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A semi-active controller tuning and application to base seismically-isolated structures

This paper proposes a modified version of Leitmann and co-authors' classical result on the stabilization of uncertain nonlinear systems. In particular, for usual models of structure dynamics in earthquake engineering it is shown that applying a specific control law drives the state variables into a ball around the origin (arbitrarily chosen) in finite time as long as the radius of the ball is not lower than a limiting value. In addition estimates of this limiting ball radius and the time limit for arbitrary ball radius are provided. The semi-active control thus provides the control designer with interesting design parameters. It is also an attempt to explicitly use pseudoacceleration floor response spectrum as a performance criterion. Though not limited to twodegree-of-freedom structures, this semi-active control is applied to these plant models for simplicity and illustrated through simulations.

I. Introduction

Earthquake protection of structures (e.g., buildings in civil engineering, power generation facilities like nuclear installations or special equipments) has been studied for decades and is still an active area of research in earthquake engineering. A practical solution for base isolated structures uses controlled devices situated at the base level and consisting of actuators that should not require large amount of energy, for instance, for security reasons. Such requirements lead to semi-active control design. Most of previous works used a two-step procedure: a reference is first calculated using an active control law then this reference is approximated at the best utilizing available devices. The reader may refer to [START_REF] Politopoulos | Floor spectra of mixed base isolated structures[END_REF] where LQR techniques are used to calculate the above mentioned reference.

In the present paper, the two degree of freedom structure considered by Politopoulos and Pham in [START_REF] Politopoulos | Floor spectra of mixed base isolated structures[END_REF] is revisited using an extension of a theorem by Leitmann and co-authors [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF]. Contrary to [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF] where a nonlinear active control is designed, in the present paper a nonlinear semi-active control (SAC) strategy is proposed. In addition, robustness aspects are addressed by allowing uncertainties in main parts of the model of the structure.

Catalin-Stefan Teodorescu <catalin-stefan.teodorescu@cea.fr>, Ioannis Politopoulos <ioannis.politopoulos@cea.fr> Sette Diop <sette.diop@lss.supelec.fr>, Messaoud Benidir <messaoud.benidirBenidir@lss.supelec.fr> More specifically, the main result in [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF] is first revisited by focusing in semi-active instead of active control. Some bounds on trajectories as well as time estimates of time to reach such bounds are provided in the present paper. Under specified conditions it is possible to state that all system trajectories are driven to a neighborhood of the origin within finite time, and estimates of theses limiting quantities are calculated. Moreover, the main objective of control is to keep the so-called floor response spectrum as low as possible. Floor spectrum is known from earthquake protection literature. Most previous works use performance criterion in terms of relative or absolute coordinates. In this paper, a tentative use of the floor spectrum is proposed. This is done by having recourse to modal coordinates [16, §2.3], [2, §12], [17, §3.4]. In most literature dealing with vibration, modal description is mainly used for analysis, while we use it for control synthesis purpose. For two-degree-of-freedom structure model, penalties are introduced on modal coordinates that are responsible for generating higher values on the floor spectrum.

Recall that, in seismic protection literature, control systems are commonly classified in one of the following three types [START_REF] Preumont | Vibration Control of Active Structures. An Introduction[END_REF], [START_REF] Soong | Active Structural Control: Theory and Practice[END_REF], [START_REF] Inman | Vibration with Control[END_REF]: passive, semi-active and active. From a physical point of view, semi-active devices are basically passive devices, but contrary to the latter, they have time-dependent characteristics that can be adjusted in real time and therefore provide more flexibility in designing control vibration isolation solutions. Compared to active actuators, they require small amounts of external energy source to be driven, meet safety requirements and are cheaper for maintenance. In addition, reducedsize installations are necessary to drive and operate them.

The paper is organized as follows: The model of the structure is briefly recalled in the next section, followed by some details on the floor spectrum concept. Then in Section IV a theoretical result is provided that addresses the stabilization of uncertain nonlinear systems. It is this result which is applied in Section V to obtain the proposed semi-active control. Finally simulations are shown illustrating the performance of the semi-active controller. They present improvements over passive control, for some seismic signals, notably around the second eigenfrequency.

