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A robust nonlinear semi-active control for base
seismically-isolated structures

C.-S. Teodorescu1, S. Diop2, I. Politopoulos1 and M. Benidir2

Abstract—This paper proposes a robust nonlinear
semi-active control for base seismically-isolated struc-
tures. The control is based upon an extension of works
of Leitmann et al. on the stabilization of nonlinear
systems with uncertain models. For usual models of
structure dynamics it is shown that applying a specific
control law drives the state variables into a ball of
specified radius in finite time. The radius of the ball
may be arbitrarily chosen as long as it is not lower
than a limiting value. In addition, estimates of this
limiting ball radius is provided. The time to reach
the ball is also provided. The semi-active control
thus provides the control designer with interesting
design parameters. The efficacy of proposed semi-
active control is illustrated by its application to simple
models of structures focusing in particular to the
attenuation of excitation transmitted from floor to
equipment mounted on them.

I. Introduction

Base isolation is an alternative solution in earthquake
protection of structures and equipment. Typically, a
base isolated structure is put on very flexible bearings
(e.g., rubber bearings). Roughly speaking this is the so-
called passive control solution. Another solution, known
as active control, consists of an ideal actuator which is
controlled in order to stabilize the structure in presence
of seismic disturbance. Such an actuator is assumed to
be able to produce as well as dissipate energy in order to
reduce structure motion. Typical active control actuators
are the controlled hydraulic cylinders. On the other hand,
the so-called semi-active control, is implemented through
actuators that can only dissipate energy. Contrary to
passive control devices the semi-active control actuators,
typically, are viscous dampers whose parameters can be
controlled by low power means. Passive control devices
are fixed once for all while active control devices re-
quire too much energy. This is to say that semi-active
control actuators are interesting alternative solutions
for the protection of buildings and structures. In this
work we consider actuators which consist of passive and
semi-active devices. When designing active control laws
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the structure dynamics often may be assumed linear,
making the theoretical synthesis much easier while the
real implementation is quite impossible. On the other
hand semi-active control design is basically nonlinear
while its implementation is being considered in near
future installations. The semi-active control design is
more involved compared to the active control design.

Most of previous works used a two-step procedure: a
reference is first calculated using an active control law
then this reference is approximated at the best utilizing
available devices. The reader may refer to Politopou-
los and Pham [14] where LQR techniques are used to
calculate the above mentioned reference.Precisely, the
initial motivation of this work was to design a semi-active
control law for the two-degree-of-freedom structure of the
latter paper. This is done by extending some work by
Leitmann and co-authors [9]. In [9] a nonlinear active
control is presented. In the present paper a nonlinear
semi-active control strategy is proposed.

In addition to the requirement of satisfactory behav-
ior of main structures (e.g., buildings), for industrial
facilities an important issue is the proper functioning
of equipment during and after an earthquake. To this
end, pseudoacceleration floor response spectra which will
be defined in Section III give relevant information. The
main objective of this control design is to keep these floor
spectra as low as possible. However the floor response
spectrum is not an enough explicit criterion for control
design techniques.

Most previous works use performance criterion in
terms of maximum values of relative or absolute coordi-
nates. In this paper a tentative use of the floor response
spectrum is undergone. This is done by having recourse
to modal coordinates. Penalties are introduced on modal
coordinates that are responsible for generating higher
values on the floor response spectrum.

The paper is organized as follows: The model of the
structure is presented in the next section. In Section III
we provide an account on the definition of floor response
spectrum which shows the difficulty of using this quantity
as a control design criterion. Section IV is devoted
to the stabilization theory of nonlinear systems with
uncertain models stemming from works of Leitmann
and co-workers. Our extension of one of their results
is used in Section V to design the semi-active control



which is proposed in this work. Finally simulations are
shown illustrating the performance of this control law.
Improvements over passive control will be seen as a
noticeable result.

