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ABSTRACT 

The development of empirical classification models for fault diagnosis usually requires a process of 

training based on a set of examples. In practice, data collected during plant operation contain 

signals measured in faulty conditions, but they are ‘unlabeled’, i.e., the indication of the type of 

fault is usually not available. Then, the objective of the present work is to develop a methodology 

for the identification of transients of similar characteristics, under the conjecture that faults of the 

same type lead to similar behavior in the measured signals. The proposed methodology is based on 

the combined use of Haar wavelet transform, fuzzy similarity, spectral clustering and the Fuzzy C-

Means algorithm. A procedure for interpreting the fault cause originating the similar transients is 

proposed, based on the identification of prototypical behaviors. Its performance is tested with 

respect to an artificial case study and then applied on transients originated by different faults in the 

pressurizer of a nuclear power reactor. 
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1. Introduction 

Fault diagnosis can be seen as a classification problem in which a class identifying the type 

of the fault needs to be associated to a vector of values of measured signals [Zio et al., 2006a]. Due 

to the complexity of the phenomena involved and the highly non-linear interrelationships between 

the causes that determine the equipment behavior and the signal evolutions, it is usually difficult to 

develop analytical models for fault diagnosis [Venkatasubramian et al., 2003]. 

An attractive alternative is to resort to empirical classification models (classifiers) whose 

parameters are tuned through an iterative process, called training, based on a set of examples 

constituted by signals labelled with the corresponding class of fault under which conditions they 

have been measured [D’Antone, 1992; Reifman, 1997; Sheng et al., 2004; Zio, 2007; Zio et al., 

2008]. Methodological approaches have been proposed for fault diagnosis in components of 

Nuclear Power Plants (NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 1997; Zio et al., 

2006a; Zio et al., 2006b; Baraldi et al., 2010; Di Maio et al., 2011]. However, application in 

practice is limited because of lack of examples for classifier training. Indeed, although data 

collected during plant operation contain also signals measured in faulty conditions, the information 

on the fault class is usually not available. 

The objective of this work is to develop a methodology for the identification of transients 

originated by faults of the same class, on the conjecture that they lead to similar behaviors of the 

measured signals. To this aim, the problem is formulated as one of clustering, in which the vectors 

of measured signal values are partitioned into a small number of homogeneous clusters so that those 

belonging to the same cluster are as similar as possible, and as dissimilar as possible to those 

belonging to the other clusters. In this work, the task of clustering of measured signals is addressed 

by means of a modified spectral clustering algorithm. The similarity between measured signals is 

computed by using a fuzzy similarity measure [Joentgen et al., 1999; Na et al., 2004; Zio et al., 

2010; Zio et al., 2012; Xia et al., 2011] in the space of wavelet transforms [Strang et al., 1996; 

Ikonomopoulos et al., 1998] in order to account for the signals evolution in time (in the following 

also referred to as “trajectories”). A similarity graph is built, in which each vertex represents a 

trajectory and the weight associated to the edge connecting two vertices is the value of (fuzzy) 

similarity between the two corresponding trajectories. Spectral analysis techniques are finally 

applied in order to find an optimal partition of the graph [von Luxburg, 2007].  
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The proposed methodology has been tested on an artificial case and then applied to a case 

study concerning simulated faults in a pressurizer of a Pressurized Water Reactor (PWR) NPP. 

The remaining of the paper is organized as follows: Section 2 states the problem; Sections 

3.1 and 3.2 sketch the methodology proposed for unsupervised clustering of transients; Section 4 

presents the artificial case study used to verify the performance of the proposed methodology; 

Section 5 presents the case study concerning the pressurizer of the PWR; finally, in Section 6 some 

conclusions and remarks are drawn. 

