trajectory. The
repulsive potential functions introduced in (16) and (17)
produce a potential field. The negative gradient of this
potential is the key element towards a collision free be-
havior for the agents. Globally, an attractive component
of the potential function aims at maintaining a given for-
mation. In this context, we provide a practical control
design method which enables the decentralized decision
making for a leader-followers group of agents. The pro-
posed method exhibits effective trajectory tracking perfor-
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mances while avoiding the centralized design which can
be computationally demanding4.

Consider that each agent has an associated convex
safety region as defined in (1). Before actually defining
the potential function, let us recall a general result relative
to convex sets which will be further used in the optimiza-
tion problem:

Proposition 1 For any two convex sets S1, S2 ∈ Rn the
next relations are equivalent:

1. S1 ∩ S2 = ∅

2. {0} /∈ S1 ⊕ {−S2}

Sketch of proof: It suffices to note that if the origin is
inside the set S1 ⊕ {−S2} then, necessarily, there exists
x1 ∈ S1 and x2 ∈ S2 such that x1 − x2 = 0 q.e.d.

Corollary 1 Consider the agents i and j with the associ-
ated safety regions Si, Sj as defined in (1). The agent i
with the associated position pi does not intersect agent j
with the position pj if an only if pi /∈ Sij(pj), where

Sij(p
j) , {pj} ⊕ Sj ⊕ {−Si}, (26)

with i = 1, · · · , Na, i 6= j.

Remark 3 For the ease of the computation, the agents are
considered as unidimensional points in the position space.
Even if they are characterized by a nonempty region Ri ⊂
Rn, one can define the set in (1) as S̃i , Si ⊕Ri, where
Ri denotes the region describing the ith agent.

Let us now assume the steering policy for each fol-
lower agent (i.e. i 6= l in (21)) based only on local state
information from its nearest neighbors.

Definition 4 (Neighboring graph (Tanner et al., 2007))
An undirected graph G = {V, E} represents the nearest
neighboring relations and consists of:

- a set of vertices (nodes) V = {n1, n2, · · · , nNa} in-
dexed by the agents in the group;

- a set of edges E = {(ni, nj) ∈ V × V : ni ↔ nj},
containing unordered pairs of nodes that represent
neighboring relations.

The set of neighbors of agent i with i = 1, · · · , Na
and i 6= l can be defined as follows:

Ni(k) , {j = 1, · · · , Na : ‖pi(k)− pj(k)‖ ≤ r, i 6= j},
(27)

4Besides computational expenses, the logistic difficulties can be
mentioned: a centralized approach means that there exists a center which
needs information from all the agents and has to send the control action
to all agents. Such a construction may be difficult to implement and be
prone to errors (e.g. the case of a radio linked system of agents and a
non-neglected physical obstacle which cuts the communication inside a
subgroup).

where r is the radius of the ball centered in pi. Since the
agents are in motion, their relative distances can change
with time, affecting their neighboring sets (27). For each
agent i, we define an inter-agent potential function which
aims to accomplish the following objectives:

1) collision avoidance between agents;

2) convergence to a group formation and following the
leader.

To be specific, in our problem, the following inter-agent
potential function is used:

Vi(p
i, vi) = βrV

r
i (pi) + βaV

a
i (pi, vi), ∀i ∈ Ni. (28)

The two components of the potential function account for
the objectives presented above and βr, βa are weighting
coefficients for each objective. For the ith agent the total
potential is formed by summing the potentials terms cor-
responding to each of its neighbors. Consequently, in our
approach, the potential functions are designed as follows:

1) V ri (pi) denotes the repulsive potentials that agent i
sense from its neighbors:

V ri (pi) =
∑
j∈Ni

V rij(p
i) (29)

To implement this, the concepts introduced in Sub-
section 2.3, specifically the potential functions (16)
or (17) are taken into account:

V rij(p
i) =

c3
(c4 + ψij(pi))2

, i 6= j, i 6= l, (30)

where ψij(pi) is the sum function (14) induced by
the polyhedral set defined in (26). Note that the re-
pulsive component (30) takes into account the safety
regions (26) associated to both the followers and the
leader.

2) V ai (pi, vi) denotes the attractive component between
agents in order to achieve a formation and to follow
the leader:

V ai (pi, vi) =
∑
j∈Ni

V aij(p
i, vi) + ‖pl − pi‖, (31)

for all i ∈ Ni and i 6= l.
The second component denotes the relative distance
between the leader and the followers. The first com-
ponent V aij(xi) has the following form:

V aij(p
i, vi) = log(ψ2

ij(p
i)) + βv(v

i − vj), (32)

where βv denotes a weighting coefficient for which
the agents velocities are synchronizing.
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As it can be observed in similar works based on the poten-
tial function methods, the parameters of the potential field
have to be tuned experimentally. It will be seen in the
simulations that the collision avoidance is realized for the
chosen parameters. Note also that for a potential function,
a piecewise affine gradient can be computed using the re-
sults in Section 2. As in (Rimon and Koditschek, 1992),
(Tanner et al., 2007) the negative value of the gradient can
be applied in order to derive a control action for agent i.
The direct approach has several shortcomings mentioned
in the Section 1.