II. Plant model

The model of base isolated structures that is consid-
ered in this work is the following mass-spring-damper-
friction dynamic equations

M z̈a + (C + Cc(cA)) (ża − 1n×1 ẋg) +
+K (za − 1n×1 xg) + E(ża, ẋg) = 0n×1 ,

(1)

where the structure is modeled as an n-lumped-mass
with horizontal displacement vector za(t) relative to an
absolute (or inertial) reference, and where xg(t) repre-
sents total ground level displacement due to the hori-
zontal seismic motion. Notations 0n×1, 0n respectively,
stand for column vector of dimension n and matrices of
size n× n with 0 as coefficients; 1n×1 stands for column
vector with 1 as coefficients, and 1n is the identity matrix
of size n.

The four terms in (1) denote inertia, the damping com-
ponent of the structure dynamics which includes a semi-
active viscous damper located at the base level and acting
solely in horizontal direction, the third term stands for
the structure stiffness dynamics, and the fourth term
describes the dry friction passive device. The semi-active
device is assumed to be an ideal damper whose time-
varying viscous damping coefficient cA is the control
input. Physically, it is bounded cA(t) ∈ [0, cmax

A ], with
cmax

A > 0. More complex models of semi-active actuators
may be considered as, for instance, in [14] where, in
addition, hysteresis and spring components are present.
The dry friction passive device depicted, contributing
to structure dynamics through the term E(ża, ẋg) is
a friction pendulum system (FPS) or bearing as often
used in earthquake engineering literature. The simplest
expression of the force generated by the latter device is
ideally

E(ża, ẋg) =
(
µN sign (ża1 − ẋg)

0(n−1)×1

)
,

where µ is the dry friction coefficient, N is the normal
force which is assumed to be constant in this work
(i.e., time-variations of N due to the vertical component
of earthquake excitation is neglected). To cope with
more realistic models, and also to avoid mathematical
difficulties the sign function is often replaced by a smooth
one, such as the hyperbolic tangent function.

System (1) may be put in the form

M


z̈a1
z̈a2
· · ·
z̈an

+ C


ża1
ża2
· · ·
żan

+K


za1
za2
· · ·
zan

+


cA(ża1 − ẋg)− cbẋg − kbxg+

µNsign (ża1 − ẋg)

0
· · ·
0

 =


0

0
· · ·
0


emphasizing the fact that both control and perturbation
(seismic signal) appear only in the first equation of the
system (which concerns the base level). Most often in
earthquake engineering literature relative coordinates are
used instead of absolute ones as done here. In addition,
contrary to many previous works, the damping matrix
C is not assumed to be modal in this paper. Recall that
modal assumption on C means that the eigenvectors of
the damped nominal (i.e., without uncertainty) system
(M , K, C) are the same as those of the undamped case
(M , K, C = 0). The reader is referred to [8, §3.5], [1,
§9], for more details on this subject.

Specifically, when n = 2 the structure is a 2-degree-
of-freedom lumped-mass as depicted in Fig. 1 where the
matrices M , C, Cc(cA) and K are given by

M =
(
mb 0
0 ms

)
, K =

(
kb + ks −ks
−ks ks

)
,

C =
(

cs −cs
−cs cs

)
, Cc(cA) =

(
cA 0
0 0

)
,

where all coefficients are real positive numbers.

III. Pseudoacceleration floor response
spectrum

The objective of control design is to achieve sufficiently
low values of the so-called pseudoacceleration (PSA) floor
response spectrum for possible seismic disturbance ẍg(t).
In control literature, this is a perturbation attenuation
problem.