II. Plant model

The class of base isolated structures that are considered in this work is described by the following type of equa-tions

M zr + (C + C c (c A )) żr + K z r = -M 1 n×1 ẍg (t) (1)
where the structure is modeled as an n-lumped-mass with horizontal displacements relative to the ground denoted by z r , and where ẍg (t) represents total ground level acceleration due to the horizontal seismic motion.

The three terms in (1) denote inertia, the damping component of the structure dynamics which includes a semi-active viscous damper located at the base level and acting solely in horizontal direction, and the third term stands for the structure stiffness dynamics. The semiactive device is assumed to be an ideal damper whose time-varying viscous damping coefficient c A is the control input. According to its physical meaning, it should keep bounded c A (t) ∈ [0, c max A ], with c max A > 0. More complex models of semi-active actuators may be considered as, for instance, in [START_REF] Politopoulos | Floor spectra of mixed base isolated structures[END_REF] where, in addition, hysteresis and spring components are present. For a 2-degree-of-freedom lumped-mass depicted in Fig. 1, the matrices M , C, C c (c A ) and K are given by

M = m b 0 0 m s , K = k b + k s -k s -k s k s , C = c b + c s -c s -c s c s , C c (c A ) = c A 0 0 0 ,
with all coefficients, real positive numbers, that can easily be identified in Fig. 1.

In practice, the variation of c A (t) corresponds to the opening-closing of an orifice within the architecture of the viscous damper device. For more details, one may see [START_REF] Wang | Fluid formulae for damping changeability conceptual design of eailway semi-active hydraulic dampers[END_REF].

Notation 1 n×1 stands for column vector with 1 as coefficients, and 1 n will be used hereafter to designate the identity matrix of size n.

III. Floor response spectrum

The objective of control design is to achieve sufficiently low values of the so-called floor response spectrum, for all seismic disturbance ẍg (t). In control literature, this is a perturbation attenuation problem with a specific performance criterion.

For the reader who is not familiar with earthquake engineering literature the following is reported: floor response spectrum, by definition (see § 25.1 of [START_REF] Clough | Dynamics of Structures[END_REF], Chapter 6 of [START_REF] Chopra | Dynamics of Structures: Theory and Applications to Earthquake Engineering[END_REF], or § 7.3 of [START_REF] Naeim | Design of Seismic Isolated Structures: From Theory to Practice[END_REF] for more details), is the function

(ω, ζ, v) -→ PSA(ω, ζ, v) = ω 2 max t≥t0 |y(t)| (2) 
where

ÿ + 2ζω ẏ + ω 2 y = v(t), y(t 0 ) = 0, ẏ(t 0 ) = 0, (3) 
and v(t) is typically the absolute acceleration of one of the n floors of structure model. In this paper we are only concerned with base level, therefore use the quantity

zr1 (t) + ẍg (t) instead of v(t). When the signal v(t) is clear from context, PSA(ω, ζ, v) is simply denoted by PSA ζ (ω)
. This notation stands for pseudo-acceleration (PSA) and emphasizes the fact that the unit of measurement is m /s 2

The explicit solution of (3) is given by:

y(t) = 1 ω d t t0 e -ζω(t-τ ) sin (ω d (t -τ )) v(τ ) dτ (4) 
with

ω d = ω 1 -ζ 2 .
As is clear from its definition (2), floor spectrum is not an explicit performance criterion that can be easily handled to obtain control laws. Multiple reasons can be cited, some of them are: (i) the nonlinear nature of the result, with respect to additivity of multiple input signals;

(ii) even for simple input signals, like monochromatic and Heaviside step functions, the resulting PSA ζ (ω) is a nonconvex function. This is why in most papers dealing with this topic, closed-loop performance is expressed in terms of cost functions based on maximum displacement, velocity and acceleration of the structure in response to a number of given seismic signals [START_REF] Narasimhan | Smart baseisolated benchmark building part IV: Phase II sample controllers for nonlinear isolation systems[END_REF]. In present work a better insight to explicit use of floor spectrum criterion is proposed.

