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Abstract: The structure at infinity and the essential structure are two control theory notions
which were first defined for linear, then for the so-called affine, systems. And they were shown
to be useful tools for the study of the fundamental problem of noninteracting control. They also
appeared as related to the solutions of other important control problems such as disturbance
decoupling. Their definitions are however entirely in terms of an algorithm, namely the so-called
structure algorithm. The present work proposes new definitions with some advantages: they
extend the class of systems from linear and affine systems to systems which may be described
by algebraic differential equations, they are not tied to specific algorithms, and finally they
provide more information on system structure. Let a system be a set of differential equations
in variables which are grouped as m inputs, p outputs and n latent variables. To each input
component is attached a rational integer, which, for a single input single output system defined
by a single differential equation, is the difference between the order in the output and the order
in the input of the differential equation defining the system. The m-tuple of these rational
integers is the new structure at infinity of the system. Associated to the structure at infinity is
also defined a p-tuple of rational integers representing a new notion of essential structure. The
old structure at infinity is shown to be recoverable from the new one. Computations of system
structure based upon the suggested definitions are quite complex. The present paper focuses on
proofs of algorithms which attempt to reduce the complexity of these computations.

Keywords: Structure at infinity; Essential structure; Non-interacting control; Nonlinear system
theory; Algebraic system theory

1. INTRODUCTION

The structure at infinity and the essential structure are two
control theory notions which were first defined for linear,
then for the so-called affine, systems. And they were shown
to be useful tools for the study of the fundamental problem
of noninteracting control. They also appeared as related to
the solutions of other important control problems such as
disturbance decoupling. The reader is referred to the nu-
merous papers in the literature, for example di Benedetto
et al. (1989); Aït Amirat (1994); Belur (2011); Laakkonen
and Pohjolainen (2011); Pereira da Silva et al. (2006).
For an affine control system ẋ = A(x) +

m∑
i=1

uiBi(x),

y = C(x),
(1)

referring to di Benedetto et al. (1989), the structure at
infinity was defined from a finite sequence of natural
integers ρ1, ρ2, . . . , ρn where n is the number of state
components in equation (1), and ρi is obtained through the
so-called structure algorithm (see § 5 for details). Firstly,
such a definition is algorithmic in the sense that the ρ’s

are ultimately defined through the structure algorithm.
Secondly, the definition is valid for affine control systems,
only.
The goal in this work is
• to propose such a nonalgorithmic definition of the

structure at infinity,
• which fits for a larger class of systems such as systems

given by input output description, and those given by
general implicit algebraic differential equations with
latent variable,

• to propose a constructive method for the computation
of the structure at infinity,

• and, finally, to investigate the basic properties of sys-
tems which might be clarified through their structures
at infinity.

For that, techniques stemming from differential algebra,
as first introduced in control theory by Fliess (1989),
are used. This primary issue may be said to have been
achieved. The way leading to the new definitions may be
found a long drive, due to the very detailed aspects of
a system that are captured by its structure at infinity.
Corroborating this matter of fact is the uneasy situation



that only a poor intuitive notion of what the structure at
infinity can be expressed in more down to earth words.
The structure at infinity may be thought of as a (signed)
distance of output components from the input compo-
nents, this intuitive distance idea being evaluated in terms
of numbers of integrators from the input components to the
output components. A negative number there corresponds
to derivatives instead of integrators.
At this stage it is better to use simple specific examples.
The structure at infinity of{

ÿ1 + y1 = u1,
ÿ1 + y2 = u2

(2)

is the following two couples of integers: (2, 0), (0, 2).
The multiplicity of the structure at infinity reflects the
arbitrariness of which input component is looked first.
Actually, it may be said that from u1 to the output
components there are two integrators; and then u2 is given
by u2 = u1 +y2−y1. But it may equally be said that from
u2 to the output components there are two integrators; and
then u1 is given by u1 = u2 + y1 − y2.
Again, instead of the list consisting of the single integer 1,
the structure at infinity of

ẏ = u1 + u2 (3)
is the following two couples (1, $), ($, 1), where $ is
merely a symbol which indicates, first, the noninvertibility
of system (3), and second, the arbitrariness of the choice
between u1 and u2 when one thinks to the minimum
number of integrators from the input components to the
output components. This point becomes clearer through
the following rather more elaborated example{

