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Abstract 
 

An increasing interest is given to the potential 

benefits of introducing ecophysiological knowledge in 

breeding programs. Indeed, crop models provide 

powerful tools to predict phenotypic traits from new 
genotypes under untested environmental conditions. 

But, until now, few attempts have been undertaken to 

bridge the gap from genes to phenotype with a chain of 

functional processes. In this paper, we propose a 

framework for simulating plant growth from its 

genotype. Thus the genetic correlations between the 

parameters can be taken into consideration when 

optimization processes are used to define ideotypes 
based on model parameters. The example of virtual 

maize growing under constant environmental 

conditions is presented using the functional-structural 

model GreenLab.  

 

1. Introduction 
 

The recent development of marker assisted selection 

has provided powerful tools to improve breeding 

efficiency and to investigate genetic contributions to 

the phenotype. Markers are specific short strands of 

DNA whose location can be detected: they ideally 
represent “flags” regularly spaced on the whole 

genome map. It allows establishing statistical links 

between target quantitative traits and particular 

locations on the chromosomes, bordered by two 

adjacent markers and called quantitative trait loci 

(QTL). However, a major difficulty are the inextricable 

genotype×environment interactions when the target 

traits are complex ones, such as plant height, yield, 
kernel or grains weight, seedling vigor… [1]. 

Nowadays, a consensus is emerging concerning the 

potentials of integrating physiological analysis in 

breeding programs ([2], [3], [4], [5], [6]). In particular, 
Heuvelink et al. [7] report that using crop models 

allows to evaluate new available genotypes, analyze 

their performances and select the most influential 

parameters in order to get yield improvement under 

various environmental conditions. But few models 

integrate genetic information, although authors 

generally claim that their parameters are gene-related. 

Reymond et al. [8] built a QTL-based model linking 
leaf elongation rate of maize to water vapour pressure 

and soil water potential with satisfactory success. 

Buck-Sorlin [9][10] integrated QTL for tillering and 

number of grains per spike of winter barley into a 

morphological growth model by statistical association 

but the effect of environment was not taken into 

account. The interest of this approach for breeding 

strategies is quantified by Hammer et al. [11] who 
demonstrated that the predictive power and efficiency 

of marker-assisted selection was enhanced by the 

contributions of ecophysiological modelling. However, 

since most of the target traits (e.g. yield) result from 

interactions between morphological and physiological 

processes at whole-plant level, it is important to 

analyze their association in the dynamic context of 

plant growth. In our paper, we propose to integrate a 
genetic model into a functional-structural model 

(FSM), Greenlab.   

To be of practical interest for breeders, growth 

models should also provide promising search 

directions. This leads to the problem of determining 

the ideal set of parameters and the associated genotypic 

values to get an objective trait (e.g. yield 

maximisation) under given constraints. The notion of 
ideotype has been defined by Donald [12] as the set of 

desirable traits that a plant should present to enhance 

yield or any other objective trait under specified 

climatic conditions. It has been characterized for 

several species (e.g. bean [13], chrysanthemum [14], 
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pine [15]). This approach can be widened to ideotype 

definition based on FSM parameters, such as sink 

ratios [16]. The perfect ideotype can generally not be 

obtained in practice due to negative genetic 
correlations between the parameters (i.e. one QTL can 

have effect on several parameters, with opposite 

influences on the yield). Nevertheless the best 

compromise can still be characterized: it only requires 

introducing genetic information as constraints in the 

optimization procedure. In this paper, we analyze the 

parameter influence on the determination of cob mass 

under constant conditions with GreenLab and we 
characterize an ideotype based on the GreenLab 

parameters for a virtual diploid cereal whose 

parameters were calibrated on maize by Ma et al. [17].  

 

2. Linking genetic model and GreenLab  
 

Detailed presentations of the GreenLab model can 

be found in [18], [19], [17] and [20]. It consists of two 

interacting parts: a dual-scale automaton to perform 

organogenesis and a source-sink model for biomass 

production and allocation. We briefly recall here the 

meanings of the parameters that are used in the 

following parts. The biomass production Qn at cycle n 
is the ratio of the total blade surface available for light 

interception over a parameter of resistance to radiation-

biomass conversion r. This biomass is allocated to 

each organ according to its demand. The demand of an 

organ of a given chronological age j is defined by its 

sink strength Po, considered as a constant, multiplied 

by the value of a function of sink variation which has a 

beta law density shape fo(j) (o takes the values of 
b:blade, i:internode, r:root, f:fruit (or cob)). The 

demand of the plant Dn. is thus calculated as: 
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where fo(j)=0 if j>Te, Te being the expansion 

duration of the organ. 