In the following, we reformulate the optimization
problem (24) for the followers, by using the potential-
based cost function described in (28). A control sequence
ui = {ui(k|k), ui(k + 1|k), · · · , ui(k +Nf − 1|k)}
which minimizes the finite horizon nonlinear objective
function:

u∗ = arg
ui

min

Nf∑
s=0

Vi(p
i(k + s|k), vi(k + s|k)

 .

(33)
Here Nf denotes the prediction horizon for the followers.
In the optimization problem (33) we need to know the fu-
ture values of the neighboring graph and the values of the
state for the corresponding neighbors. All these elements
are time-varying and difficult to estimate. For the ease of
computation we assume the following:

- The neighboring graph is considered to be constant
along the prediction horizon, that is,

Ni(k + s|k) , Ni(k) (34)

- The future values of the followers state are consid-
ered constant

xj(k + s|k) , xj(k) (35)

- An estimation of the leader’s state is provided by the
equation (23)

xl(k + s|k) , x̃lref (k + s) (36)

The equations (34)–(36) represent only rough approxi-
mation of the future state of the agents. Obviously, the
MPC formulation can be improved by using prediction of
the future state of the neighboring agents. Where feasi-
ble, this prediction may be provided by the agents them-
selves (Dunbar and Murray, 2006). Here a simplified ap-
proach was implemented for the followers (by assuming
constant predictions) and using the reference trajectory for
the leader.

Remark 4 The time-varying nature of the neighboring
graph and the fact that the future values of the neigh-
boring states and the leader state are unknown represent

some of the computational limitations of the presented
scheme. Moreover, the resulting cost function is nonlin-
ear and, more than that, non-convex. This means that the
numerical solution may suffer from the hardware limita-
tions and may not correspond to the global optimum.

Remark 5 The receding horizon technique (33) uses a
discrete-time optimal control sequence parameterized by
the discrete counterpart of the reference trajectory (20).
As such, the usual performance, stability and robustness
properties of the predictive control can be invoqued only
for the discrete time closed-loop behavior. The approach
presented in this paper does not consider the intersample
phenomena which can be handled using polytopic inclu-
sions or alternative over-approximations (see the work in
(Gielen et al., 2010; Heemels et al., 2010)).

4. SIMULATIONS
This section proposes two simulation examples in order to
better illustrate the proposed techniques.

Consider a set of Na heterogeneous agents in two
spatial dimensions with the dynamics described by:

Ai =


0 0 1 0
0 0 0 1
0 0 − νi

mi
0

0 0 0 − νi
mi

 , Bi =


0 0
0 0
1
mi

0

0 1
mi


(37)

where [xi yi vix v
i
y]T , [uix u

i
y]T are the state and the in-

put of each system. The components of the state are: the
position (xi, yi) and the velocity (vix, v

i
y) of the ith agent,

i = 1, · · · , Na. The parameters mi, νi are the mass of the
agent i and the damping factor, respectively5.

In the first example, we consider a punctiform agent
operating in an environment with obstacles designed
as convex regions. Then, for controlling the agent to
maneuver successfully in the hostile environment we
use first a gradient approach. Second, we introduce the
potential function in a predictive control optimization
problem such that the collision avoidance is satisfied. In
the second example, we illustrate the trajectory tracking
of a leader/followers formation. For avoiding collisions
inside the formation, we consider agents with associated
safety regions designed also as convex sets.

Example 1: Consider one agent (i.e. Na = 1 in (37))
in two spatial dimensions described by the dynamics (37),
with m1 = 45kg, ν1 = 15Ns/m. Let the position com-
ponent of the agent be constrained by three obstacles de-
fined by (1). We consider a potential function as in (28)

5Note that the matrices Ai, Bi correspond to the continuous system
(18). After the initial stage of computing a flat trajectory, we will use
discretized matrices, obtained as in Subsection 3.1 with a discretization
time Ts = 0.1 s.
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(βr = 1, βa = 1), with two components: a repulsive po-
tential (17) with c3 = 1, c4 = 0.25 and an attractive po-
tential (32). The potential function generates a potential
field depicted in Figure 6. First, we calculate the gradi-
ent of the potential function which is piecewise affine as
in (15). The negative value of the gradient is applied in
order to derive a control action for the agent. We obtain
that the obstacles are usually avoided, but there are situa-
tions when the constraints are not satisfied, or the control
action obtained through the negative gradient has unreal-
istic values. For these reasons, we introduce the potential
function in a predictive control framework as in (33), with
a prediction horizon Nf = 2. We obtain that the obstacles
are always avoided. Figure 7 illustrates several trajectories
of the agent with a random initial position.