ÿ1 + y1 = u1 + u̇2 + u3,
ÿ2 = ü1; (4)

the structure at infinity of this system, along the same
beliefs, is the single triplet (0, 1, $).
The viewpoint is thus that the structure at infinity is a
collection of m-tuples of rational integers and a phantom.
The trick of a phantom is used to carry over an information
that is essential and consists in, if σ = (σ1, . . . , σm) is
proclaimed a structure at infinity of a system then the
correspondence between the integers composing σ and the
input components of the system is made transparent. The
phantom is used to specify the input components which
are chosen as indeterminates. Such a precise definition of
the structure at infinity makes the concept relative to the
choice of the order in which the input components are
considered. Actually, the definition relies on the choice of
a differential transcendence base of the external field (the
differential field attached to the external behavior of the
system) among the components of the input and output.
This is achieved through renumberings of the input and
output components; renumbering named differential input
output base (bio for short, and bios for the plural). A
bio is thus a renumbering B =

(
ui1 , . . . , uim , yj1 , . . . , yjp

)
of (u1, . . . , um, y1, . . . , yp) where u = (u1, . . . , um), and
y = (y1, . . . , yp) are the input, and output, respectively,
ρ is the differential output rank (see Definition 4) of the
system; the last m − ρ components of the input together
with the first ρ components of the output are assumed
to form a differential transcendence base of the external
field. Now, uiρ satisfies a unique (up to the multiplication

by an element of the base field of coefficients of the system)
differential polynomial with coefficients depending only
on
(
yj1 , . . . , yjρ , uiρ+1 , . . . , uim

)
, and of minimal order in

uiρ . This defines a unique integer, the difference between
the order in y of this differential equation and its order
in uiρ . This is the first step of the construction of a
ρ-tuple of integers attached to any given bio, B. The
structure at infinity of the system is the minimum of all
those ρ-tuples according to some well ordering. Actually,
what is thus defined is the canonical structure at infinity.
While any given system has one and only one canonical
structure at infinity, its structure at infinity is a list of m-
tuples of integers and a phantom element denoted by $.
The elements of the m-tuples which are $ correspond to
uiρ+1 , . . . , uim .
The essential structure is defined correspondingly to the
same bio.
The rest of the paper is organized as follows. In the next
section are collected materials needed in §3 where the new
definitions are given. Then follow 2 sections which are
dedicated to the computing algorithms and the verification
that the new definitions allow recovery of old ones.

2. PRELIMINARIES

Notions of differential algebra are not recalled in this
paper. The reader who is not familiar with them is referred
to Kolchin’s book Kolchin (1973). An account of basic facts
has been appended to Diop (2002). Differential fields are
always assumed ordinary ones (that is, with one and only
one derivation) and with characteristic zero.
Given a field extension K of k, the transcendence degree of
K over k is denoted by d◦kK. If K is a differential field ex-
tension of k, ∂◦kK designates the differential transcendence
degree of K over k.
Lemma 1. Given a differential transcendence base τ =
(τ1, . . . , τµ) of a differential field extension K over k, and
given an element ξ of K, there is a k-irreducible differ-
ential polynomial in k {T1, . . . , Tµ, X} which is annulled
by (τ1, . . . , τµ, ξ), and which is with minimal order and
minimal degree in X. Such a polynomial is unique in
k {T1, . . . , Tµ, X} up to the multiplication by an element
of k.

Proof. Omitted for lack of space. 2

Definition 2. The “unique” differential polynomial of Lem-
ma 1 is called the differential minimal polynomial of ξ over
k〈τ〉.

The differential minimal polynomial of ξ over k〈τ〉 is
not uniquely defined in k {T1, . . . , Tµ, X} if τ is not a
differential transcendence base of k〈τ, ξ〉 over k.
Lemma 3. Let K be a differential field extension of k.
Let τ = (τ1, . . . , τµ) be a differential transcendence
base of K over k. Let ξ be an element of K. Let
m (ξ) be the differential minimal polynomial of ξ in
k {T1, . . . , Tµ, X} over k〈τ〉. If m (ξ) effectively depends
on τi0 then τ1, . . . , τi0−1, ξ, τi0+1, . . . , τµ are differentially
algebraically independent over k.