A simple genetic model was introduced to link the 

model parameters to a virtual genotype of the plant. 

For sake of clarity, it is assumed that the virtual 
genome consists of one pair of homologous 

chromosomes. They are represented as vectors whose 

components are numbers that can take several values, 

called alleles (as in [9]). From the virtual chromosomes 

C1 and C2, an application f defines the rules of allele 

expression (dominance or additivity) and then the 

‘genetic’ vector of parameters Y is calculated as a 

product of matrices: 
Y = D × A × f (C1, C2)             (2) 

The components of the vector Y are the endogenous 

parameters that are assumed to be genetically 

determined. A is a matrix defining the influence of 

genes on each parameter, including pleiotropic rules 

(one gene has an influence on several parameters) or 

combinations of several gene effects on one parameter. 
D is a diagonal matrix whose coefficients are scaling 

factors to have range compatibility. To illustrate the 

study, the reference values were taken from the 

calibration of maize [17].  The genetic parameters were 

arbitrarily selected and are presented in Table 1.   

For practical applications, the coefficients of matrix 

A must be determined, which is analogous to detecting 

QTL for the model parameters. The QTL Cartographer 
([21]) was used on a virtual mapping population that 

was generated from recombinant inbred lines (detailed 

procedure can be found in [1]). It relies on statistical 

methods to test the presence of a QTL at each marker 

against the opposite hypothesis. For each individual of 

the population, the virtual genome provided a direct 

access to its GreenLab parameters and thus to any 

phenotypic trait by running the growth simulation 
software. The results give the QTL associated to each 

parameter, i.e. the non null coefficients of matrix A in 

our model. The detection accuracy and the number of 

QTL were higher than when classical phenotypic trait 

was used [22]. Indeed, the virtual phenotypic 

measurements are the result of a step by step plant 

growth process where all the genetic parameters are 

involved through complex equations. 
 

3. Parameter optimization considering 

genetic correlations 
 

To be of practical use for breeders, it is crucial to 

identify and optimize the key parameters influencing 

the final cob mass. For the virtual maize, the cob mass 

Wf(n) at cycle n is defined in equation (3): 

∑
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where the parameter names are given in paragraph 2 

and the ratio of supply over demand Qi-1/Di is 
calculated from equation (1). Since all the parameters 

of the model have an effect on the determination of the 

cob weight, finding a global optimum for the whole set 

of parameter values is a complex problem (see [23] for 

a first approach of parameter optimization on maize). 

The parameters concern as well organogenesis 

(integers) as physiology (real values) but the use of 

heuristic methods allows solving the problem.  
A genetic algorithm [24] was computed on the basis 

of the genetic model described above and of 

simulations of reproduction mechanisms. From two 

parents, a possible ‘child’ is created that inherits one 

chromosome from each of its parents. Each of those 

chromosomes can be the result of a crossing-over 
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between the homologous chromosomes, with a 

probability that follows a Poisson law whose parameter 

is the chromosome length. The genetic algorithm 

consists of generating the evolution of a population and 
improving its properties by selecting the best 

individuals as parents for the following generation. The 

genetic mixing is insured through crossing-over rate 

and mutation rate (one allele of the chromosome of an 

individual is randomly replaced by another allele of the 

species). Mutations allow keeping genetic diversity to 

avoid stopping at local optima. The output of the 

genetic algorithm is the combination of alleles that 
gives the highest cob weight with the genetic rules 

defined in the model through matrix A and application 

f.  

 

 
Figure 1. Optimization of allele values for the 

objective function of cob mass with the genetic 
correlations defined by matrix A. Parameter 

names are recalled in Table 1. 
 

Matrix A and application f are defined from the 

results of the QTL detection on model parameters. 

Thus it is possible to take into account the genetic 

correlations between the parameters in the optimization 

process. In our simulations, as no experimental results 
were available, the genetic correlations were arbitrarily 

set as presented in Fig. 1. For example, we can assume 

that SLA (Specific Leaf Area, cm2.g-1) and resistance 

to biomass conversion r are determined by the same 

QTL. The following parameters were also linked 

through a same genetic control: {sheath sink Ps, sheath 

sink variation parameter Bs and blade sink variation 

parameter Bb}; {internode sink Pi and internode sink 
variation parameter Bi}; {cob sink Pf and cob sink 

variation parameter Bf}; {number of basal short 

internodes Nbas and cob rank Rcob}. The expansion 

duration of all organs Te was set independently.  