2. Problem statement 

Let us assume that the values of Z signals at different times have been measured during N 

plant transients originated by faults of different classes. In practice, the generic i-th transient can be 

seen as a trajectory into the Z dimensional signal space and represented by the matrix of values iX  

whose component i

lkx  represents the value of signal k taken at time lt , Zk ,...,1  and 0,..., 1,il T   

where Ti is the number of available measurements for the i-th trajectory. For the sake of simplicity, 

in this work we assume that: 

 transients begin at time 0t ; 

 signal measurements are taken at fixed time steps, t ; thus, tltl  ; 

 all transients have the same duration   tT 1 , i.e., ,TTi   for any i=1,…,N. 

The objective of the present work is to partition the N trajectories iX  into an unknown 

number of clusters, C, each one containing transients characterized by similar behavior. 

3. Methodology 

The methodology here proposed is based on spectral clustering [Strang et al., 1996]. The 

main characteristic of spectral clustering is that it allows partitioning objects (in our case, vectors of 

measured signals) into clusters by using only a measure of similarity between them. A similarity 

graph G = (V, E) is introduced, in which each vertex vi in this graph represents an object and a 

weight is associated to each edge eij connecting vertices i and j, to measure the similarity between 

objects i and j [von Luxburg, 2007]. Clustering then aims at finding a partition of the graph such 

that the edges between elements belonging to different groups of the partition have small weights 

(which means that objects in different clusters are dissimilar from each other) and the edges 

connecting elements within the same group have large weights (which means that objects within the 
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same cluster are similar to each other) [Alpert et al., 1999]. Section 3.1 illustrates the method 

proposed to measure similarity between the trajectories, whereas Section 3.2 illustrates the details 

of the spectral clustering algorithm. 

3.1 Similarity measure between trajectories 

The notion of similarity is strongly related to the objective of the application: in our case, we 

want a similarity measure that takes large values for trajectories of the same class (transients caused 

by the same type of fault) and small values for trajectories of different classes. 

When looking at the similarity between trajectories, the functional behaviour of the signals 

is the focus of the analysis irrespective of the numerical values which may be quite dissimilar due to 

the presence of outliers, noise or different scaling and translating factors [Angstenberger, 2001]. 

Possible causes of difference in the signal numerical values from transients of the same class are the 

magnitude of intensity of the faults, the plant operational state, the measurement noise. For this 

reason, the definition of the similarity measure between two transients should not be based on the 

magnitude of the signal values, but rather it should consider the functional characteristics of the 

signal trajectories, e.g., form, slope, curvature [Joentgen et al., 1999]. To catch these characteristics 

pre-processing of the transient data can be performed. Section 3.1.1 illustrates the data pre-

processing technique applied in this work, whereas Section 3.1.2 defines the similarity measure 

adopted. 

3.1.1 Wavelet transform pre-processing 

Wavelet transforms have been chosen due to their effectiveness in catching the functional 

behaviour of the signals in problems of transient classification. [Roverso, 2000], [Roverso, 2003] 

and [Baraldi et al., 2009] have shown the improved performance of transient classification 

algorithms when they are fed by wavelet features instead of the direct signal values. In the present 

work, the Haar wavelet transform [Ogden, 1997] is applied on a sliding window of the signal time-

series. For each signal k=1,...,Z, the retained wavelet features are: the mean value, w1, the maximum 

wavelet coefficient, w2, and the minimum wavelet coefficient, w3. The first feature is proportional to 

the average value in the time window and captures the general trend of the signal in the windows in 

a compact way. The features w2 and w3 capture variations in the signal within the window (e.g., 

downward or upward trends, step changes, spikes, etc.). The window size Ts is selected so as to 

correspond to wavelet dyadic decomposition values (i.e., powers of 2), and consecutive windows 

are chosen with an overlap of Ts-1 to avoid missing features that might be present at the window 

borders.  
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Since three different wavelet features are obtained from each signal and given that the first 

transformation can be performed only when the first Ts measurements are available, the matrix iX  

of size [T-1, Z] is transformed into a matrix iY  of size [T-Ts, 3Z] which constitutes the new 

representation of trajectory i. 