Proof. Omitted for lack of space. 2



In this approach a (differential) (algebraic) system with s
variables, and with coefficients in k is a differential affine
variety X ⊆ ks defined over k where k is a differential
closure of k. The differential dimension of X over k is
the (minimum) number of input components. An input
is a differential transcendence basis of k〈X 〉 over k. Once
an input u is chosen the other components of the system
variable are differentially algebraic over k〈u〉.
The system variables are partioned into the input u =
u1, . . ., um, the output y = y1, . . ., yp, and the latent
variable z = z1, . . ., zn. The input u often reduces to
the control. The variable y is the online measurements,
and z is the remaining variables which are invoked in the
description of the system but which are part neither of the
input nor of the output. As known such a system is equiva-
lently given by a set of differential polynomials P (U,Z, Y )
in k{U,Z, Y } where U = U1, . . ., Um Z = Z1, . . ., Zn
and Y = Y1, . . ., Yp are differential indeterminates over
k. Since systems are assumed to be differential varieties
the corresponding defining sets of differential polynomials
are consequently assumed to generate differential prime
ideals. The differential algebra, quotient of k{U,Z, Y } by
the defining differential prime ideal of the system, is de-
noted by k{X} or k{u, z, y}. Its differential quotient field
is denoted by k〈u, z, y〉. The ubiquitous class of control
systems {

ẋi = pi(u, x) (1 ≤ i ≤ n) ,
yj = qj(u, x) (1 ≤ j ≤ p) ,

are examples of differential algebraic systems according to
the previous definition.
It may be interesting to consider more general differential
algebraic systems by allowing not only implicit differential
algebraic equations but differential algebraic inequations
also. It also may be important to extend studies to systems
where the input does not represent a differential tran-
scendence base but merely a set of differential algebraic
generators of k{u, z, y} over k. These potential extensions
are not considered in the present work.
Definition 4. Let X be a system, the transcendence degree
of k〈y〉 over k is called the differential output rank of X
and denoted by ρ.
Lemma 5. The differential output rank, ρ, of X is equal
to m − ∂◦k〈y〉k〈u, y〉 (which, in turn, is equal to m −
∂◦k〈y〉k〈u, z, y〉).

Proof. Omitted due to lack of space. 2

Definition 6. A differential base of input output (bio, for
short, and bios in plural) of a system X with positive differ-
ential output rank ρ is a renaming,(
ui1 , . . . , uim , yj1 , . . . , yjp

)
, of the external variables, u

and y, such that the m − ρ last input components,
uiρ+1 , . . . , uim , together with the ρ first output compo-
nents, yj1 , . . . , yjρ , form a differential transcendence base
of k〈u, z, y〉. The set of bios of a system with differ-
ential output rank zero is assumed to be the empty
set. Throughout, unless otherwise stated, a bio B will
be denoted by B =

((
ui1 , . . . , uiρ

)
,
(
uiρ+1 , . . . , uim

)
,(

yj1 , . . . , yjρ
)
,
(
yjρ+1 , . . . , yjp

))
. When no confusion is to

be feared the outmost parentheses will be dropped.

Let B be a bio of X . Let l be an index, 1 ≤ l ≤ ρ. By
Lemma 3, if the differential minimal polynomial of uil
over k〈yj1 , . . . , yjρ , uiρ+1 , . . . , uim〉 effectively depends on
yjl′ then

(
yj1 , . . . , yjl′−1 , uil , yjl′+1 , . . . , yjρ , uiρ+1 , . . . , uim

)
is a differential transcendence base of k〈u, z, y〉 over k.