To face the problem of ẍg (t) being unknown, and since it is needed for calculating v(t) and further on (4), one can think of (at least) two strategies:

• even if earthquakes are known to be unpredictable, try to use explicit mathematical models of ẍg (t), the socalled artificial signals [START_REF] Zentner | Enrichment of seismic ground motion databases using Karhunen-Loève expansion[END_REF], based on some a priori knowledge, e.g., semi-empirical laws related to some local geographical sites, • use available past records of signals ẍg (t) and compute numerically the solutions of equation ( 3) and use it in [START_REF] Clough | Dynamics of Structures[END_REF] to get approximated values. Both situations emphasize the difficulty to construct a general controller based on floor spectrum. Therefore, the following control design approach is proposed: use modal coordinates in lieu of relative or absolute ones, and introduce penalties on various modes that are known to give high values on floor spectrum. This is detailed in Section V.

IV. A robust control design theorem

The following result is largely inspired by the work of G. Leitmann and co-authors, see for instance [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF], [START_REF] Corless | Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems[END_REF], [START_REF] Leitmann | Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems[END_REF], [START_REF] Gutman | Uncertain dynamical systems-A Lyapunov minmax approach[END_REF], [START_REF] Gutman | Stabilizing feedback control for dynamical systems with bounded uncertainty[END_REF].

Theorem 1: Consider systems described by the following type of equations

ẋ = (A + ∆A(t)) x + f (x, ν)+ (B(x) + ∆B(t, x, ν)) c A (t) + D ν(t), x(0) = x 0 (5) with state variable x(t) ∈ R n , control input c A (t) ∈ R m ,
and nonvanishing continuous-time perturbations ν(t) ∈ R l . Matrices A and D are known constant ones, B is a known continuous function of x, structural uncertainties on plant model and actuator, respectively, ∆A and ∆B are unknown continuous functions of their arguments. Assume f and ρ to be known continuous functions of their arguments and that (i) matrix A is Hurwitz, P is the unique symmetric positive-definite solution of P A + A P = -Q , given arbitrary symmetric positive definite Q , (ii) functions ν, f , ∆A, ∆B are bounded with respective bounds ν max , f max , ∆A max , ∆B max , (iii

) ∆A max < λ min (Q)/λ max (P )/2 , (iv) ρ(x) ∈ [0, ρ max ] , (v) ε > 0 , (vi) and let b 0 = λ max (P ) λ min (P ) f max + ∆B max ρ max + D ν max 1 2 λ min (Q) λ max (P ) -∆A max . ( 6 
)
If the control input is set as follows

c A (x) = max (0 m×1 , p(x)) (7) p(x) =          - B(x) P x B(x) P x ρ(x), B(x) P x ≥ ε, - B(x) P x ε ρ(x), B(x) P x < ε, (8) 
then all closed-loop trajectories x(t) are bounded, and, for any initial conditions x 0 satisfying √ x 0 P x 0 > λ min (P ) b 0 , and for all b > b 0 the trajectories x(t) are driven into balls of radius b within time

T = ln √ x 0 P x 0 -λ min (P ) b 0 λ min (P ) (b -b 0 ) 1 2 λ min (Q) λ max (P ) -∆A max . ( 9 
)
The proof of this theorem was constructed using uniform boundedness and uniform ultimate boundedness tools as in Theorem 4.18 of [START_REF] Khalil | Nonlinear Systems[END_REF] and page 1141 of [START_REF] Corless | Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems[END_REF]. It is not included here for lack of space. However, we will briefly provide some details which will be used in the following section, to justify the different choices of controller parameters. To calculate [START_REF] Khalil | Nonlinear Systems[END_REF] we have used the Lyapunovlike function

V (x) = x P x
and its derivative along system (5) trajectories:

V (x) = ẋ P x + x P ẋ = -x Qx + 2x P B(x)c A (x)+ 2x P [∆A(t) x + f (x, ν) + ∆B(t, x, ν)c A (x) + Dν] (10) 
The following are comments on the differences between Thm 1 and its inspiring results in [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF]. In works [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF], [START_REF] Corless | Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems[END_REF], [START_REF] Leitmann | Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems[END_REF] matching conditions provide the means to dominate the cumulative effect of perturbations and structured uncertainties on plant model and actuator, by using a sufficiently strong active control law [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF]. In [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF], [START_REF] Corless | Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems[END_REF], [START_REF] Leitmann | Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems[END_REF] when ε = 0 in [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF] and the lower branch of control law is removed it can be shown that global asymptotic stability (GAS) of origin can be ensured. This means that the energy dissipation mechanism is ensured for all bounded perturbation signals, and for all t ≥ 0.