3.1.2 Fuzzy similarity measure 

After the data pre-processing, the similarity between transient i and transient j can be 

computed by considering matrixes iY  and jY . A fuzzy similarity measure is considered, which 

determines the degree of closeness of the two trajectories with reference to the pointwise difference 

between the corresponding feature values [Zio et al., 2010]. In particular the pointwise difference 

ij  between the 3·Z (T-Ts ) values of trajectories iY  and jY  is defined by: 

  
23

1 1

Z T
i j

ij kl kl

k l

y y
 

   (1) 

The similarity measure should allow for a gradual transition [Binaghi et al., 1993; Joentgen 

et al., 1999]. This is here achieved by evaluating the pointwise difference of two trajectories with 

reference to an “approximately zero” fuzzy set (FS) specified by a function which maps 
ij  into a 

value ij  of membership to the condition of “approximately zero”: values of ij  close to 0 indicate 

that the signal evolutions in the two transients i and j are very different, whereas values close to 1 

indicate high similarity. 

Common membership functions can be used for the definition of the FS, e.g. triangular, 

trapezoidal, and bell-shaped [Dubois et al., 1988]. In the applications illustrated in this work, the 

following bell-shaped function is used: 

 

 
2

ln
ij

ij e






 
  
   (2) 

The arbitrary parameters   and   can be set by the analyst to shape the desired 

interpretation of similarity into the fuzzy set: the larger the value of the ratio   2ln   , the 

narrower the fuzzy set and the stronger the definition of similarity [Zio et al., 2010].  

3.2 Spectral clustering 

The computation of the fuzzy similarity between all possible pairs of trajectories originates 

the similarity matrix W  of size [N, N], whose generic element ij  represents the fuzzy similarity 
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between trajectories i and j. The diagonal components ij  are set to 1 and the matrix is symmetric 

 ij ji  . 

From the matrix W  a similarity graph G = (V,E) is constructed, where each vertex vi 

represents the i-th trajectory and the weight associated to the edge eij connecting the two vertices i 

and j is the similarity value ij  [von Luxburg, 2007]. The original problem of identifying groups of 

similar trajectories can be reformulated in that of finding a partition of the similarity graph such that 

the edges connecting elements of different groups have small weights and the edges connecting 

elements within a group have large weights [Alpert et al., 1999]. The spectral clustering algorithm 

is based on the following steps: 

- Step 1: normalized Graph Laplacian Matrix 

Compute: 

- the degree matrix D  which is a diagonal matrix with diagonal entries d1, d2,…, dN 

defined by 

 
1

N

i ij

j

d 


 , 1,2,...,i N  (3) 

- the normalized graph Laplacian matrix: 

 
1/ 2 1/ 2 1/ 2 1/ 2

symL D LD I D W D
   

    (4) 

where L D W   and I  is the identity matrix of size [N, N].  

- Step 2: eigenvalues and eigenvectors of Lsym 

The information on the structure of a graph can be obtained from its spectrum [Zhao et al., 

2007]. Given symL , compute the first C eigenvalues 1 2, ,..., C    and corresponding eigenvectors 

1 2, ,..., Cu u u . The first C eigenvalues are such that they are very small whereas λC+1 is relatively 

large [von Luxburg, 2007]. 

- Step 3: Number of clusters 

The number of clusters is set equal to C, according to the eigengap heuristic theory [Mohar, 

1997]. 

- Step 4: Feature extraction 
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The relevant information on the structure of the matrix W  is obtained by considering the 

eigenvectors 
1 2, ,..., Cu u u  associated to the C smallest eigenvalues of its laplacian matrix symL . 

The square matrix W  is transformed into a reduced matrix U  of size [N, C], in which the C 

columns of U  are the eigenvectors 
1 2, ,..., Cu u u . Thus, the i-th trajectory similarity with other 

trajectories is captured in the C-dimensional vector 
iu  corresponding to the i-th row of the 

matrix U . A matrix T  is formed from U  by normalizing its rows [von Luxburg, 2007]: 

 

 
0.5

2

ic
ic

icC

u
t

u



1,2,...,i N , 1,2,...,c C  (5) 

It has been shown that this change of representation enhances the cluster properties in the data, 

so that clusters can be more easily identified [von Luxburg, 2007]. 