3. THE NEW DEFINITIONS

Definition 7. Let P = P (U,Z, Y ) be a differential poly-
nomial in the differential polynomial algebra k {U,Z, Y }.
The input order of P in Ul is the order of P in Ul if P
effectively involves Ul, and if this component of the input
appears in P at order equal to the order of P in (U,Z);
the input order of P in Ul is ∞ if P effectively involves
Ul but at order lower than the order of P in (U,Z); and
the input order of P in Ul is −∞ if P is free of Ul. The
input order of P in Ul will be denoted by αP,l. The order
of P in a variable is assumed to be −∞ if P is free of
that variable. βP will stand for the order of P in Y . In
what follows the ring Z of rational integers is extended
by adjoining to it the two elements −∞ and ∞. The
natural order of integers is consequently prolonged by the
usual assumption: −∞ < n < ∞, for any n ∈ Z. Also,
−(−∞) = ∞, and n +∞ = ∞, and n − ∞ = −∞, for
any n ∈ Z, and ∞+∞ =∞, and −∞−∞ = −∞. Note
that ∞ −∞ and −∞ +∞ are undefined. Finally, when
the difference βP − αP,l is defined, it is denoted by σP,l.
Definition 8. Let B be a bio of a system X . For l =
1, 2, . . . , ρ, let ml,ik denote the differential minimal poly-
nomial of uik , 1 ≤ k ≤ ρ− l + 1, over the differential field
k〈yj1 , . . . , yjρ−l+1 , uiρ−l+2 , . . . , uim〉. B is said to be ordered
if, for l = 1, 2, . . . , ρ, σml,iρ−l+1 ,iρ−l+1 is lower than no other
σml,ik ,ik , 1 ≤ k ≤ ρ− l+1, and yjρ−l+1 is one of the output
components which appear in ml,iρ−l+1 at order equal to the
order of ml,iρ−l+1 in y.

In the renaming of the input output components two
things are of interest: on the one hand the differential
transcendence base

(
yj1 , . . . , yjρ , uiρ+1 , . . . , uim

)
, and on

the other hand, the way
(
yj1 , . . . , yjρ

)
and

(
ui1 , . . . , uiρ

)
are numbered. The renumbering of

(
yjρ+1 , . . . , yjp

)
, and(

uiρ+1 , . . . , uim
)

is really of no concern. This is the
reason why the renaming

(
ui1 , . . . , uim , yj1 , . . . , yjp

)
of

(u1, . . . , um, y1, . . . , yp) is qualified as a base. Any given
bio can easily be renamed into an ordered one.
For instance, the differential output rank of system (2) is
2, and its set of bios is

((u1, u2), (), (y1, y2), ()), ((u2, u1), (), (y1, y2), ()),
((u1, u2), (), (y2, y1), ()),
((u2, u1), (), (y2, y1), ()).

Among these bios, only

((u1, u2), (), (y2, y1), ()), ((u2, u1), (), (y2, y1), ())

are ordered ones.
The differential output rank of system (4) is 2, and its set
of bios is



((u1, u2), (u3), (y1, y2), ()), ((u1, u2), (u3), (y2, y1), ()),
((u3, u1), (u2), (y1, y2), ()), ((u3, u1), (u2), (y2, y1), ()),
((u2, u3), (u1), (y1, y2), ()), ((u2, u3), (u1), (y2, y1), ()),
((u1, u3), (u2), (y1, y2), ()), ((u1, u3), (u2), (y2, y1), ()),
((u2, u1), (u3), (y1, y2), ()), ((u2, u1), (u3), (y2, y1), ()),
((u3, u2), (u1), (y1, y2), ()), ((u3, u2), (u1), (y2, y1), ()).

Among these bios, only
((u3, u1), (u2), (y1, y2), ()), ((u1, u2), (u3), (y2, y1), ()),
((u3, u1), (u2), (y2, y1), ())

are ordered ones.
Given a bio,

(
ui1 , . . . , uim , yj1 , . . . , yjp

)
, for l, 1 ≤ l ≤ ρ,

the notation ml,iρ−l+1 will be shortened as miρ−l+1 , and
βmiρ−l+1

as βiρ−l+1 , and αmiρ−l+1 ,iρ−l+1 as αiρ−l+1 , and
σmiρ−l+1 ,iρ−l+1 as σiρ−l+1 . For each l, 1 ≤ l ≤ ρ, let γik
be the order in yjρ−l+1 of the mik , 1 ≤ k ≤ ρ, and let
εjρ−l+1 be the maximum of the differences γik −αik . (Note
that εjρ−l+1 is always defined.)
Definition 9. Ordering lexicographically the set of ordered
bios of X according to their ρ-tuples

