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PolyRMPC: a New Matlab Toolbox to Robustify Predictive Controllers
under Unstructured and Structured Uncertainties

V. Preda, C. Stoica, P. Rodrı́guez-Ayerbe and D. Dumur

Abstract— This paper proposes a new Matlab toolbox to
simplify the task of designing robustified Model Predictive Con-
trollers under both unstructured and structured uncertainties.
With a user-friendly design, the toolbox offers the possibility
to develop an initial stabilizing predictive controller to handle
both Single-Input Single-Output or multivariable systems. Us-
ing the Youla-Kučera parametrization, this initial control law
can be further robustified under unstructured and polytopic
uncertainties, while respecting time-domain specifications for
disturbances rejection. Due to its visualization facilities, the per-
formances of the developed controllers can be easily analyzed
and compared in both time and frequency domains. Combining
Object Oriented Programming with Matlab Graphical User
Interface, this toolbox is built on top of a clear solid framework
offering the possibility to extend and update the software design.

I. INTRODUCTION

This paper stands at a crossroad between two important
branches of control strategies: predictive and robust control
techniques. Both of these approaches have proven their
value and are an ongoing source of interest for industrial
and academic communities [1], [2], [3], [4], [5]. However
designing such control strategies seems sometimes difficult
to non-specialists. Matlab Robust Control Toolbox can be
used to design robust controllers under different uncertain-
ties. Matlab Model Predictive Control Toolbox offers the
possibility to develop predictive controllers acting despite
existing disturbances or noises, but no uncertainties are
considered during the predictive controller synthesis. The
main motivation of our work arises in order to overcome
the difficulties in designing, tuning and analyzing off-line
robustified predictive control techniques on different uncer-
tain systems.

The purpose of this paper is to present a toolbox (called
PolyRMPC) to be used for off-line robustification of model
predictive controllers with respect to structured and unstruc-
tured uncertainties. In a first stage, the toolbox offers the
possibility to design an initial stabilizing model predictive
controller for a nominal model of the real system. The next
stage consists in robustifying this initial controller under
unstructured additive and/or multiplicative uncertainties [6],
[7]. This robustification problem can be formulated as a
convex optimization problem of a Youla parameter (also
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called Q parameter) that can be efficiently solved using exist-
ing LMI (Linear Matrix Inequalities) solvers. Time domain
specifications for disturbances rejection can be added to the
considered LMI problem [7]. A previous version of such
a toolbox [8] already handled these specification demands,
but the data entry appeared time-demanding and sometimes
unappropriate for users. Moreover this structure proved to
be inappropriate for addressing the robust stability under
polytopic uncertainties. In order to solve these problems,
a new toolbox based on Object Oriented design with a
new user-friendly interface has been developed. Systems
can be imported from a file or from the workspace, as
state-space representations or transfer functions. Uncertain
state-space models can be used, which allowed adding a
new module that guarantees robust stability under polytopic
uncertainties. This is the main theoretical novelty of our
toolbox. Synthesizing a robustified controller to deal with
polytopic uncertainties is a hard task, because of the non-
convexity of the optimization problem, which is a BMI
(Bilinear Matrix Inequality). An efficient algorithm to find a
sub-optimal solution is implemented instead of using existing
BMI solvers that may be time-demanding.

The PolyRMPC toolbox allows expert or non-specialist
users to easily solve the problems described above. The
software offers a clean and intuitive interface to help users
easily design and compare the performances of robustified
predictive controllers. A module for order reduction of the
obtained controller is also proposed.

This paper is organized as follows. Section II reminds the
theoretical background which is the basis of the toolbox
development. Section III describes the proposed toolbox
architecture, offering details on each window. An application
on the model of a Quanser helicopter is proposed in Section
IV in order to highlight the toolbox performance. Finally,
concluding remarks and perspectives are drawn in Section V.

II. PROBLEM FORMULATION

This section provides the necessary theoretical aspects
on which the toolbox is based. First, an initial stabilizing
predictive controller is developed and, second, it is robus-
tified via the Youla-Kučera parametrization with respect to
unstructured and structured uncertainties, while respecting
time-domain constraints for disturbances rejection.