For the reader who is not familiar with earthquake
engineering literature the following is reported: by defi-
nition (see § 25.1 of [3], Chapter 6 of [2], or § 7.3 of [12]
for more details), the pseudoacceleration floor response
spectrum is the function

(ω, ζ, v) 7−→ PSA(ω, ζ, v) = ω2 max
t≥t0
|y(t)| (2a)

where

ÿ + 2ζωẏ + ω2y = v(t), y(t0) = 0, ẏ(t0) = 0, (2b)

and v(t) is typically the absolute acceleration of one of
the n floors of the structure. In this paper we are only
concerned with the base level, i.e., we take v(t) = z̈a1(t).
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Fig. 1: A schematic diagram of a 2-degree-of-freedom
structure in horizontal motion, with its absolute coor-
dinates

When the signal v(t) is clear from context, PSA(ω, ζ, v)
is simply denoted by PSAζ(ω).
The explicit solution of (2b) is given by:

y(t) = 1
ωd

∫ t

t0

e−ζω(t−τ) sin (ωd(t− τ)) v(τ) dτ (3)

with ωd = ω
√

1− ζ2.
As is clear from its definition (2), PSAζ(ω) is not

an explicit performance criterion that can be easily
handled to obtain control laws. Multiple reasons can
be mentioned, some of them are: (i) the non-additivity
of response spectrum with respect to input signals; (ii)
even for simple input signals, it is pretty difficult to
construct a convex function based on PSAζ(ω) that may
be used as minimization criterion. This is why in most
papers dealing with this topic, closed-loop performance is
expressed in terms of cost functions based on maximum
displacement, velocity and acceleration of the structure
in response to a number of given seismic signals [13].

In the present work a better insight to an explicit use
of response spectrum as criterion is proposed.

IV. A robust control design theorem

The following result is largely inspired by the work of
G. Leitmann and co-authors, see for instance [9], [4], [11],
[6], [7].

Theorem 1: Consider systems described by the follow-
ing type of equations

ẋ = (A+ ∆A(t)) x+ f(x, ν)+

(B(x) + ∆B(t, x, ν)) cA(t) +Dν(t),
(4)

with state variable x(t) ∈ Rn, control input cA(t) ∈ Rm,
and nonvanishing continuous-time perturbations ν(t) ∈
Rl. Matrices A and D are known constant ones, B is a
known continuous function of x, structural uncertainties
on plant model and actuator, respectively, ∆A and ∆B
are unknown continuous functions of their arguments.
Assume f and ρ to be known continuous functions of
their arguments and that
(i) matrix A is Hurwitz, P is the unique symmetric

positive-definite solution of P A + A′ P = −Q ,
given arbitrary symmetric positive definite Q ,

(ii) functions ν, f , ∆A, ∆B are bounded with respec-
tive bounds νmax, fmax, ∆Amax, ∆Bmax ,

(iii) ∆Amax < λmin(Q)/λmax(P )/2 ,
(iv) ρ(x) ∈ [0, ρmax] ,
(v) ε > 0 ,
(vi) and let

b0 = λmax(P )
λmin(P )

fmax + ∆Bmax ρmax + ‖D‖νmax

1
2
λmin(Q)
λmax(P ) −∆Amax

.

(5)
If the control input is set as follows

cA(x) = max (0m×1, p(x)) (6)

p(x) =


− B(x)′P x
‖B(x)′P x‖

ρ(x), ‖B(x)′P x‖ ≥ ε,

−B(x)′P x
ε

ρ(x), ‖B(x)′P x‖ < ε,

(7)

then all closed-loop trajectories x(t) are bounded, and,
for any initial conditions x0 satisfying

√
x0′Px0 >√

λmin(P ) b0, and for all b > b0 the trajectories x(t) are
driven into balls of radius b within time

T =
ln
(√

x0′Px0 −
√
λmin(P ) b0√

λmin(P ) (b− b0)

)
1
2
λmin(Q)
λmax(P ) −∆Amax

. (8)

The proof of this theorem is not included here for lack of
space. It was constructed using uniform boundedness and
uniform ultimate boundedness tools as in Theorem 4.18
of [10] and page 1141 of [4].