(
σiρ , σiρ−1 , . . . , σi1

)
,

a minimal bio of X is defined to be the least element of
this set of ordered bios. The unique ρ-tuple

(
σi1 , . . . , σiρ

)
associated to minimal bios for X is called the canonical
structure at infinity of X . Correspondingly, the ρ-tuple(
εj1 , . . . , εjρ

)
is called the canonical essential structure

of X . Throughout, unless otherwise stated, the canonical
structure at infinity and the canonical essential struc-
ture of a given system X will be denoted by σc (X ) =(
σc

1, . . . , σ
c
ρ

)
, εc (X ) =

(
εc

1, . . . , ε
c
ρ

)
, respectively; when the

considered system is clearly designated then the mention
of X will be omitted.
Lemma 10. For any system the canonical structure at
infinity and the canonical essential structure both consist
of rational integers. Moreover, σc

i ≤ εc
i (1 ≤ i ≤ ρ), and(

σc
1, . . . , σ

c
ρ

)
is increasing.

Proof. Omitted for lack of space. 2

The set of minimal bios of system (2) is
((u1, u2), (), (y2, y1), ()), ((u2, u1), (), (y2, y1), ()).

And the canonical structure at infinity is (0, 2). The dif-
ferential minimal polynomials corresponding to the above
two bios are {

ü1 − ü2 − u2 + ÿ2 + y2 = 0,
u2 − ÿ1 − y2 = 0,

and {
u1 − ÿ1 − y1 = 0,
ü1 − ü2 − u2 + ÿ2 + y2 = 0,

respectively. The canonical essential structure is also (0, 2),
it is directly read on the above differential minimal poly-
nomials.
Among the ordered bios

((u3, u1), (u2), (y1, y2), ()), ((u1, u2), (u3), (y2, y1), ()),
((u3, u1), (u2), (y2, y1), ()),

of system (4) only
((u1, u2), (u3), (y2, y1), ())

is minimal. The differential minimal polynomials are{
ü1 − ÿ2 = 0,
u

(3)
2 + ü3 − y(4)

1 + ÿ2 − ÿ1 = 0,

The canonical structure at infinity is (0, 1), and the canon-
ical essential structure is (0, 1).
Let $ be a symbol not in Z, and different from ∞ and
−∞.
Definition 11. Given a minimal bio, B, of X , the m-tuple
(σ1, . . . , σm), where σil = $, for ρ+1 ≤ l ≤ m, is said to be
the structure at infinity of X relatively to B. An m-tuple
(σ1, . . . , σm) is said to be a structure at infinity of X if it
is the structure at infinity of X relatively to some minimal
bio. The structure at infinity of X is the collection of all the
structures at infinity relatively to minimal bios of X . Given
a structure at infinity (σ1, . . . , σm), any input component
with index i such that σi = $ is referred to as a $-input.
The p-tuple (ε1, . . . , εp), where εjl = $, for ρ+ 1 ≤ l ≤ p,
is said to be the essential structure of X relatively to B.
A p-tuple (ε1, . . . , εp) is said to be an essential structure
of X if it is the essential structure of X relatively to some
minimal bio. The essential structure of X is the collection
of all the essential structures relatively to minimal bios of
X . Given an essential structure (ε1, . . . , εp), any output
component with index i such that εi = $ is referred to as
a $-output.

System (4) illustrates enough the main point in defining
the structure at infinity as tuples of m elements. It
was seen that the only minimal bio for system (4) is
((u1, u2), (u3), (y2, y1), ()), and the canonical structure at
infinity is (0, 1). The structure at infinity is then (0, 1, $).
0 corresponds to u1, 1 to u2 and $ to u3. Moreover,
there is no other way, for this system, to make such a
correspondence between the structure at infinity and the
input components. This definite correspondence is made
available thanks to the introduction of $. The essential
structure of the same system is (1, 0). Again, 1 corresponds
to y1 and 0 to y2.
Remark 12. The fact that the structure at infinity is better
defined as a collection of tuples rather than only one tuple
as in the classical approach is suggested for example by
the system (2), since its structure at infinity is given by
the following two couples (0, 2), and (2, 0) corresponding
to the respective two minimal bios of system (2).