The proposed SAC in Thm. 1 is not designed to ensure GAS of origin in any particular situation. Actually, hypotheses of Thm. 1 are not sufficient to prove GAS of origin. The controller design function ρ(x) can be chosen arbitrarily small in Thm. 1 which is not the case in [START_REF] Kelly | Robust control of base-isolated structures under earthquake excitation[END_REF], [START_REF] Corless | Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems[END_REF], [START_REF] Leitmann | Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems[END_REF] where a necessary lower bound, ρ(x) ≥ ρ min > 0 is calculated based on maximum amplitude value of perturbation. This allowed us to freely tune the function ρ(x) in order to attain performance criterion like floor response pseudoacceleration spectrum.

It is worth noting that the controller ( 7) is a continuous function of variable x.

Summarizing, the theorem provides this very interesting design tool: application of the controller allows to bring system trajectories into bounds b within time T as long as b > b 0 where the limiting bound b 0 is of course a pretty complex function of model uncertainties and controller design parameters. In addition the theorem says that the higher the ratio λ min (Q)/λ max (P ) is the higher amount of uncertainty ∆A can be tolerated. However, clearly, the desirable minimization of b 0 and T with respect to controller design parameters is not simple given the complexity of the dependance of b 0 and T on model uncertainties and controller design.

V. Semi-active control

Following the result of Thm. 1, energy dissipation mechanism is depicted by V (x) in [START_REF] Leitmann | Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems[END_REF]. It consists of three terms: the first one can arbitrarily be fixed by the user, by properly choosing matrix Q, in accordance with control objective of floor spectrum reduction. It is a matter of simple calculation to show that the second term is nonpositive for all x. Actually, p(x) from ( 7) was chosen to provide maximal effort, minimum time response, based on this second term of V . The third term is sign uncertain and is responsible for the coupling between uncertainties and perturbation, on the one hand, and controller parameters on the other hand.

Our efforts in shaping energy loss mechanism, such that floor sectrum reduction objective should be achieved, are concentrated on the right choice of Q matrix.

To compensate the lack of an explicit expression relating the control law and floor spectrum, information related to physical phenomena is used instead: modal shapes and their influence to floor spectrum.

A. SAC tuning

As already mentioned in Section II it is a standard practice in earthquake engineering to use modal coordinates as follows.

Let (ω 2 i , ϕ i ) i = 1, . . . , n be the couples of eigenvalues and right eigenvectors associated with the symmetric matrices M and K, and M is positive-definite: for each i, ω i and ϕ i verify

K ϕ i = ω 2 i M ϕ i , ϕ i M ϕ j = δ ij , ϕ i K ϕ j = ω 2 i δ ij
, where δ ij is the Kronecker symbol. ω i and coefficients of ϕ i are all real numbers. Let (

ω 2 i , ϕ i ) be numbered such that ω 2 1 ≤ ω 2 2 ≤ • • • ≤ ω 2 n .
The reader may refer to [4, §11] for more details on the algebra of symmetric positive definite generalized eigenvalue problem.

Let

φ = (ϕ 1 ϕ 2 • • • ϕ n )
be the matrix of modal shapes, and let q be the modal coordinates vector defined such that

z r (t) = φ q(t) = ϕ 1 q 1 (t) + ϕ 2 q 2 (t) + • • • + ϕ n q n (t).
Though not limited to two-degree-of-freedom structures, this semi-active control is applied to the case n = 2 for simplicity in the sequel.