The following are comments on the differences between
Thm 1 and its inspiring results in [9]. In [9], [4], [11]
matching conditions provide the means to dominate
the cumulative effect of perturbations and structured
uncertainties on plant model and actuator, by using a
sufficiently strong active control law (7). In [9], [4], [11],
[7] when ε = 0 in (7) and the lower branch of control
law is removed it can be shown that global asymptotic



stability (GAS) of origin can be ensured. This means
that the energy dissipation mechanism is ensured for all
bounded perturbation signals, and for all t ≥ 0.

The proposed SAC in Thm. 1 is not designed to en-
sure GAS of origin in any particular situation. Actually,
hypotheses of Thm. 1 are not sufficient to prove GAS
of origin. The control design function ρ(x) can be chosen
arbitrarily small in Thm. 1 which is not the case in [9], [4],
[11], [7] where a necessary lower bound, ρ(x) ≥ ρmin >
0 is calculated based on maximum amplitude value of
perturbation. This allowed us to freely tune the function
ρ(x) in order to attain performance criterion like floor
response pseudoacceleration spectrum.

It is worth noting that the control (6) is a continuous
function of variable x.
Summarizing, the theorem provides this very inter-

esting design tool: application of the control allows to
bring system trajectories into bounds b within time T as
long as b > b0 where the limiting bound b0 is of course
a pretty complex function of model uncertainties and
control design parameters. In addition the theorem says
that the higher the ratio λmin(Q)/λmax(P ) is the higher
amount of uncertainty ∆A can be tolerated. However,
clearly, the desirable minimization of b0 and T with
respect to control design parameters is not simple given
the complexity of the dependance of b0 and T on model
uncertainties and control parameters.

Applying Thm. 1 to the structure model (1) we show
the following
Corollary 2: The floor response spectrum evaluated

at the base level is uniformly bounded over the entire
frequency range:

PSAζ(ω) ≤ 1
mb

1
ζ
√

1− ζ2
‖v1‖ d(‖x0‖) (9)

where

v1
′ :=

(
−(kb + ks) ks −(cb + cs + cmax

A ) cs
)
,

d(‖x0‖) =


√
λmax(P )
λmin(P ) ‖x0‖ , ‖x0‖ ≥ µ0 ,

µ0 , ‖x0‖ < µ0 ,

with

µ0 =

µN

mb
+
√
n ẍmax

g

1
2
λmin(Q)
λmax(P ) −∆Amax

,

ẍmax
g = max

t≥0
|ẍg(t)| . (10)

This corollary is not the best wanted result in prac-
tice: a better bound would be in terms of frequency ω
showing how the floor response peaks are decreased at
specific frequencies. Nevertheless it seems to be the first
result linking floor response spectrum to control design
parameters.

V. Semi-active control
As already mentioned it is a standard practice in

earthquake engineering (see [8]) to use real-valued modal
coordinates as follows.
Let (ω2

i , ϕi), i = 1, . . . , n be the couples of eigenvalues
and right eigenvectors associated with the symmetric
matrices M and K, amd M is positive-definite: for each
i, ωi and ϕi verify

K ϕi = ω2
i M ϕi , ϕi

′M ϕj = δij , ϕi
′K ϕj = ω2

i δij ,
(11a,b,c)

where δij is the Kronecker symbol. ωi and coefficients of
ϕi are all real-valued. Let (ω2

i , ϕi) be numbered such that
ω2

1 ≤ ω2
2 ≤ · · · ≤ ω2

n. The reader may refer to [5, §11] for
more details on the algebra of symmetric positive definite
generalized eigenvalue problem. The eigenvectors ϕi are
linearly independent [5, Thm. 11.9] and therefore form a
basis; they are referred to as the modes of vibration [8].
Let

φ = (ϕ1 ϕ2 · · · ϕn) (12)

be the matrix of modal shapes, so that (11) can be
rewritten in matrix form as:

K φ = M φΛ , φ′M φ = 1n , φ′K φ = Λ , (13a,b,c)

with
Λ = diag(ω2

1 , ω
2
2 , . . . , ω

2
n) .

