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Abstract: The paper deals with software sensor design for unmeasurable variables of anaerobic digestion 
processes. For this purpose, different mathematical models of anaerobic digestion and different theoretical 
approaches (differential algebraic approach, Kalman filter modifications and H-infinity filter) have been 
applied to develop software sensors as dynamic relations between some easily measurable variables and 
some unmeasurable ones (specific growth rates, biomass and substrate concentrations) of the most 
important bacteria participating in these processes. Comparative studies have been provided via computer 
simulations. The experimental validation of the sensors is under investigation on a pilot-scale anaerobic 
bioreactor with computer monitoring system. 
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Резюме: Статията разглежда проектиране на софтуерни сензори за неизмерими променливи на 
анаеробното разграждане на органични отпадъци. За тази цел различни математически модели на 
анаеробно разграждане и различни теоретични подходи (диференциално-алгебричен подход, 
филтър на Калман и H-безкрайност филтър) са приложени за разработване на софтуерни сензори 
като динамични връзки между някои лесно измерими променливи и някои неизмерими 
(специфични скорости на растеж, концентрации на биомаса и на субстрат) за най-важните групи 
бактерии, участващи в процеса. Представени са сравнителни изследвания чрез компютърни 
симулации. Експерименталното валидиране на сензорите е в процес на изследване на пилотен 
анаеробен биореактор с компютърна система за мониторинг. 

 

Ключови думи: анаеробно разграждане, софтуерни сензори, теория на алгебричните системи, 
филтър на Калман, H-безкрайност филтър 



1. INTRODUCTION 

Anaerobic digestion (AD) is a biotechnological process widely used in life sciences and a 

promising method for solving some energy and ecological problems in agriculture and agro-industry. In 

such kind of processes, generally carried out in continuously stirred tank bioreactors (CSTR), the 

organic matter is depolluted by microorganisms into biogas (consisting mainly of methane and carbon 

dioxide) and digestate (potential manure) in the absence of oxygen (Deublein and Steinhauser, 2008). 

The biogas is an additional energy source which can replace fossil fuel sources. It therefore has a direct 

positive effect on greenhouse gas reduction.  

Unfortunately this process is very complex and can be unstable, particularly at changes in 

the environment, for example following an increase in influent concentration (Ward et al., 2008) 

or in dilution rate (Converti et al., 2008), or a change in the nature of the feedstock.  

An active research problem is to better understand the dynamics of growth and death of the 

different populations of the complex community of bacteria acting during AD processes. 

However, it is practically impossible to measure on-line different bacterial concentrations or 

specific growth rates (Deublein and Steinhauser, 2008). Other biochemical variables important 

for the AD processes are too expensive to be measured. In practice, only biogas flow rate can be 

easily measured on-line. One of the most promising ways to solve this problem is the design of 

software sensors for estimating some biochemical variables on the basis of an AD mathematical 

model and some easily measured process parameters (Dochain and Vanrolleghem, 2001; 

Lubenova et al., 2002; Ward et al., 2011). A software sensor is a combination of hardware 

sensors and an internal software estimator, which predicts parameters that require expensive 

equipment or cannot be measured directly. The realization of software sensors is a preferable 

method of continuous monitoring of some key process variables and of using this information to 

make decisions regarding the digester loading, either through automatic organic loading rate 

systems or advice to operators. This has economic sense in terms of reduced capital costs and 

improved biogas output. 

Software sensors have been used in practice to monitor anaerobic digestion processes (Ward et 

al., 2008). So far, there have been no published software sensors of different bacterial concentrations or 

specific growth rates with respect to biogas flow rate, methane and carbon dioxide levels in the biogas. 

Such software sensors are important not only for gaining insight into and testing biochemical theories 



for interactions between different populations of the complex community of bacteria acting during AD 

processes, but also for optimizing methane production.  