Fig. 6. Potential filed in a workspace with 3 obstacles.

Fig. 7. Agent trajectories using predictive control.

Example 2: Consider five agents (i.e. Na = 5 in
(37)) described by the dynamics (37), with m1 = 45kg,
m2 = 60kg, m3 = 30kg, m4 = 50kg, m5 = 75kg, ν1 =
15Ns/m, ν2 = 20Ns/m, ν3 = 18Ns/m, ν4 = 35Ns/m,
ν5 = 23Ns/m. The initial positions and velocities of the
agents are chosen randomly. We associate to each agent
a polyhedral safety region as in (1). For the sake of il-
lustration we will choose identical safety zones for each

agent. We take arbitrarily l = 1 to be the leader which
has to be followed by the rest of the agents i = 2, . . . , 5
(i 6= l). Figure 8 illustrates the potential filed generated
for the considered group of agents.

For the leader we generate through flatness methods,
state and input references (20) and for both types of agents
we use MPC in order to construct the control action. A
quadratic cost function as defined in (24) is used for the
leader. Figure 9 illustrates the reference trajectory (in
blue) and the time evolution of the leader (in red) along
the trajectory. Satisfactory tracking performances for the
given reference trajectory are obtained with a prediction
horizon Nl = 10.

For the followers we consider a potential function as
the cost function in the optimization problem (33), with
a prediction horizon Nf = 2. The potential will be con-
structed such that both the following of the leader and the
maintaining of a formation are respected. The neighbor-
hood radius is set to r = 8m, the weighting coefficients
are βr = 1, βa = 10, c3 = 1, c4 = 0.25, βv = 15. The
effectiveness of the present algorithm is confirmed by the
simulation depicted in Figure 9, where the evolution of
the agents is represented at three different time instances.
The agents successfully reach a formation and follow the
leader without trespassing each other safety regions.

We note that we prefer a smaller prediction horizon
for the followers than the one used for the leader. This
is justified by the fact that the trajectory of the leader is
more important and that any additional prediction step for
the potential function (which is not quadratic) incurs sig-
nificant computational complexity.

Example 3: We build upon the previous example
and we consider additionally obstacle avoidance. Fur-
thermore, we redesign the reference trajectory such that
it avoids stationary and a priori known obstacles. More
precisely we add control points which steer the reference
trajectory from the interdicted region (for further details
see footnote 3 and (Prodan et al., 2012)).

In Figure 10 the original reference (in blue) illus-
trates the flat trajectory which does not take into account
the obstacle. On the other hand, by adding an additional
control point we were able to construct a trajectory which
avoids the obstacle (in red). Satisfactory tracking per-
formances for the given reference trajectory are obtained
with a prediction horizon Nl = 10, as well as in the pre-
vious example.

5. CONCLUSIONS
This paper presents the trajectory tracking problem of
multiple agents. Convex safety regions are associated
to each agent in order to solve the collision avoidance
problem. First, the notion of polyhedral function is
recalled and further introduced in a potential function
which accounts for the associated safety region. Sec-
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Fig. 8. Potential field in a workspace with 5 agents.

Fig. 9. Trajectory tracking of the leader/followers formation at
different time instances with their safety regions (leader
in red, followers in magenta).

Fig. 10. Obstacle avoidance and trajectory tracking of the
leader/followers formation at different time instances
with their safety regions (leader in red, followers in ma-
genta).

ond, in real-time, a receding horizon control design and
a leader/followers strategy are adopted for driving the
agents into a formation with collision free behavior. For

the leader, a flat trajectory is generated and a receding
horizon optimization problem is solved in order to min-
imize the tracking error. For the followers, decentralized
control method is introduced by combining of Model Pre-
dictive Control and Potential Field concepts. Two kinds
of potential terms are distinguished in the cost function of
the followers. The repulsive potential term accounts for
the collision avoidance between the agents and the attrac-
tive potential term which guarantees the convergence to a
formation and the following of the leader.

Future work will focus on the investigation of the ro-
bust stability properties of the multi-agent system in pres-
ence of disturbances and uncertainties, this problem being
known to be particularly intricate without strict assump-
tions on the time-varying properties of the interconnection
graph.
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