Modal coordinates transformations are used in the following way to influence the floor spectrum. Let W be a negative definite function, used to construct the first term in [START_REF] Leitmann | Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems[END_REF],

W = -γ 1 q 2 1 -γ 2 q 2 2 -γ 3 q2 1 -γ 4 q2 2 ,
with positive real parameters γ i > 0. Parameters γ 1 and γ 3 are used to penalize the effect of first vibrational mode, in terms of generalized modal displacement and velocity, respectively. Similarly γ 2 and γ 4 are used to penalize the effect of second vibrational mode. By setting -x Qx = W with x = z r żr , direct calculation lead to the following bloc diagonal matrix

Q = diag M (γ 1 ϕ 1 ϕ 1 + γ 2 ϕ 2 ϕ 2 ) M , M (γ 3 ϕ 1 ϕ 1 + γ 4 ϕ 2 ϕ 2 ) M ,
and the structure model ( 1) can be rewritten as

ẋ = A x + B(x) c A + D ν , x(0) = 0 2n×1 , ( 11 
)
where

A = 0 2 1 2 -M -1 K -M -1 C , B(x) =    0 2×1 -e x/m b 0    , D = 0 2×1 -1 2×1 , ν = ẍg ,
and e = 0 0 1 0 .

Notations 0 n×1 , 0 n stand, respectively, for column vector of dimension n and matrices of size n × n with 0 as coefficients; notation 1 n×1 , stands for column vector with 1 as coefficients, and 1 n is the identity matrix of size n.

System ( 11) is of the form (5) allowing to apply Theorem 1.

B. Features and remarks

Control law calculated in subsection V-A, guarantees the required constraint specification c

A (t) ∈ [0, c max A ] if one fixed ρ(•) ≡ c max A .
In this situation the semi-active controller is generating at all time instants the maximum calculated damping control force -c A (t) żr1 (t).

On the other hand, a different approach to choosing ρ(•) is

ρ(x) = c max A (1 + tanh (-|q 2 (x)|)) (12) 
motivated by the objective of floor response spectrum reduction around the second eigenfrequency.

The idea in ( 12) is to avoid amplification of second mode's response, as it becomes more and more prominent by reducing gradually the control force at the base level. Actually this is a compromise solution, meaning that reduction of peaks around second eigenfrequency on floor spectrum curve is done in the detriment of first peak.

This method concerning controller synthesis and tuning can easily be applied on structure model (1) rewritten in absolute coordinates, instead of relative ones as is done in this paper. In this situation, the new plant model system is still of the form (5), allowing for Thm. 1 to be applied. The feedback control law c A will be a function depending on absolute coordinates. Numerical simulation results not shown in this paper, illustrate similar performance in terms of floor spectrum with those presented in section VI.

VI. Simulation results

In this section we illustrate the performance of the proposed semi-active control through the 2-degree of freedom structure already detailed throughout the previous section. The parameters (in consistent units) which are used in the simulations are as follows: m b = 0.25; m s = 1; c b = 0.3927; k b = 12.3370; c s = 1.8850; k s = 355.3058;

c max A = 2 ∆ξ b k b (m b + m s ); ∆ξ b = 0.20; ξ b = 0.05.
Numerical simulation parameters are fixed to: timeduration of 15 seconds; sampling and computation time is 10 -4 seconds; fourth-order Runge-Kutta fixed-step numerical solver. Floor spectrum numerical algorithm is taken from [START_REF] Nigam | Digital calculation of response spectra from strong-motion earthquake records[END_REF] and its damping ratio is set to ζ = 2%.

Multiple control scenarios are proposed for comparison purposes:

• NC (no control): this is the uncontrolled structure dynamic response to the seismic excitation. Specifically, the structure may be thought as with base isolation consisting of low damping rubber bearing (LDRB) device, with a damping coefficient ξ b . • PC (passive control): an additional damping is put at the base level consisting of a high damping rubber bearing (HDRB), so that the total equivalent damping coefficient is ξ b + ∆ξ b . • SAC from subsection V-A: corresponds to implementing control law [START_REF] Inman | Vibration with Control[END_REF] on plant model [START_REF] Naeim | Design of Seismic Isolated Structures: From Theory to Practice[END_REF], with parame-