The aim of this paper is to present some recent achievements of our team in the field of software 

sensor design for unmeasurable variables of AD processes. For this purpose, different mathematical 

models of AD and different theoretical approaches (differential algebraic approach, Kalman filter 

modifications and H-infinity filter) have been applied to develop software sensors as dynamic relations 

between some easily measured variables and some unmeasurable ones (specific growth rates, 

biomass and substrate concentrations) of the most important bacteria participating in AD processes. 

2. PROCESS MODELS 

2.1. One-stage model 

Consider the continuous AD state-space model presented in (Simeonov, 1999): 
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where (X S)T is the state vector of  the concentrations [g/L] of: biomass – X, and substrate – S; D 

is the control input – dilution rate [day-1]; Q is the output – biogas flow rate [L/day]; constant 

parameters: K1 and K2 are yield coefficients; Sin is the input substrate concentration [g/L]; the 

variable parameter µ is the specific growth rate of bacteria [day-1] assumed to be of Monod type: 
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where µm,and ks and are kinetic coefficients. 

2.2. Three-stage model 

In (Hill and Barth, 1977) hydrolysis (enzymatic degradation of insoluble organics to soluble 

organics), acidogenesis (transformation of the soluble organics to acetate) and methanogenesis 



(transformation of the acetate to methane) are considered, developing a model for AD of cattle manure 

as follows: 
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where: Х1 and Х2 [g/L] are concentrations of acidogenic (with specific growth rate µ1 [day-1]) and 

methanogenic (with specific growth rate µ2 [day-1]) bacteria, respectively; S1 [g/L] – soluble 

carbohydrate concentration; S2 [g/L] - acetate concentration; Q [L/day] - biogas flow rate;   D 

[day -1] – dilution rate. The first equation of the model (3) describes the hydrolysis of cattle 

manure with concentration Sin resulting in soluble organics with concentration S0 (β  and Yp are 

coefficients of appropriate dimensions). Equations (4) and (5) describe the acidogenic step, 

equations (6) and (7) describe the methanogenic step. Equation (8) describes the biogas output. In 

this model Y1, Y2, Yb  and Yg are yield coefficients of appropriate dimensions, µ1 and µ2 are with 

Monod form: 
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where µmax1, µmax2, and ks1, ks2 are kinetic coefficients . 

 



2.3. Five-stage model 

This model includes the formation of methane (about 30%) by the hydrogenotrophic 

methanogenic bacteria (Karakashev et al., 2004): 
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where X1, X2, X3 and X4 [g/L] are the concentrations of acidogenic, acetogenic, hydrogenotrophic 

methanogenic and acetoclastic methanogenic bacteria, respectively; µ1, µ2, µ3 and µ4 [day−1] are 

the respective specific growth rates; S0 [g/L] is the concentration of soluble organics; S1, S2, S3 

and S4 [g/L] are the concentrations of substrates for acidogenic, acetogenic, hydrogenotrophic 

methanogenic and acetoclastic methanogenic bacteria, respectively; Sin [g/L] is the influent 

concentration of organic matter; Q [L/day] is biogas production rate; D [day−1] is the dilution 

rate; β, Ki,acet, KH2 , KCO2 and Ye are coefficients of appropriate dimensions; Yglu/X1, Yacet/X1, Yacet/X2, 

Yacet/X3, YH2/X1, YH2/X3, YH2/X4, YCO2/X1, YCO2/X2, YCO2/X3, YCO2/X4, YCH4/X2 and YCH4/X4 are yield 

coefficients. 

 



2.4. Technological constraints 

In all cases the washout of microorganisms is undesirable; that is why changes of the control 

input D and the external perturbation Sin are possible only in some admissible ranges as follows: 

0 < D ≤ Dsup; Sin 
min≤ Sin ≤ Sin 

max        (11) 

3. SOFTWARE SENSOR DESIGN VIA THE DIFFERENTIAL ALGEBRAIC 

APPROACH 

3.1. Sensors based on the one-stage model  

The specific growth rate of bacteria µ is a quite complex function of the process variables. It 

is standard to approximate µ by an empirical function of X and S. The choice of such a model 

usually is difficult and is done on the basis of an expert’s knowledge. That is why µ is preferably 

assumed to be unknown and to be reconstructed via estimation techniques. 