A. Initial Stabilizing MPC
Consider the nominal linear discrete-time invariant system:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

⇔ (A,B,C, 0) (1)



with x ∈ R
n the state vector, u ∈ R

m the control input
vector, y ∈ R

p the output vector, and the matrices A, B, C
of appropriate dimensions, with (A,B) controllable, (A,C)
observable. An integral action u(k) = u(k − 1) + Δu(k)
is added to the state equation in order to cancel the steady-
state errors leading to an extended state-space representation
(Ae, Be, Ce, 0), with xe(k) =

[
xT (k) uT (k − 1)

]T . The
control signal (Fig. 1):

Δu(k) = yFr(k)−Lxe(k) = yFr(k)−L1x(k)−L2u(k−1), (2)

defined in a general way by a feedback vector L =[
L1 L2

]
∈ R

m×(n+m) and a filtered set-point yFr, is the
result of the minimization of the cost function:

J =

N2∑

i=N1

‖ŷ(k + i)− yr(k + i)‖2
Q̃
+

Nu−1∑

i=0

‖Δu(k + i)‖2
R̃

(3)

with N1, N2 the output prediction horizons, Nu the control
prediction horizon, Q̃, R̃ positive definite diagonal weighting
matrices, ŷ the predicted output vector, yr the set-point vector
and Δu(k + i) = 0, i ≥ Nu. If the state-vector is unknown,
it can be estimated by means of an observer. For simplicity,
the following complete observer is proposed here:

x̂e(k + 1) = Aex̂e(k) +BeΔu(k) +K [y(k)− Cex̂e(k)] (4)

with the observer gain K designed by pole placement.

Fig. 1. Robustified MPC w.r.t. additive uncertainties via the Q parameter.

B. Robust Stability under Unstructured Uncertainties
Starting from the initial stabilizing controller (2), a stable

Youla-Kučera parameter Q [4] can be used to construct the
set of all stabilizing controllers for system (1). If inserted
in a particular way (see the modified controller paradigm
[9]), a stable Q ∈ RH∞ parameter allows to improve
the robustness (w.r.t. different sensitivity functions) of the
controlled system, without changing the nominal perfor-
mances of the Input-Output (I/O) behavior [10], [7]. A sub-
optimal solution [6] of the Q parameter is implemented
in this toolbox, consisting into a FIR (Finite Impulse Re-
sponse) filter of degree nQ, in the state-space representation
(AQ, BQ, CQ, DQ). As in [6], a fixed pair (AQ, BQ) is
chosen, while the variable pair (CQ, DQ) is the result of an
off-line optimization problem. This leads to the following
control law Δu(k) = yFr(k)− Lxe(k)− u′(k) (Fig. 1).

Applying the small gain theorem [4] to the system subject
to additive unstructured uncertainties Δu (Fig. 1) guarantees
that if the condition ‖Tzub‖∞ < γ on the transfer from b

to zu is satisfied, then the controlled system is stable for

all additive unstructured uncertainties with ‖Δu‖∞ ≤ γ−1.
This leads to find a stabilizing controller (i.e. a stable Q

parameter) that solves the following optimization problem:

min
Q

‖Tzub‖∞ = min
Q

‖WuTub‖∞ (5)

where the Wu weight can be set to satisfy the robustness
specifications in the desired frequency range.

This minimization problem can be reformulated using the
bounded real lemma [5] into a LMI, denoted here LMI0.
The goal is to find X1 = XT

1 � 0 (corresponding to
the Lyapunov variable), the Q parameter (i.e. CQ and DQ

matrices) and γ in the following optimization problem:

min
Q,X1,γ

γ

s.t. LMI0
(6)

This LMI formulation is beyond the scope of this paper and
it is omitted here (more details are given in [7]).

In a similar way, robust stability under multiplicative
unstructured uncertainties Δy (with ‖Δy‖∞ ≤ γ̃−1) can
be addressed. In this case, the aim is to find a stabilizing
controller that solves the following optimization problem:

min
Q

∥∥Tzyb

∥∥
∞

= min
Q

‖WyTyb‖∞ (7)

with the weight Wy . This minimization problem can also be
reformulated using the bounded real lemma into a LMI. The
goal is to find X̃1 = X̃T

1 � 0, the Q parameter and γ̃ in:

min
Q,X̃1,γ̃

γ̃

s.t. LMIm
(8)

with LMIm obtained from expression LMI0 [7] after re-
placing X1, γ,Wu, and Tzub with X̃1, γ̃,Wy , and Tzyb, resp.