- Step 5: Unsupervised clustering  

In this work, we resort to the Fuzzy C-Means (FCM) algorithm to partition the data into C 

clusters [Bezdek, 1981; Leguizamon et al., 1996; Alata et al., 2008]. FCM originates from hard 

C-Means clustering: the difference is that it allows elements (trajectories, in our case) to belong 

to two or more clusters [Klir and Yuan, 1995]. For each i-th element, the algorithms provides 

its membership mic to all clusters, 1,2,...,c C . If needed, crisp assignment can be obtained, e.g., 

by considering the cluster to whom the element belongs with the largest membership value. A 

prototypical trajectory can be identified for each cluster by considering the trajectory with the 

largest membership value to the cluster. The analysis of such trajectories can guide 

understanding, identification and interpretation of the fault types. 

4. The artificial case study 

The performance of the methodology has been firstly verified with respect to an artificial case 

study built by simulating N=150 trajectories of C=5 different classes in a Z=4 dimensional signal 

space (Figures 1-4). Transient length T is 100 time steps. Each of the 5 classes of transients is 

formed by 30 trajectories characterized by a priori established functional behaviours of the 4 signals 

(e.g., linear, parabolic and exponential). All the transients of the same class differ only for different 

values of the parameters governing the functional behaviour (e.g., the slope value of a linear 

functional behaviour) whereas two transients of different classes have at least one signal with a 

different functional behaviour [Baraldi et al., 2012]. 
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Since the information on the class of each trajectory and on the total number of classes is not 

expected to be known in real industrial applications, it is not used to drive the partitioning of the 

transients into clusters but only to verify the performance of the proposed methodology. 

 
Figure 1 Projection on the signal 1 axis of the 150 

simulated transients 

 
Figure 2 Projection on the signal 2 axis of the 150 

simulated transients 

 
Figure 3 Projection on the signal 3 axis of the 150 

simulated transients 

 
Figure 4  Projection on the signal 4 axis of the 150 

simulated transients 

The similarity matrix W  of size 150·150 obtained by computing the similarity measure 

between all possible pairs of trajectories is shown in Figure 5: the larger the similarity ij , the 

brighter the shade of the ij-element of the matrix. 

A large number of edges have large weights ij  (i.e., the vertices are strongly connected, which 

means that the corresponding trajectories are similar), but it is not easy to distinguish a partition of 

the graph in groups of trajectories. If the trajectories were sorted in such a way that similar 

trajectories were in consecutive rows of the matrix, e.g., all trajectories of class 1 in rows and 

columns from 1 to 30, all trajectories of class 2 in rows and columns from 31 to 60 and so on, the 

representation of the matrix would lead to a checkboard-like structure [Kluger et al., 2003]. This is 
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due to the fact that if two trajectories are similar between them they tend to have large similarity 

with the other trajectories and, thus, the corresponding rows and columns in the Figure would have 

the same sequences of shades. In this sense, from the graphical point of view, the problem of 

clustering the trajectories may be seen as the problem of finding a proper ordering of the trajectories 

that leads to the visualization of a checkboard-like structure. 

 

Figure 5 The similarity matrix W : the larger the similarity, the brighter the shade of the ij-th element 

Figure 6 shows the 150 eigenvalues obtained by applying spectral analysis to matrix W , as 

described in Section 3.2. Since the first five eigenvalues are very close to zero and the sixth is 

remarkably larger, the number of clusters C is set equal to 5. 

 

Figure 6  The 150 eigenvalues of symL  

The new representation of the 150 trajectories into the first five dimensions of the eigenvectors 

space is reported in Figure 7. 
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Figure 7 Representation of matrix T . Columns correspond to the values of the first 5 eigenvectors of symL  of the raw data 

matrix of Figure 5 

In practice, the problem of clustering the 150 trajectories iX  is now reduced to the problem of 

finding five clusters among the 150 5-dimensional vectors it , where each it  constitutes a reduced 

representation of iX . 