Let q be the modal coordinates vector defined such that

za(t) = φ q(t) = ϕ1 q1(t) + ϕ2 q2(t) + · · ·+ ϕn qn(t) .
(14)

Though not limited to two-degree-of-freedom struc-
tures, this semi-active control is applied to the case n = 2
for simplicity in the sequel. In other words, instead of
giving the method in its full generality, let us explain it
on a simple example.

A. Choice of Q: Modal coordinates transformations
are used in the following way to influence the floor re-
sponse spectrum. Let W be a negative definite function,

W = −γ1q
2
1 − γ2q

2
2 − γ3q̇

2
1 − γ4q̇

2
2 (15)

= −
(
q′ q̇′

)
diag(γ1, γ2, γ3, γ4)

(
q
q̇

)
,

with positive real parameters γi > 0. Parameters γ1
and γ3 are used to penalize the effect of first vibrational
mode, in terms of generalized modal displacement and
velocity, respectively. Similarly γ2 and γ4 are used to
penalize the effect of second vibrational mode.

One can use transformation (14) in order to express
W from (15) in terms of absolute coordinates vector x
with

x =
(
za
ża

)
, (16)

By setting −x′Qx = W and using the last two biorthogo-
nality properties from (13) in order to calculate explicitly



the inverse of matrix φ from (12), direct calculation leads
to the following bloc diagonal matrix

Q = diag
(
M ′ (γ1ϕ1ϕ1

′ + γ2ϕ2ϕ2
′)M ,

M ′ (γ3ϕ1ϕ1
′ + γ4ϕ2ϕ2

′)M
)
, (17)

and the structure model (1) can be rewritten as

ẋ = Ax+ f(x, ν) + (B(x) + ∆B(ν)) cA +Dν . (18)

where

A =
(

02 12

−M−1K −M−1C

)
,∆B(ν) =


0
0

ẋg/mb
0

 ,

f(x, ν) =
(

02×1

−M−1E(x, ν)

)
, B(x) =

 02×1

−ża1/mb
0

 ,

D =
(

02

M−1K 12×1 M−1C 12×1

)
, and ν =

(
xg
ẋg

)
.

The initial condition of (18) is x(0) = 02n×1.
B. Choice of ρ(·): In order to be able to protect the

actuator from damage, the maximum allowed damping
force Fmax can be taken into account in the design of
control law parameters by setting

ρ(żr1) = max {ρmax, Fmax/|żr1|} ,

where the relative velocity at the base level żr1 = ża1−ẋg.

System (18) is of the form (4) allowing to apply Thm 1.

VI. Simulation results
In this section we illustrate the performance of the
proposed semi-active control through the 2-degree of
freedom structure already detailed throughout the previ-
ous section. The parameters (in consistent units) which
are used in the simulations are as follows: mb = 0.25;
ms = 1; kb = 12.3370; cs = 1.8850; ks = 355.3058;
cmax

A = 1.5708; σ(y) = tanh (11× y). The floor response
spectra are calculated for ζ = 2% damping.
Multiple control scenarios are shown for comparison:

• NC (no control): this is the uncontrolled structure dy-
namic response to the seismic solicitation. Specifically,
the structure is seismically isolated by a dry friction
device with a low value for friction coefficient µ. In the
simulations to be shown we used µ = 7.48× 10−3.

• PC (passive control): an additional damping is put
at the base level consisting of a high damping rubber
bearing (HDRB), so that the total equivalent damping
coefficient is ξb + ∆ξb = 25%. In simple words, in
Fig. 1 the friction device is removed and replaced by
a damper with damping coefficient ctot = 2.2777.