Biomass specific growth rate µ is estimated by the following dynamics using online 

measurements of D and Q (Diop and Simeonov, 2009): 
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where 
µ
Qz = . 

The dynamics (12) represents a very simple software sensor for monitoring the specific 

growth rate of bacteria µ. 

3.2. Sensors based on the three-stage model with measurements of D, Q and S2 

3.2.1. Estimation of growth rates 

The following estimation scheme for µ2 was obtained (Diop et al., 2006): 
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It yields the following estimation scheme for µ1: 
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The dynamics (13) and (14) represent relatively simple software sensors for monitoring the 

specific growth rates of methanogenic and acidogenic bacteria respectively. 

3.2.2. Estimation of biomass concentrations 

Assuming µ1 and µ2 thus estimated, X1 and X2 can be estimated as follows: 
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The dynamics (15) represents relatively simple software sensors for monitoring the 

concentrations of acidogenic (X1) and methanogenic (X2) bacteria respectively. 

These results are described in details in (Diop et al., 2006). 

3.3. Sensors based on the five-stage model with measurements of D, Q, S2, S3 and S4 

3.3.1. Observability with respect to D, Q, S2, S3 and S4 

Not only yield coefficients are all assumed constant and known but organic substrate 

concentrations S2, S3 and S4 are also supposed to be measured online. The soluble organics 

concentration S0 and the substrate concentration S1 are not assumed measured. 



The observability of biomass specific growth rates µ1, µ2, µ3 and µ4 with respect to the 

yield coefficients and S2, S3 and S4 result in differential polynomials of the following form for 

specific growth rates (Chorukova et al., 2007): 

02 =++ iiii f µµµ , i = 1,2,3,4 

where the fi are functions of S2, S3, S4 and their derivatives, D and Q. 

This partial result lets think that specific growth rates are again not observable with respect 

to measured variables. 

3.3.2. Estimation with respect to D, Q, S2, S3 and S4 

For the five-stage model in the absence of specific growth rate estimation schemes with 

respect to easily measured variables, one of the last resorts is to identify specific growth rates as 

functions of the Si’s and Xi’s. Biomass concentrations may be estimated based upon these 

empirical models. Specific growth rates may be empirically identified as follows (Karakashev et 

al., 2004): 
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The software sensors of biomass concentrations and substrate concentration S0 are as follows: 
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where: ( ) ( ) 43,2,1493827465343221 oriScScScSDccSDccDScQcb iiiiiiiiii =++++++++=   

The quantity a and the ci j’s are functions of the process constant parameters only. It is also 

noticeable that the bi’s depend on the supposedly measured variables: D, Q, S2, S3 and S4, only. 

These results are described in details in (Chorukova et al., 2007). 

3.4. Sensors based on the three-stage model with measurements of D, Q, QCH4 and QCO2 

3.4.1. Gas phase modelling 

In our case for the overall gas output (biogas) the following equation has been adopted: 

24 COCH QQQ += ,         (17) 

with the following expressions for methane ( 4CHQ ) and carbon dioxide ( 2COQ ) flow rates: 
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3.4.2. Estimation of the specific growth rate of bacteria 

The analysis of observability of 1µ  and 2µ  with respect to D, QCH4, QCO2 and all 

parameters (these are supposed to be constant and known), using the differential algebraic 

approach, yields the following two systems of differential equations: 
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The quantity 2COq is non-negative since, as given in equations (8) it evaluates to: 
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The previous two systems of differential equations (19) and (20) provide software sensors 

for the specific growth rates of acidogenic and methanogenic bacteria respectively. 

3.4.3. Estimation of the acidogenic and methanogenic bacterial concentrations 

Applying the same approach for estimation of the acidogenic and methanogenic bacterial 

concentrations in the anaerobic bioreactor, the following software sensors have been obtained: 
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where expression (22) refers to acidogenic and (23) to methanogenic bacterial concentration. 