4. COMPUTING

One of the major points of the new definitions of the
structure at infinity and the essential structure is that
these quantities are computable for, virtually, any given
algebraic system, provided that characteristic sets are
constructive over the differential field k. However it should
be clear that the computations involved by the structures
of a system are intrinsically tedious. No doubt that there
always will be examples of system the computation of
whose structures at infinity will overflow any available
computer, no matter how powerful that machine is. The
challenge is to obtain devices which bypass unnecessary
computations. This section produces preliminary results
towards that goal.
Characteristic set computations of ρ are first considered.
Since the defining differential ideal, I (X ), of the system
X is prime in k {U,Z, Y } let A be a characteristic set of
X for a ranking such that all derivatives of U , and Z are
lower than Y . Then Ay = A∩k{Y } is a characteristic set



of I (X )∩k{Y } Let Y 1 be the set of Y ’s whose derivatives
do not appear as leaders of elements of Ay. The cardinal
of Y 1 is equal to ∂◦kk〈y〉.
In terms of complexity, characteristic set computations
with respect to orderly rankings are less expensive than
those with respect to so-called elimination rankings (which
rank the variables being eliminated higher than any deriva-
tive of the other variables). Therefore, the main point of
Lemma 5 is to compute ρ from ∂◦k〈y〉k〈u, z, y〉 which is
the number of variables whose derivatives do not appear
as leaders of polynomials in the characteristic set of the
extension of I (X ) to k〈Y 〉 {U,Z} with respect to orderly
rankings such that all derivatives of Z are lower than U .
Let oτi(R) be the order in Ti of a given differential poly-
nomial R in the differential polynomial algebra k {T} =
k {T1, . . . , Tµ}. Let d◦τi(R) be the degree of R in T (oτi (R))

i
for a differential polynomial R with nonnegative order in
Ti, and let d◦τi(R) be −∞ when R does not involve Ti. Let
ωτi(R) be the couple

(
oτi(R),d◦τi(R)

)
. Let these couples be

ordered lexicographically. When the context makes it clear
the τ in the subindexes will be dropped, in particular, ωµ
will stand for ωτµ .
Let k〈τ1, . . . , τµ〉 be a differential field extension of k with
(τ1, . . . , τµ′) as a differential transcendence base, where
µ′ < µ − 1. An element P (T ) of k {T} is said to be a
minimal polynomial of τµ over k〈τ1, . . . , τµ−1〉 if
(i) P (T ) involves Tµ,
(ii) P (τ) = 0,
(iii) P (T ) is k-irreducible,
(iv) P (T ) is with lowest ωµ.
There is a differential minimal polynomial for any τi,
µ′ + 1 ≤ i ≤ µ, over k〈τ1, . . . , τi−1〉 since (τ1, . . . , τµ′) is
a differential transcendence base of k〈τ1, . . . , τµ〉 over k.
But, as noted earlier, such polynomials are not uniquely
determined.
Let Tµ−1 be present in P . An element Q(T ) of k {T} is
said to be a minimal eliminating polynomial of τµ−1 in
P over k〈τ1, τ2, . . . , τµ−2, τµ〉 if it is with lowest ωµ−1 in
the subset of k {T} consisting of differential polynomials
R such that
(i) R involves Tµ−1,
(ii) R(τ) = 0,
(iii) R is k-irreducible,
(iv) R (P , respectively) is not contained in the differential

ideal generated by P (R, respectively).
There always is a minimal eliminating polynomial of τµ−1
in P over the differential field k〈τ1, τ2, . . . , τµ−2, τµ〉. It
is sufficient to take a differential minimal polynomial of
τµ−1 over k〈τ1, τ2, . . . , τµ−2〉. The only point is that such
a strategy may be more expensive in computations.
Lemma 13. Let k〈τ1, . . . , τµ〉 be a differential field exten-
sion of k such that (τ1, τ2, . . . , τµ′) is a differential tran-
scendence base, where µ′ < µ − 1. Let P (T ) be a differ-
ential minimal polynomial of τµ over k〈τ1, . . . , τµ−1〉. Let
Tµ−1 be present in P . Let Q(T ) be a minimal eliminating
polynomial of τµ−1 in P . Then there is an element P ′ of
k {T1, . . . , Tµ−2, Tµ} zeroed by τ , and such that, for any
Ti among T1, . . . , Tµ−2, Tµ, the condition

{
oµ−1(P )− oi(P ) 6= oµ−1(Q)− oi(Q),
oµ−1(P ) 6= oµ−1(Q),

implies
oi(P ′) = max

(
oi(P ), oi(P ) + (oµ−1(Q)− oµ−1(P )) ,

oi(Q), oi(Q) + (oµ−1(P )− oµ−1(Q))
)
.