ters ε = 10 -2 , γ 1 = γ 3 = 3, γ 2 = γ 4 = 10 4 , ρ(•) ≡ c max A .
Instead of real records of seismic signal it is found more illustrative to use artificial ones for ẍg (t). The reader may find them in the appendix.These signals suit the ground response pseudoacceleration spectrum specification of Cadarache rock site, in southern France. They were scaled in amplitude to reach a maximum absolute value of 0.6 g ≈ 5.88 m /s 2 , with g = 9.81 m /s 2 . The reason in doing so is to ensure controller to be within the full working range of 0 to c max A . Otherwise, if signals are too weak compared to a reference, namely the signal used to calibrate controller parameters, the effect of adding a SAC force is negligible with respect to the natural behavior of structure. On the contrary, if seismic signals are too strong the SAC may saturate and it will act as PC with high damping, which again is not wanted. In other words, prior to implementing in practice this SAC, it is necessary to have some a priori knowledge on the maximum amplitude of seismic signal to hit the structure. In earthquake engineering, this information is often used in seismic characterization and is called peak ground acceleration. On the other hand, it is also required by Thm. 1 as in its second assumption. Moreover, the selection of seismic signals is made such that they are wide-band sufficiently rich in • low spectral content around first eigenfrequency so that we can notice a pretty large first peak on floor spectrum curve is observed when using NC, • higher spectral content around second eigenfrequency, otherwise, phenomena related to amplification of second mode of vibration, e.g., when using PC, might not be visible in terms of floor spectrum. Often, this is the case for earthquake signals recorded on stiff soil and rock sites.

The controller parameters are calibrated once for all three simulations. They are calculated with the seismic signal in Fig. 2. The other two figures then serve for validation and to support further discussions on controller capabilities. Since the choice of controller parameters has been made with respect to only one seismic signal, one may wonder whether or not the result concerning adjustment controller parameters is globally available. By looking at Figs. 34, one can notice a visible advantage and improvement when using SAC over PC in terms of floor spectrum evaluation especially around second eigenfrequency. However, in practice locally available data (characteristics of known recorded signals or artificially generated ones, e.g., in terms of maximum amplitude, energy, etc., and geographical site) should be used to fine tune controller parameters.

Although not shown here, in terms of floor spectrum gauge we do not have up-to-date any concluding results that the SAC proposed in this paper is better than other semi-active control strategies already presented in the literature, like the one in [START_REF] Politopoulos | Floor spectra of mixed base isolated structures[END_REF].

Extended simulations with randomly chosen natural, historical, seismic events showed that, as a worst case behavior of this SAC device with fixed adjustment parameters, the performance in terms of floor response spectra will be at least as good as PC.

Further work: In this paper we have used two-degreeof-freedom structure models that are simple enough and therefore control-oriented, so that they might allow implementation in real-time scenarios. However, real world three-dimensional (3D) applications are much more complex than what is discussed and presented here and consequently will be more demanding in terms of control law design. For instance, the following should be taken into account for control design in a future stage of our work: (i) rotation [START_REF] Politopoulos | Response of seismically isolated structures to rocking type excitations[END_REF] of the structure model; (ii) nonlinearities of the isolation systems, like friction; (iii) time delays and saturation in force of the SAC actuator.

VII. Conclusions

In this paper Leitmann and co-authors's results on the stabilization of uncertain nonlinear systems and on earthquake structure protection both have been revisited. Bounds are calculated guaranteeing some interest-ing control design parameters. This result is more user friendly. The major achievement lies in the adaptation of control law and system dynamics towards solving SAC problems. A second contribution of this paper consisted in presenting a method for choosing SAC parameters, based on vibrational modes analysis. One reason for proceeding in this direction is that performance in closedloop of structure response to unknown seismic signals is evaluated qualitatively in terms of floor response pseudoacceleration spectrum. It is showed that working with information related to balls radius size in state space coordinates might provide efficient and potential means to reduce floor response spectra.
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 1 Fig. 1: A schematic diagram of a 2-degree-of-freedom structure in horizontal motion, with its relative coordinates

Fig. 2 :Fig. 3 :Fig. 4 :

 234 Fig. 2: Floor response spectrum at the base in response to seismic signal record no. 1
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