It is quite evident that only the specific growth rate of methanogenic bacteria 2µ̂  does not depend 

on the adopted, for the software sensor design, model parameters. 

  



3.5. Experimental studies 

3.5.1. Pilot plant with computer monitoring system 

Experimental studies of AD of cattle manure have been performed in a pilot-scale 

anaerobic BR with full volume of 100 L at mesophilic temperature (340C). During the 

experiments different analyses have been done. However, for this study only biogas yield and 

biogas composition (relative content of CH4 and CO2 in the biogas using a Dreger device with 

infrared sensors) have been measured.  

3.5.2. Experimental results 

The pilot anaerobic BR with working volume of 80 L has operated in continuous mode with 

cattle manure and different values of dilution rate (D) and of the concentration of inlet organic 

matter (Sin). A very particular experiment (pulses of the organic load) has been designed 

including changes of D and Sin as shown on Table 1. 

Table 1. Changes of D and Sin during the experiment 

Time [days] D [day-1] Sin [g/L] 

0 0.01 69 

1 Pulse1 = 0.025 69 

9 Pulse2 = 0.02 69 

16 Pulse3 = 0.0225 86 

30 Pulse4 = 0.025 40 

 

Some experimental data are presented on Fig. 1 a) and b). On Fig. 1 a) the specific biogas 

flow rate Qsp evolution for changes of D and Sin as shown on Table 1 is presented. The daily 

biogas flow rate per 1 L of the working volume of the BR has been denoted by Qsp. 

On Fig. 1 b) biogas contents evolution ( 24 COCH QandQ ) for changes of D and Sin as shown 

on Table 1 is presented. 



From Fig. 1 a) one may conclude that the evolution of Qsp reflects the above depicted 

changes of D and Sin in an appropriate way. 

From Fig. 1 b) one may conclude that the evolution of 24 COCH QandQ  in the biogas is not 

influenced by the above depicted changes of D and Sin. 

 

 

a)      b) 

Fig. 1. Specific biogas flow rate Qsp evolution (a) and biogas content evolution ( 24 COCH QandQ ) 

(b) for changes of D and Sin as shown on Table 2. 

3.6. Simulation studies 

For testing the above obtained software sensors it has been supposed that µ1 and µ2 in the 

model are with Monod form (9). 

The model simulation and the processed experimental data (better reflecting the daily 

changes of Qsp) of Fig. 1a are shown on Fig. 2. Refer to Table 2 for a list of parameter values. 

Simulations have been performed with pulse changes of D and step changes of Sin as in the 

pilot experiment conditions (see Table 1). For initialization of the software sensors a 20- day 

displacement of time, as shown on Fig. 3, has been applied.  

Simulation results with software sensors designed for µ1 and µ2 are shown on Fig. 4 and 5. 

 

 

0 

0.5 

1 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

Qsp [dm3/dm3/day] 

time [day] 



Table 2. Simulation coefficient values 

Coefficient
s 

Value Units 

β 4.0 day-1 

Yp 0.144 - 

Y1 0.0546 - 
Y2 0.26 - 

Yb 5.0 - 

Yg 3.1 ? 

µmax1 0.4 day-1 

µmax2 0.25 day-1 

ks1 1.9 g/L 
ks2 0.37 g/L 

k1 0.04 day-1 

k2 0.025 day-1 

42CHXK  3.0 3.0 

21COXK  0.4 0.4 

22COXK  0.6 0.6 

 

 

  

Fig. 2. Estimation validation with   Fig.3. Pulse changes of D for  

pilot-scale data      simulation purposes 

 



Simulations with software sensors for estimating specific growth rates µ1 and µ2 agree with the 

data obtained with the model. However, the results obtained with software sensors for estimating the 

concentrations of acidogenic and methanogenic bacteria at this first stage were poor. That is why an 

investigation of the dynamics of these sensors has been performed with noisy measurement of 

24, COCH QandQQ (addition of white noise with amplitude of 10 % of the model values), pulse 

changes of D and step changes of Sin , as shown on Table 3. 