(5)

Moreover, if{
oµ−1(P )− oi(P ) < oµ−1(Q)− oi(Q),
oµ−1(P ) < oµ−1(Q),

then P ′ is a differential minimal polynomial of Tµ over
k〈τ1, . . . , τµ−2〉.
Corollary 14. Let X be a system with positive differential
output rank, ρ. Let B be a bio of X . Let l be a natural
integer, 1 ≤ l ≤ ρ. Let

P
(
yj1 , . . . , yjl , uil+1 , . . . , uim , ξ, uil

)
be a differential minimal polynomial of uil over the differ-
ential field

k〈yj1 , . . . , yjl , uil+1 , . . . , uim , ξ〉
where ξ = (ξ1, . . . , ξµ) is some subset of z1, . . . , zν , yjl+1 ,
. . . , yjp . Let ξµ be one of the components of ξ which
are present in P . Given a differential polynomial R in
(yj1 , . . . , yjl , uil , . . . , uim , ξ), let αik(R) be ouik (R) for k ∈
N, l ≤ k ≤ m. Let γµ(R) be oξµ(R). Let βjk(R) be oyjk (R)
for k ∈ N, 1 ≤ k ≤ l. Let Q

(
yj1 , . . . , yjl , uil+1 , . . . , uim , ξ ,

uil) be a minimal eliminating polynomial of ξµ in P . Then
uil satisfies an equation, P ′ = 0, over

k〈yj1 , . . . , yjl , uil+1 , . . . , uim , ξ1, . . . , ξµ−1〉.
If γµ(P ) 6= γµ(Q) then, for each k, k′ ∈ N, l ≤ k ≤ m, 1 ≤
k′ ≤ l, {

γµ(P )− αik(P ) < γµ(Q)− αik(Q),
βjk′ (P )− γµ(P ) > βjk′ (Q)− γµ(Q)

⇓

βjk′ (P
′)− αik(P ′) = βjk′ (P )− αik(P ),

(6)

and {
γµ(P )− αik(P ) < γµ(Q)− αik(Q),
βjk′ (P )− γµ(P ) < βjk′ (Q)− γµ(Q)

⇓

βjk′ (P
′)− αik(P ′) =

(γµ(P )− αik(P )) + (βjk′ (Q)− γµ(Q)),
and {

γµ(P )− αik(P ) > γµ(Q)− αik(Q),
βjk′ (P )− γµ(P ) < βjk′ (Q)− γµ(Q)

⇓

βjk′ (P
′)− αik(P ′) = βjk′ (Q)− αik(Q),

and {
γµ(P )− αik(P ) > γµ(Q)− αik(Q),
βjk′ (P )− γµ(P ) > βjk′ (Q)− γµ(Q)

⇓

βjk′ (P
′)− αik(P ′) =

(βjk′ (P )− γµ(P )) + (γµ(Q)− αik(Q)).



If {
γµ(P )− αil(P ) < γµ(Q)− αil(Q),
γµ(P ) 6= γµ(Q),

then, over k〈yj1 , . . . , yjl , uil+1 , . . . , uim , ξ1, . . . , ξµ−1〉, P ′ is
a differential minimal polynomial of uil .