The FCM partitioning of the obtained vectors it  provides the memberships icm
 of the i-th 

transient, 1,2,...,150i  , to the C clusters, 1,2,...,5c  . Crisp assignment of the vectors to the clusters 

is then performed by largest membership value. 

The trajectories are reordered according to the clusters found: all trajectories assigned to cluster 

1 are represented in the first 30 rows, all trajectories of cluster 2 in rows from 31 to 60, etc... This 

indeed leads to a checkboard-like structure (Figure 8) where the blocks of highly and lowly similar 

trajectories are easily identifiable [Baraldi et al., 2012]. 
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Figure 8 Shuffled matrix containing checkboard clusters of trajectories 

 

5. Fault diagnosis in the pressurizer of a PWR 

A case study regarding a pressurizer of a PWR NPP has been considered. Figure 9 is a 

schematic representation of the pressurizer system for which a Matlab SIMULINK model has been 

developed, based on the application of the mass and energy conservation equations to the two 

regions of vapor and liquid; exchanges between the two regions, due to evaporation of liquid and 

condensation of steam, are taken into account [Kuridan et al., 1998; Todreas et al., 1990]. The 

system of nonlinear differential equations describing the model is detailed in [Baraldi et al., 2010]. 

 

Figure 9 Simplified model of a pressurizer 
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In order to represent a realistic situation, the simulations have been carried out based on the 

operational parameters of a standard PWR pressurizer (Table 1). Furthermore, the total mass of 

water entering/exiting the pressurizer during a surge line mass flow transient has been related to the 

temperature variations of the coolant in the Primary Heat Transport (PHT) system. 

In order to test the method on pseudo-realistic data, white noise has been added to each 

signal according to engineering considerations on the sensors accuracy [Hashemian, 2004; Johnson, 

2008]. Table 2 reports the standard deviations of the considered noises. 

Table 1 Initial conditions of the pressurizer 

 Initial condition 

Level 7.22 m 

Liquid temperature 342.1 °C 

Vapor temperature 342.3 °C 

Pressure 150 bar 

Table 2 Standard deviation of sensors noise 

 Noise standard deviation 

Level sensor ±0.01 m 

Pressure sensor ±0.5 bar 

Flow sensor  ±0.2 kg/s 

Power sensor ±50 kW 

A block diagram of the model identifying the inputs, state of the system, outputs and 

controller variables is shown in Figure 10. The control of the level L and the pressure P in the 

pressurizer is achieved through a feedback control scheme which reproduces that used in a standard 

PWR pressurizer. According to the control scheme illustrated in [Baraldi et al., 2010], the pressure 

fP and level fL are the controlled signals as well as the controller input signals; the sprayers mass 

flow rate spm , and the heaters power Q  are the controller outputs. 

The present case study focuses on some faults which can occur to the pressurizer control 

system and can lead to undesired behaviors of the pressurizer. In particular, three different classes 

of faults are taken into account (Table 3): 

1) heaters fail stuck with a fixed power output value Q ; 

2) sprayers fail stuck with a fixed mass flow rate spm ; 

3) the communication between the controller and actuators fails: sprayers and heaters 

receive from the controller the command to provide a wrong quantity of water and heat, 

respectively. 
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Figure 10 Inputs, state, controller outputs (gray), controller inputs (black) and sensors outputs of the SIMULINK 

model of the pressurizer 

Notice that these fault states can be identified only during plant transients characterized by 

an in/out-surge mass flow which requires the operation of the control system components, whereas 

they are latent in case of stationary operations of the plant. 

To reproduce the pressurizer behavior in case of normal and faulty conditions, N = 80 

transients have been simulated with a time horizon of 1200 s. In all the transients considered, the 

total out-surge flow, msurge, is of 1444 kg with a variable flow rate surgem  in the range of [-11;-5] kg/s. 