C. Robust Stability under Polytopic Uncertainties
This subsection deals with robust stability

under polytopic uncertainties around a nominal
model denoted (A0, B0, C0, 0), i.e. the matrices
of system (1) belong to the convex hull
Co

{[
A1 B1 C1

]
,
[
A2 B2 C2

]
, . . . ,

[
Al Bl Cl

]}
.

For the given uncertain system, the following equality holds[
A B C

]
=

∑l

i=1 λi

[
Ai Bi Ci

]
, with

∑l

i=1 λi = 1,
for λi ≥ 0, l being the number of vertices. To guarantee
the stability across the polytopic domain, the expression (9)
[11] has to be satisfied for each vertex i of the polytope:

[
X2,i Acl,i(Q)TGT

GAcl,i(Q) G+GT −X2,i

]
� 0, i = 1, l (9)

with the decison variables X2,i = XT
2,i � 0 and the Q

parameter enclosed in the closed-loop matrices Acl,i(Q).
The goal of the optimization procedure is to robustify

under additive uncertainties while also guaranteeing stability
across the polytopic domain. This global robustness problem
can be stated as the following mathematical expression:

min
Q,X1,γ,X2,i,G

γ

s.t. LMI0, BMIi
(10)



where BMIi denotes the Biliniar Matrix Inequality (9),
with i = 1, l, in order to test stability across the polytope.
BMI problems are non-convex and hence difficult to solve.
Existing (local) solvers may be time-consuming and are
not always available for free. In order to overcome these
inconveniences and to keep our toolbox ’autonomous’, an
improved tractable sub-optimal solution [12] of (10) is im-
plemented into the toolbox. The idea behind this algorithm is
that the robustification procedure w.r.t. additive uncertainties
can lead to a controller that offers stability only across
a part of the polytope, while the robustification procedure
w.r.t. multiplicative uncertainties can enlarge this polytopic
stability domain (but at a cost to the performance in the
frequency domain of the nominal model). The goal is to find
a controller with a stability domain that fully covers the given
polytope while also being robust to additive uncertainties and
thus having a small H∞ norm for the Tub transfer (Fig. 1).

Algorithm

1) Initialization: Find an initial controller with a large
stability domain that covers the whole polytope by
solving the robustification procedure for both additive
and multiplicative uncertainties:

min
Q,X1,X̃1,γ,γ̃

cγ + c̃γ̃

s.t. LMI0, LMIm
(11)

with the tuning parameters c, c̃, Wu, Wy and nQ. A
Youla parameter Q∗ is found.

2) Find the Lyapunov function: With the newly found
Q∗ parameter, the BMI expressions (9) are con-
verted to LMIs by eliminating the Youla pa-
rameter from the decision variables leading to[

X2,i Acl,i(Q
∗)TGT

GAcl,i(Q
∗) G+GT −X2,i

]
� 0, for i = 1, l. A

feasible solution (X∗

2,i, G
∗) of these LMIs is searched.

3) Find the Youla parameter: The values X∗

2,i and
G∗ obtained from the previous step can be used
to replace the decision variables X2,i and G in
the BMIs (9) leading to the LMIs given below[

X∗

2,i Acl,i(Q)TG∗T

G∗Acl,i(Q) G∗ +G∗T −X∗

2,i

]
� 0, for i = 1, l.

This new set of LMIs is added to the previous mini-
mization problem with respect to additive uncertainties
(6), being a sub-optimal solution of the problem (10).

This way, the solution found is certain to be stable for
all the values inside the polytopic domain. By iterating the
last two steps, the solution converges to a local minimum.
The algorithm stops once the solution cannot be improved
upon or when the changes made to the solution after a given
number of iterations are insignificant.

Questions about the feasibility of this algorithm can arise.
In fact, the most difficult step is to find a set of parameters c,
c̃, Wu, Wy and nQ that guarantees the stability on a domain
which includes the considered polytopic domain. To facilitate
this task, a stability check is implemented in the toolbox.