 

Fig. 4. Simulation results with Fig. 5. Simulation results with 

software sensors for µ1   software sensors for µ2 

 

For pulse changes of D and step changes of Sin, as shown on Table 3, the noisy 

measurements of 24 COCH QandQ  are shown on Fig. 6. 

Table 3. Changes of D and Sin during the investigation of the software sensor dynamics 

t [days] D [day-1] Sin [g/L] 

0 0.025 70 

220 0.05 70 

300 0.05 50 



 

Fig.6. Noisy measurements of 24 COCH QandQ  for pulse changes of D and step changes of Sin, as 

show on Table 4. 

Simulation results with software sensors designed for estimating µ1, µ2, X1 and X2 are 

shown on Figs. 7 – 10 with noisy measurement of Q, pulse changes of D and step changes of Sin, 
as shown on Table 3. 

  

Fig.7. Simulation results with  Fig.8. Simulation results with 

software sensors for µ1   software sensors for µ2 

 



  

Fig.9. Simulation results with  Fig.10. Simulation results with 

software sensors for X1   software sensors for X2 

4. SOFTWARE SENSOR DESIGN BASED ON THE ONE-STAGE MODEL VIA 

KALMAN FILTER  

The proposed software sensors reconstruct the unmeasurable variables X and S as time 

functions, given the measurable output Q under the presence of random perturbations – an internal 

perturbation w(t) and a measurement noise v(t) for Q, as well as of simultaneous stepwise parameter 

perturbations.  

4.1. Classical Kalman filter 

The Kalman filter (KF) (Solodov, 1976) providing optimal mean-square estimate Ŷ  of the 

state vector of the linearized process model Y=[X-X0  S-S0]T (with “T” denoting transpose; X0 and 

S0 being the nominal state trajectories in the neighbourhood of which the model is linearized) is: 
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where: A, C are respectively the state and observation matrices of the linearized process model 

described in (Kalchev et al., 2011); 
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is the filter gain matrix, and the error covariance matrix P is obtained from the Riccati matrix 

differential equation: 
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r
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where: B is the control matrix of the linearized process model; r is the covariance parameter of 

the zero-mean Gaussian white noise modeling the measurement noise v(t) as in (Kalchev et al., 

2011); ),( 21 qqdiagN =  with q1 and q2 being the covariance parameters of the respective zero-

mean Gaussian white noises modeling the two-component internal perturbation w(t) as in 

(Kalchev et al., 2011).  

The dynamics (24) represents a software sensor for monitoring the unmeasurable variables X 

and S. 

4.2. Extended Kalman filter 

An Extended Kalman Filter (EKF), corresponding to the classical KF described above, has 

been developed. Since EKF is based on the nonlinear model, the random internal perturbation 

w(t) is one-component in this software sensor. The EKF structure may be presented as follows: 
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where: 
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L is the filter gain matrix calculated as the matrix P for the classical KF. 

The dynamics (25) represents a software sensor for monitoring the unmeasurable variables X 

and S. 

 



4.3. Deterministic software sensor based on EKF 

A detеrministic nonlinear software sensor on the basis of EKF theory according to the 

method in (Johansson, Medvedev, 2003) has been designed. The structure of this software sensor 

of variables X and S has been presented in (Kalchev et al., 2009) as follows: 
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where µ̂andQ̂  are as in (26). 

4.4. Simulation studies 

4.4.1. Performance analysis at random perturbations  

Comparative simulations studies have been performed, concerning the classical KF (24), 

EKF (25), the differential algebraic software sensor (12) and the classical adjustable software 

sensor in (Simeonov et al., 1997).  

The simulation results obtained with EKF do not differ significantly from those obtained with the 

classical KF, as the latter one is based on a linearized model in a close neighbourhood of the control 

action D0. An exemplary result for the estimation of µ can be seen on Fig. 11. 