The initial state of the pressurizer is characterized by the parameter values reported in Table 1. The 

simulated transients are 20 in normal conditions and 20 for each of the three classes of faults. The 

onset of the fault occurs at a random time tf sampled from a uniform distribution between 30 s and 

the time at which the out-surge mass flow stops. In case of a class 3 fault, the actuators receive from 

the controller the command of providing a quantity of water or heat proportional to the correct one 

multiplied by a random factor, b, sampled from a uniform distribution [0;2]. Notice that in the case 

here considered of out-surge transients during which sprayers are not called in operation, class 2 

faults are not distinguishable from normal condition transients. 

Table 3 Definition of the classes of faults 

Class 1 Heaters fail stuck with a fixed power output value Q  

Class 2 Sprayers fail stuck with a fixed mass flow rate spm  

Class 3 Communication between the controller and actuators fails 

Normal conditions 
Heaters, sprayers and communication between controller and 

actuators work in normal conditions 
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As an example, Figures 11-17 show the consequences of a class 1 fault (i.e., heaters fail 

stuck with a fixed power output value Q ) on the behavior of the pressurizer. The considered fault 

consists in a blockage of the heaters at time t=78 s during the out-surge transient of Figure 11 

characterized by a surge mass flow rate of -9.51 Kg/s. The out-surge flow produces a reduction in 

the pressure, P, and liquid and steam temperatures, LT  and VT , which induces the controller to turn 

on the heaters (Figure 13). In case of a nominal transient (black continuous line in Figure 15), the 

pressure promptly starts increasing and after 1000 s reaches the desired value, whereas in the case 

of faulty transient, due to the reduced power provided by the heaters, the pressure recovery is 

slower and after 1200 s its value is still 1 bar lower than the required (gray dotted line in Figure 15). 

 
Figure 11 Evolution of the surge line flow rate 

 

 

 
Figure 12 Evolution of the liquid level for a nominal 

transient and the faulty transient 

 
Figure 13 Evolution of the heaters power for a nominal 

transient and the faulty transient 

 
Figure 14 Evolution of the sprayers mass flow rate 
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Figure 15 Evolution of the pressure for a nominal 

transient and the faulty transient 

Figure 16 Evolution of the liquid temperature for a 

nominal transient and the faulty transient 

 
Figure 17 Evolution of the steam temperature for a 

nominal transient and the faulty transient 

 

The signals L , P , LT  and VT  measured during the transients are considered for the 

clustering. Thus, each transient is represented by a Z=4 dimensional trajectory. As in the previous 

case study, the information on the true class of the trajectory and on the total number of classes of 

faults causing the 80 transients is not used to drive the grouping of the transients, but only to verify 

the performance of the proposed methodology. 

The application of the methodology described in Section 3 leads to the identification of C=4 
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clusters trajectories. This shows that, in this case, the methodology has been able to identify a 

functional similarity between the trajectories. 

 

Figure 18 Pressure profiles of Trajectories belonging to 

cluster 1 

 

Figure 19 Pressure profiles of trajectories belonging to 

cluster 2 

 

Figure 20 Pressure profiles of trajectories belonging to 

cluster 3 

 
Figure 21 Pressure profiles of trajectories belonging to 

cluster 4 

In practical industrial cases where the information on the true class of the transients is not 

available, understanding and interpretation of the physical cause originating the onset of the 

transients (fault class) can be sought by analyzing the signal evolutions in the trajectories of the 

cluster. To this aim, instead of analyzing all trajectories in a cluster, experts can focus on a most 

representative trajectory, i.e., the prototypical trajectory with largest membership value to the 

cluster. In this respect, Figure 22 shows the evolutions of the 4 monitored signals for the prototypes 

of the 4 clusters identified. Experts may recognize that the behavior of the signals in the prototype 

trajectory of cluster 4 is very similar to that in case of normal conditions. Furthermore, the slow 

linear increase of the pressure and temperature signal in the prototypical transient of cluster 3 

suggests that the heaters are providing an insufficient power, i.e., a class 1 fault as previously 

described (Table 3). Cluster 1 trajectory is characterized by a slightly faster increase of the pressure 

than in normal conditions: this should lead the expert to identifying a class 3 fault caused by the 
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heaters providing higher power than required, i.e., a class 1 fault with b>1. Finally, cluster 2 is 

characterized by a slightly slower increase of temperature and pressure than that in nominal case: a 

possible cause can be a lower power provided by the heaters, as in class 3 fault with b<1. 