D. Time-domain Specifications for Disturbances Rejection
Nominal performance specifications can be added in terms

of additional LMIs to the optimization problems consid-
ered in Section II.B and II.C. These nominal performance
specifications are actually time-domain templates [7] on
disturbances rejection, used to reduce the impact of the
disturbances on the system outputs. These specifications
can be written as a LMI (denoted LMIt) [7] added to
the previously built optimization problems (6), (8) or (10),
leading to the new global optimization problem:

min
Q,X1,γ,X2,i,G

γ, ∀i = 1, l

s.t. LMI0, BMIi, LMIt
(12)

Because the notion of nominal performance and robust
stability are complementary, there is a trade-off (handled
by the Youla parameter) between them. If the time-domain
templates are too restrictive, the optimization problem can
become infeasible and the templates need to be relaxed.

III. TOOLBOX DESCRIPTION

Based on the theoretical background presented in Section
II, this section focuses on the main features of the developed
toolbox, offering an analysis of the main windows.

A. Main Features and Software Architecture
With a user-friendly design, the PolyRMPC toolbox re-

lies on a modular software architecture based on object-
oriented design techniques, allowing easy code maintenance
and debugging while also providing greater flexibility to
extend the codebase with new features. Examples of the
objects used to model different subsystems throughout the
controller design or analysis procedures include: MPCon-
troller (keeps all relevant information about a controller),
Simulation Options (stores the various set-points and distur-
bances acting on different channels), Optimization Settings
(stores information needed to perform the various robusti-
fication procedures), Disturbance Rejection Template (holds
the necessary information about the limits imposed on the
disturbance response). The toolbox handles both multivari-
able and SISO (Single-Input Single-Output) discrete-time
systems, introduced either as transfer functions or state-space
representations. An option allowing to import a system or a
model from an existing file / workspace has been added.

Features are also included to aid in the design of the initial
MPC controller. It is thus easy to automatically generate an
appropriate observer for the control system or to quickly set
the appropriate weights for the MPC objective function.

The possibility of using uncertain state-space representa-
tions allows handling robustness of systems with parametric
uncertainties. Model uncertainties are incorporated using the
uss (uncertain state-space) object provided in the MATLAB
Robust Control Toolbox. The stability across the polytopic
domain for a given controller can be asserted.

Many features are also included in the analysis part:
time-domain settings and analysis, frequency analysis of
the developed controllers. A new feature concerns exporting



controllers in a reduced form. A Hankel singular values
analysis is proposed in order to help the user to choose
the states to be eliminated. Model-order reduction can also
be performed on the Youla parameter and the consequences
of this approximation can be analyzed. In addition, the
PolyRMPC toolbox can save or load existing projects, which
proves to be an useful option.

B. Overview of PolyRMPC Toolbox

Due to space limitations, Fig. 2 regroups the main win-
dows of PolyRMPC, described as follows.

Main Window (Fig. 2.1): Displayed when the application
starts, it is composed of four panels: Plant, Plant Models,
Controllers and Analysis. From here it is possible to import
a plant (Fig. 2.2), to choose nominal models (Fig. 2.2) and to
plot their characteristics (Fig. 2.3), to create, modify or delete
controllers (Fig. 2.4), and to perform analysis in the time
domain (Fig. 2.9, using a possible uncertain plant model) or
in the frequency domain (Fig. 2.10). The File Menu allows
to open a new project, an existing project and to save the
project in progress. The MPC Menu allows to import a plant,
a model or a previously created controller and to export a
controller (Fig. 2.11).

Initial MPC Settings (Fig. 2.4): This window can be
selected from the panels Controllers of the Main Window
(Fig. 2.1). In a first stage, the parameters used to build
an initial model predictive controller can be easily set or
edited from this window. The user can select an appropriate
plant model, choose the appropriate prediction horizons or
control the dynamics of the observer using pole placement.
Tracking error and control effort used in the controller
design can be weighted using scalars, vectors or matrices
to emphasize the importance of particular outputs or control
signals. In a second stage, this initial predictive controller
can be robustified by clicking on the Settings button.

Robustification Settings (Fig. 2.5): This window is used to
adjust the parameters for the robustification under additive
or multiplicative uncertainties and structured (polytopic) un-
certainties: the degree of the Youla parameter, the transfer to
be minimized (the optimization type), the frequency (input
or output) weights as first or second order discrete-time
filters (Fig. 2.6), or the time domain specifications (Fig. 2.7).
The button Optimize starts the LMI optimization procedure.
Advanced LMI optimization settings (e.g. relative accuracy,
maximal number of iterations, feasibility radius, number of
iterations to test convergence, trace execution of optimization
in Fig. 2.8) can be considered by an experimented user.
The same window is used to start the polytopic optimization
procedure via the Polytopic Optimization button, to evaluate
the stability across the polytopic domain (Check Polytope
Stability button) or to perform a model order reduction on
the computed Youla parameter (Youla Reduction button).