A selected result from the performance analysis is presented on Fig. 12, concerning the relative 

error in the estimation of µ by the KF and the classical adjustable software sensor, and on Fig. 13, 

concerning the average relative error up to the current simulation time in the same estimation. On 

both figures the KF exhibits smaller errors after the initial convergence period. In this case the 

maximum relative error of the KF is about 30%, whereas of the other software sensor – about 

80%. 



 

Fig.11. Simulation results with the classical KF and EKF for µ 

  

 

Fig. 12. Relative errors in estimating µ         Fig. 13. Average relative errors relevant to Fig. 12 

for the KF and classical adjustable soft. sensor 

 

The conducted performance analysis at random perturbations alone (Kalchev et al., 2011) 

leads to the following conclusions: 

- the random perturbations deteriorate the performance of the deterministic software 

sensors; 

- the convergence of the assumed initial estimates of the unmeasurable variables is 

commensurate for the different software sensors;  



- presumably, considerable changes in the state of the nominal (unperturbed) model are 

harder to be tracked by any of the software sensors. However, smaller changes (as those after 

simulation day 80) evidence the advantage of the KF over the two equipollent deterministic 

software sensors. 

4.4.2. Performance analysis at random and parameter perturbations 

The robustness analysis of considered software sensors should include, besides random 

perturbations, also parameter perturbations which are due to imprecise parameter identification or 

to their unpredictable deterministic changes.  

The robustness of the same software sensors have been investigated regarding parameters 

k1, µm and Sin at D = 0.06 day-1 for the variables µ and X. The perturbations of all the three 

parameters are applied at days 80 (+20%), 100 (-20%), 120 (-20%) and 140 (+20%). 

The conducted simulations at simultaneous random and stepwise parameter perturbations 

evidence the following conclusions: 

- the two deterministic software sensors again are of equal worth but substantially distinct 

from the KF;  

- the KF is more sensitive to a series of parameter perturbations, especially to those of k1 

and Sin, in estimating variables µ and X, thus often losing its advantage at random perturbations 

alone, unless lower values of the parameter perturbations are substantially smaller and possibly 

rarer ones than those in the simulation studies. 

One possibility to overcome the insufficient robustness of the KF to parameter 

perturbations is the above deterministic software sensor based on EKF. The performance analysis 

through simulations for it (Kalchev et al., 2009) was made at perturbations of one parameter at a 

time – k1 or µm, in estimating variables µ and X under the same numerical conditions. The 

following conclusions were drawn: 

- the convergence of the assumed initial estimates to the model variables is much better for 

the KF; 



- the deterministic software sensor based on EKF operates more reliably although not 

precisely enough at stepwise parameter perturbations. 

5. DESIGN OF AN H-INFINITY FILTER AS A SOFTWARE SENSOR FOR THE 

THREE-STAGE MODEL OF AD 

5.1. Theoretical results 

The H-infinity filter designed in (Simeonov et al., 2011) presents a peculiar deterministic 

generalization of the stochastic theory of Kalman filtering, producing estimates of unmeasurable 

AD biomass and substrate concentrations as time functions which are solutions of the three-stage 

model (3,4,…8) with specific growth rates µ1 and µ2, assumed to be of Monod type, measurable 

output – biogas flow rate Q, and under random perturbations w(t) and v(t) – components 

respectively of inlet cattle manure concentration Sin and (as measurement noise) of Q.   

The H-infinity-optimal estimate Ŷ of the state of the linearized three-stage model satisfies 

the following H-infinity filter equation (Hassibi et al., 1999): 

0)0(ˆ),ˆ(ˆˆ
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dt
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n
T

v      (28) 

where A and C are respectively the state and observation matrix of the linearized model; ev is a 

scaling factor reflecting the energy of noise v(t); Qn is the nominal output obtained with the state 

trajectories in the neighbourhood of which the linearization is made; P is the solution of the 

following Riccati differential equation: 
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where B is the perturbation matrix of the linearized model; g>0 is a tuning parameter; I is the 

relevant identity matrix. 