 
Figure 22 Prototypical trajectories (noisy thin line) and filtered signals (smooth thick line) 

Using the information on the true class of the simulated transients, we can verify the 

correspondence between clusters and fault classes. Table 4 reports the number of transients of each 

fault class contained in the 4 clusters obtained. Notice that both clusters 1 and 2 are formed by 

transients of class 3 (communication between the controller and actuators fails): the former consists 

in faulty transients caused by heaters providing more power than necessary (b>1, Figure 23), the 

latter by less power than necessary (b<1, Figure 24). All the transients of class 1 (heathers fail stuck 

at a fixed power) are contained in cluster 3, together with 3 transients of class 3 characterized by a 

very large reduction of the power provided by the heaters (b«1, Figure 25). Finally cluster 4 

contains all the transients in normal conditions, fault class 2 transients and 5 transients of class 1 

characterized by values of b≈1 (Figure 26). The merging of the normal condition and class 2 

transients into the same cluster depends on the fact that transients of class 2, i.e., due to a failure of 

the sprayers, are not distinguishable from the nominal condition transients in the case here 
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considered of out-surge transients. In fact, in this case, sprayers are never called in operation and, 

therefore, their failure cannot affect the transient functional behaviour. Furthermore, transients of 

class 1 characterized by values of b≈1 are those in which the actuators receive from the controller 

the command of providing a quantity of water or heat practically equal to the correct one and, 

therefore, show the same functional behaviour of the normal condition transients. These results 

show that the methodology is capable of distinguishing transients characterized by similar 

functional behaviour of the signals. 

Table 4 Performance of the clustering approach 

 Class 1 Class 2 Class 3 
Normal 

condition 

Cluster 1 - - 5 - 

Cluster 2 - - 7 - 

Cluster 3 20 - 3 - 

Cluster 4 - 20 5 20 

 

 

Figure 23 Heaters power profile of trajectories belonging 

to cluster 1 

 

Figure 24 Heaters power profile of trajectories belonging 

to cluster 2 

 

Figure 25 Heaters power profile of trajectories belonging 

to cluster 3 

 

Figure 26 Heaters power profile of trajectories belonging 

to cluster 4 
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6. Conclusions 

We have developed a methodology for the identification of groups of transients with similar 

behaviour because originated by faults of the same type. We have combined Haar wavelets 

transform, fuzzy similarity, spectral analysis and Fuzzy C-Means clustering. We have shown 

applications to an artificial case study and to the identification of transients in the pressurizer of a 

PWR. 

The main conclusions of the analysis are: 

1) Haar wavelets allow capturing the functional behavior, i.e., the shape of the transient; 

2) spectral analysis allows identifying the number of clusters of similar trajectories and 

extracting their most relevant features; 

3) the FCM algorithm allows finding the clusters of similar transients and identifying a 

prototypical trajectory for each cluster, which can then be used for fault understanding and 

interpretation. 

A drawback of the methodology is that if new transients become available, it is not possible 

to dynamically update the clustering of the trajectories, but we have to repeat spectral analysis and 

FCM clustering on the new similarity matrix extended to contain the fuzzy similarity between all 

the new and old trajectories. To overcome this limitation, in the future we intend to look at an 

incremental learning framework. 

The continuation of this work will also consider the application to real datasets collected 

during NPP operation and the development of an empirical classification scheme based on a 

supervised technique which exploits the cluster results gained from the analysis here presented.  
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