• SAC corresponds to implementing control law (6) on
plant model (1) or (18), with adjustment parameters

ε = 5 × 10−3, γ1 = γ3 = 5 × 10−4; γ2 = 5 × 102;
γ4 = 10−5; ρ(·) ≡ cmax

A .
A. Choice of seismic records: Instead of real

records of seismic signal it was found more illustrative
to use artificial ones for ẍg(t). These signals suit the
ground response pseudoacceleration spectrum specifica-
tion of Cadarache rock site, in southern France. They
were scaled in amplitude to reach a maximum absolute
value of 0.6g, with g = 9.81 m/s2, so that they correspond
to strong motion earthquake accelerograms. Actually, it
was our intention to use signals that ensure control to be
within the full range of 0 to cmax

A . Otherwise, if signals
are too weak compared to a reference, namely the signal
used to calibrate control parameters, the effect of adding
a SAC force is negligible with respect to the natural
behavior of structure. On the contrary, if seismic signals
are too strong the SAC may saturate and it will act
as PC with high damping, which again is not wanted.
In other words, prior to implementing in practice this
SAC, it is necessary to have some a priori knowledge
on the maximum amplitude of seismic signal to hit the
structure. In earthquake engineering, this information
is often used in seismic characterization and is called
peak ground acceleration, with the definition (10). On
the other hand, it is also required by Thm. 1 as in its
second assumption.

Moreover, the selection of seismic signals has been
made such that they are wide-band sufficiently rich in
• low spectral content around first eigenfrequency so

that we can notice a pretty large first peak on floor
response spectrum curve when using NC,

• higher spectral content around second eigenfrequency,
otherwise, phenomena related to amplification of sec-
ond mode of vibration, e.g., when using PC, might not
be visible in terms of floor response spectrum. Often,
this is the case for earthquake signals recorded on stiff
soil and rock sites.
B. Calibration of control law parameters: The

control parameters are calibrated once for all three sim-
ulations, using a trial and error approach. They are
calculated with the seismic signal used to draw results
of Fig. 2. The other two figures then serve for validation
and to support further discussions on control capabilities.

C. Interpretation: Since the choice of control
parameters has been made with respect to only one
seismic signal, one may wonder whether or not the result
concerning adjustment control parameters is globally
available. By looking at Figs. 3–4, one can notice a visible
advantage and improvement when using SAC over PC
in terms of floor response spectrum evaluation especially
around second eigenfrequency. Actually, the PC curve is
used in this work as a qualitative indicator of a worst
case behavior for validating the use of more complex
SAC techniques over the simpler passive control. In other
words, if there is no visible improvement of SAC over
PC, the SAC should be disregarded since there is no



practical interest in using it. Fortunately, our simulations
show that SAC is doing better than PC, at the expense
of increased implementation cost. Extended simulations
with randomly chosen natural, historical, seismic events
showed that, as a worst case behavior of this SAC device
with fixed adjustment parameters, the performance in
terms of floor response spectra will be at least as good
as PC.
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Fig. 2: Floor response spectrum at the base in re-
sponse to seismic signal record no. 1
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Fig. 3: Floor response spectrum at the base in re-
sponse to seismic signal record no. 2

VII. Conclusions
In this paper Leitmann and co-authors’s results on
the stabilization of uncertain nonlinear systems and on
earthquake structure protection both have been revis-
ited. Bounds are calculated guaranteeing some interest-
ing control design parameters. This result is more user
friendly. The major achievement lies in the adaptation of
control law and system dynamics towards solving SAC
problems. A second contribution of this paper consisted
in presenting a method for choosing SAC parameters,
based on vibrational modes analysis. One reason for
proceeding in this direction is that performance in closed-
loop of structure response to unknown seismic signals is

evaluated qualitatively in terms of floor response pseu-
doacceleration spectrum. We showed that working with
information related to balls radius size in state space
coordinates might provide efficient and possible means
to reduce the floor response spectral bound.
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Fig. 4: Floor response spectrum at the base in re-
sponse to seismic signal record no. 3
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