5.2. Simulation studies 

The H-infinity filter performance has been evaluated by simulation study comparing its 

estimates with the respective model variables under pulse changes of dilution rate D and stepwise 

changes of the constant component of Sin (Table 1), under equilibrium model initial condition and 



the following constant model parameter values: b=3; Yp=0.144; µm1=0.4 day-1; ks1=1.9 g/L; k1 

=6.67;  µm2=0.25 day-1; ks2=0.37 g/L; Yb=5; k2= 4.17;  Yg=30. 

Both random perturbations w(t) and v(t) are considered in the simulation study as zero-

mean Gaussian white noises with sample times of 1 day and realistically chosen covariance 

parameter values corresponding to average relative errors of 10% for w(t) and of 5% for v(t).  

The scaling factor ev(t) is expressed as )(0025.0 2 tQn  in terms of the covariance parameter 

value of v(t).  

A selected simulation result concerning the estimation of the variable S2 of the three-stage 

model is presented on Fig. 14 demonstrating very good filter’s performance. 

The following conclusions have been made in the H-infinity filter performance evaluation: 

- the estimation of model intermediate substrates S0, S1 and S2 (from noisy measurement 

only of the biogas flow rate) is of high quality, better than that of model bacterial concentrations 

X1 and X2 due to specific nonlinearities;  

 

Fig. 14. H-infinity estimation of the variable S2 

- the H-infinity filter is a particularly suitable software sensor in this case due to its 

advantage over the KF to require no statistical information on random perturbations, which is the 

case in bioprocess modeling.  

 



6. CONCLUSION 

The proposed software sensors for AD unmeasurable variables are model dependent. On 

the other hand, the one-stage model could also be considered the last stage of all the AD higher-

order models used here for software sensor design. The measurement feasibility of Q and D is 

common in all design cases.  

The conducted comparative simulation study of various software sensors on the basis of KF 

for estimating the unmeasurable variables concentration of methanogenic bacteria (X) and 

concentration of acetate (S) in a continuous AD process modeled by the one-stage model leads to 

the conclusion that the classical KF overperforms deterministic software sensors for random 

perturbations alone, but in case of simultaneous stepwise parameter perturbations it should be 

upgraded to combine deterministic and stochastic software sensor properties in order to be robust. 

Such a perspective possibility, although still not elaborated enough, is the deterministic software 

sensor based on EKF. Another possibility developed in recent years and demonstrated here on the 

three-stage model, is an H-infinity filter (estimating biomass and substrate concentrations) the 

convergence of which should be improved for estimating biomass concentrations. Both 

possibilities require no statistical information on random perturbations, which makes them 

suitable for AD process monitoring. 

Differential algebraic software sensors for estimation of acidogenic and methanogenic 

bacterial concentrations and specific growth rates have been designed on the basis of the three-

stage AD model. They are much simpler than those in (Dochain and Vanrolleghem, 2001) and 

easily realizable, measuring biogas flow rate and, either methane and carbon dioxide levels in the 

biogas, or acetate concentration. It is quite evident that only the specific growth rate of 

methanogenic bacteria 2µ  does not depend on the model parameters adopted for the software 

sensor design. The performances of the other differential algebraic sensors depend on the precise 

values of some model parameters.  

In order to implement the differential algebraic software sensor for µ1 and X1 on the basis 

of the three-stage model with measurement of S2, it is necessary to estimate the first derivative of 

S2. This is done using regularized numerical differentiation and leads to noise increase in the 

estimation. 



Differential algebraic software sensors based on the AD five-stage model are currently not 

feasible due to the impossibility to measure hydrogenotrophic and acetoclastic methanogenic 

bacterial substrate concentrations. 

The full experimental validation of these software sensors in strict terms is practically 

impossible, since it is impossible to measure acidogenic and metanogenic bacterial 

concentrations. However, the realistic simulations compared with experimental data for the 

measured biogas, methane and carbon dioxide flow rates show the good performances of the 

proposed software sensors and present their indirect validation.  

The experimental validation of the above presented software sensors is under investigation 

on a pilot-scale anaerobic CSTR with a computer monitoring system. 
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