Time Domain Template Specification Window (Fig. 2.7):
For each I/O channel, this window allows to choose the
time-domain templates adjusting the appropriate sliders. The
designed templates can be saved via the Set template button.

Time-domain Analysis (Fig. 2.9): Providing a method to
easily compare the performances in time-domain of multiple
controllers was clear objective from the beginning and it is
accomplished via this window. For each I/O channel, individ-
ual set-points and input disturbances can be adjusted using
the appropriate sliders. These changes are then reflected in
the closed-loop system dynamics plots in the same window.
Visualization of the time-domain specifications can also be
enabled by selecting the checkbox labeled Show Templates,
visible only if the current controller was optimized with time-
domain specifications.

Frequency-domain Analysis (Fig. 2.10): This window al-
lows to study the singular values for multivariable systems or
the Bode diagram for SISO systems of different transfers for
the selected controllers: the Tub transfer (Fig. 1), the direct
or the complementary sensitivity functions.

Export Window - Model Order Reduction (Fig. 2.11):
This window accomplishes the task of performing a model
order reduction on the selected controller and exporting it
as a workspace variable. The singular values of the selected
controller and the reduced order controller can be compared.

IV. APPLICATION TO A QUANSER HELICOPTER

The Quanser 2-DOF Helicopter [13] consists of a heli-
copter model mounted on a fixed base. The pitch and the
yaw propellers (driven by DC motors) are used to control
the pitch and yaw angles of the model, resp. These angles
are measured using two high resolution encoders. Different
models exist in the literature [13], [14]. In order to focus
on the control laws obtained with PolyRMPC, a simplified
model [13] is further used. With the state vector composed by
the pitch and yaw angles and related velocities, respectively,
the corresponding continuous time state-space matrices are:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

0 0 −

Bp

Jp+ml2
0

0 0 0 −

By

Jy+ml2

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

Kpp

Jp+ml2

Kpy

Jp+ml2

Kyp

Jy+ml2

Kyy

Jy+ml2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C =

[
1 0 0 0

0 1 0 0

]
(13)

where the p index stands for pitch, the y index stands for
yaw, Jp = 0.0384kg m2 and Jy = 0.0432kg m2 are the
inertia moments, m = 1.38kg is the mass, l = 0.186m is
the center of mass length along the helicopter body from
pitch axis, Kpp = 0.204Nm/V, Kpy = 0.0068Nm/V, Kyp =
0.0219Nm/V, Kyy = 0.072Nm/V are thrust torque constants,
and the uncertain parameters Bp ∈ [0.3, 0.9]N/V and By ∈
[0.2, 0.4]N/V are equivalent viscous damping factors.

A. Robustification using PolyRMPC
In the following, a step by step design of a robustified

controller via the toolbox PolyRMPC is exemplified.
1) Model Import: Before any controller can be built, it is

necessary to import a plant (eventually an uncertain system)
and a nominal model. From the main window, clicking the
Import button from the Plant Models panel opens up the
Model Import window. The uncertain plant (13) will be used
for time-domain analysis and polytopic optimization.
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Fig. 2. PolyRMPC Overview: 1. Main Window, 2. Import Window, 3. Model Plot Window, 4. Initial MPC Settings Window, 5. Robust Controller Setting
Window, 6. Weighting Select Window, 7. Time Domain Template Specification Window, 8. Advanced LMI Optimization Setting Window, 9. Time Domain
Analysis Window, 10. Frequency Domain Analysis Window, 11. Export Window - Model Order Reduction.