This is obtained by merely inspecting formula (5) under
the different cases listed in the corollary.
Corollary 15. Let X be a system with positive differ-
ential output rank, ρ. Let B be a bio of X . Let l
be a natural integer such that 1 ≤ l ≤ ρ. Let
P
(
yj1 , . . . , yjl , uil+1 , . . . , uim , ξ, uil

)
be a differential mini-

mal polynomial of uil over k〈yj1 , . . . , yjl , uil+1 , . . . , uim , ξ〉
where ξ = (ξ1, . . . , ξµ) is some subset of z1, . . . , zν , yjl+1 ,
. . . , yjp . Let all the ξ’s be present in P . For i ∈ N,
1 ≤ i ≤ µ, let Qi

(
yj1 , . . . , yjl , uil+1 , . . . , uim , ξ, uil

)
be a

minimal eliminating polynomial of ξi in P . If, for each
i, γi(P ) − αik(P ) < γi(Qi) − αik(Qi) and βjk′ (P ) −
γi(P ) > βjk′ (Qi) − γi(Qi) then uil satisfies a minimal
equation, P ′ = 0, over k〈yj1 , . . . , yjl , uil+1 , . . . , uim〉 such
that, for each k, k′ ∈ N, l ≤ k ≤ m, 1 ≤ k′ ≤ l, βjk′ (P

′)−
αik(P ′) = βjk′ (P )− αik(P ).

The elimination of the ξ’s may be conducted one by one.
The corollary then immediately results from Corollary 14
and Lemma 13.
Corollary 16. Let X be a system with positive differential
output rank, ρ. Let B be a bio of X . Let there exist
relations

P1
(
yj1 , ui2 , . . . , uim , ξ

1, ui1
)

= 0,
P2
(
yj1 , yj2 , ui3 , . . . , uim , ξ

2, ui2
)

= 0,
. . .
Pρ−1

(
yj1 , . . . , yjρ−1 , uiρ , . . . , uim , ξ

ρ−1, uiρ−1

)
= 0,

Pρ
(
yj1 , . . . , yjρ , uiρ+1 , . . . , uim , ξ

ρ, uiρ
)

= 0,
(7)

where ξl, 1 ≤ l ≤ ρ, denotes a subset of z1, . . . , zν , yjl+1 ,
. . . , yjp such that Pl is a differential minimal polynomial
of uil over k〈yj1 , . . . , yjl , uil+1 , . . . , uim , ξ

l, uil〉. Let all the
ξli’s in ξl =

(
ξl1, . . . , ξ

l
µl

)
be present in Pl. For i, 1 ≤ i ≤

µl, let Qli
(
yj1 , . . . , yjl , uil+1 , . . . , uim , ξ

l, uil
)
be a minimal

eliminating polynomial of ξli in Pl. If, for each l, i,{
γli(Pl)− αik(Pl) < γli(Qli)− αik(Qli),
βjk′ (Pl)− γ

l
i(Pl) > βjk′ (Q

l
i)− γli(Qli),

then there are relations
P ′1 (yj1 , ui2 , . . . , uim , ui1) = 0,
P ′2 (yj1 , yj2 , ui3 , . . . , uim , ui2) = 0,
. . .
P ′ρ−1

(
yj1 , . . . , yjρ−1 , uiρ , . . . , uim , uiρ−1

)
= 0,

P ′ρ
(
yj1 , . . . , yjρ , uiρ+1 , . . . , uim , uiρ

)
= 0,

(8)

such that P ′l is a differential minimal polynomial of
uil over the differential field k〈yj1 , . . . , yjl , uil+1 , . . . , uim〉,
βjk′ (P

′
l ) − αik(P ′l ) = βjk′ (Pl) − αik(Pl) for each l, k, k′ ∈

N, 1 ≤ l ≤ ρ, l ≤ k ≤ m, 1 ≤ k′ ≤ l.

This is again an easy consequence of the previous Lemma
and Corollaries.
The latter result makes possible to avoid the computation
of the differential minimal polynomials (8) as suggested by
Definition 8. Instead, the information on the structure at

infinity and essential structure is directly extracted from
relations of type (7) which, typically, are easier to derive.

5. COMPARING WITH THE CLASSICAL
APPROACH

It is shown how the classical list of integers which stands
for the structure at infinity may be recovered from the new
structure at infinity.
The following definite link between the new structure at
infinity and the classical one is thus proved.
Theorem 17. For systems of type (1) the sequence of
integers, ρ1, . . . , ρn, of the classical structure algorithm is
obtained from the canonical structure at infinity, σc =(
σc

1, . . . , σ
c
ρ

)
, as follows: ρi is the number of elements of σc

which are less than or equal to i.
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