Only the state matrix A contains the variable parame-
ters. Thus only the A matrix belongs to a polytope de-
fined by four vertices corresponding to the extremes of the
variation intervals for the Bp and By parameters: A ∈
Co{A1, A2, A3, A4}. Next, a first order discrete-time model
with 2 inputs, 2 outputs and 4 states, sampled with a period
of 0.05s, with the nominal values Bp0

= 0.8N/V and By0
=

0.3N/V, is chosen as the plant model (Fig. 2.2).
2) Initial MPC: Once the plant and its nominal model

have been imported, they are displayed in the appropriate
panels in the main window (Fig. 2.1). It is now possible to
build an initial MPC controller (called MPC0) based on the
nominal system via the New button in the Controllers panel,
with the tuning parameters N1 = 1, N2 = 20, Nu = 1,
Q̃ = 3I2N2

, R̃ = I2. Automatic pole placement is used for
the observer. The time domain simulation (Fig. 2.9) was done
using the nominal plant model, with a set-point of 1 rad for
the pitch angle (output 1) and a setpoint of 0 to the yaw
angle (output 2), step input disturbances with amplitude 3
and 8, at time 5 and 8, on input channel 1 and 2, resp.

3) Robustification to Additive Unstructured Uncertainties:
Although the initial controller fulfills the desired nominal
performances, it shows ‖Tub‖∞ = 48.5dB (Fig. 2.10). To
improve the robustness, the initial MPC0 controller is du-
plicated (and renamed RMPC0) along with all the settings
used to build it via Duplicate button in the Controllers panel.

The parameters for the robustification procedure are set: a
FIR Youla parameter of order 5; a Tub transfer minimizing
the objective for the robustification procedure w.r.t. additive
unstructured uncertainties; a first order high-pass filter Wu

(set from the Frequency Weighting window). Then, clicking
the Optimize button starts the robustification procedure.

To compare the performances in the frequency-domain
for the two controllers MPC0 and RMPC0, it is necessary
to first select them from the Controllers subpanel in the
Main Window (Fig. 2.1) and then clicking on the Frequency
Domain button. The Frequency Domain Analysis window
(Fig. 2.10) is then revealed showing the singular values of the
Tub transfer for the two controllers (Fig. 2.10). Robustness
to additive uncertainties is significantly increased for the
RMPC0 controller with ‖Tub‖∞ = 36.8 dB. Similarly, the
time-domain performances can be studied by clicking the
Time Domain button in Fig. 2.1. This action opens up the
Time Domain Analysis window (Fig. 2.9) showing the input
response of both controllers for the selected channel. The
two controllers have the same response until a disturbance
appears on the input channel (shown in Fig. 2.9). RMPC0
displays a higher peak response in the time-domain to the
incoming disturbance.

4) Robustification to Polytopic Uncertainties: Let us ad-
dress now the robust stability under the considered uncertain
polytopic domain. The controller RMPC0 does not stabilise
the considered polytopic domain. To begin the polytopic
robustification procedure it is necessary to find an initial
stabilizing solution (11). The goal is to find a controller
that has similar performances as RMPC0 in the frequency
domain, but it is also stable across the considered polytope.

First, a copy of RMPC0 called RMPC1 is made. Second,
in order to modify RMPC1, the option Complementary
sensitivity and Tub transfer from the Robustification Settings
window (Fig. 2.5) is selected and the associated cost function
weight c =

[
c c̃

]
(see (11)) is adjusted until a stable

solution across the entire polytopic domain is found. In this
case a cost function of c =

[
1 100

]
is a good choice.

Next, the Polytopic Optimization button starts the opti-
mization procedure using the default optimization parame-
ters. Local convergence is reached within 7 iterations and
the optimization procedure terminates leading to a H∞ of
38.6dB for RMPC1 (Fig. 2.10). In the frequency domain,
the trade-off between polytopic stability (RMPC1) and ro-
bustness to unstructured additive uncertainties (RMPC0) is
made visible using the Frequency Domain Analysis window.
In Fig. 2.10, the singular values of the Tub transfer for the
closed-loop system using the RMPC0 and RMPC1 show high
degree of similarity in high frequency range, with a relatively
small increase in the H∞ norm obtained with RMPC1. But
this slight compromise guarantees the polytopic stability.

V. CONCLUSION

This paper presented a new Matlab toolbox used for
robustification of unconstrained Model Predictive controllers
under both structured and unstructured uncertainties, while
respecting time-domain specifications for disturbances rejec-
tion. A theoretical contribution is to consider the robustifica-
tion method with respect to polytopic uncertainties. Another
novel element of our toolbox is given by the Object Oriented
architecture that increases the software reliability.
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