The case where matrix A is the identity matrix (one 
gene for one parameter) gives the optimal parameter 

combinations. It can be compared to the probably more 

realistic case where matrix A defines correlations 

between the parameters (Table 1).  

 

Table 1. Results of genetic algorithm without or 
with genetic correlations (as defined in Fig. 1 and 

recalled through the superscript indices). 
 
Parameter Referen-

ce value 

Optimal 

value (A=Id) 

Optimal value 

with 

correlations 

SLA (cm2.g-1)
 1
 35.7 46.4 (max) 25.0 (min) 

Photosynthesis r 
1
 354 2478 (min) 248 (min)

 
 

Sheath Sink Ps
2
 0.7 0.49 (min) 0.91(max) 

Internode Sink Pi
3
 2.17 1.52 (min) 2.82(max) 

Cob Sink Pf
4
 202 222 161  

Blade Sink 
 
Variation 

Parameter Bb
2
 

0.4 0.31 (min) 0.31 (min) 

Sheath Sink 
 
Variation 

Parameter  Bs
2
 

0.53 0.41 (min) 0.41(min) 

Internode Sink Variation 

Parameter Bi 
3
 

0.79 0.61 (min) 0.61 (min) 

Cob Sink Variation 

Parameter Bf 
4
 

0.62 0.43 (min) 0.50  

Number of short basal 

internodes Nbas
5
 

6 8 (max) 6  

Cob rank Rcob
5
 15 9 (min) 14  

Expansion duration Te
6
 12 16 (max) 12  

Cob mass (g) 750.2 2325 1428 

 
The allele values were set in the interval [0.7 ; 1.3], 

that is to say the parameter variation range was ±30% 
around the reference value. The results show that sinks 

of non productive organs (except cob) should take 

minimal values to avoid waste in biomass partitioning. 

The number of short internodes should be as large as 

possible since it lets the plant allocate biomass 

uppermost to the blades that are the future source of 

assimilate production. But for other parameters or if 

matrix A is not the identity matrix, the influence is 
more complex and must be found through the 

algorithm. When genetic correlations are introduced, 

the potential cob mass is reduced of 38% and the 

dynamics of biomass partitioning are radically 

different: the optimal coordinates are not anymore 

positioned at the search domain boundaries for 

parameters concerning cob sink and plant topology. 

 

4. Sensitivity analysis  
 

A sensitivity analysis helps interpreting those 

results since it allows understanding the influence of 

each parameter on the objective function. Fig. 2A 
shows the effect of the variation of some parameters on 
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the virtual cob mass, all the other parameters being 

constant. The total number of phytomers (21) does not 

vary and the maximal cob rank is 19.  
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Figure 2. Sensitivity analysis on cob mass 

when A is identity matrix (A) and with genetic 
correlations between the parameters (B). 

 

The parameter having the highest impact on the cob 
mass is the resistance r (intervening in biomass 

production equation) since its diminution increases the 

plant’s ability to perform photosynthesis. Increasing 

SLA has a positive effect on the cob mass but it tends 

to stabilize because of leaf area index saturation (no 

need to increase the SLA if the light interception is 

already maximal). The little influence of variation of 

cob sink is due to its high value compared to other 
sinks. An optimum can be detected for cob rank. Its 

position depends on the shape of the cob sink variation 

function and on the biomass partitioning dynamics. 

Indeed, if the cob appears too late, it has not enough 

time to reach maturity; whereas if it appears too early, 

it penalizes blade growth, thus inducing a global 

decrease in plant biomass production. The expansion 

duration parameter drives the growth duration of all 

organs except for cob whose expansion duration is 

five-cycle higher. It shows an optimum when a balance 
is found between decreasing the expansion duration of 

the cob (negative effect on cob mass) and decreasing 

the expansion duration of other organs (positive 

effect).   

This sensitivity analysis can be extended to the case 

of complex associations at genotypic level (Fig. 2B). 

The correlations are given through the non null 

coefficients of matrix A (see Fig. 1). Globally, the 
parameter influences decrease due to the opposite 

interactions, which confirms the results found from the 

genetic algorithm (Table 1). For example, the strong 

impact of resistance on cob mass determination is 

weakened if the corresponding allelic value also drives 

the SLA. The optimal value is the minimal one (Table 

1) since resistance influence is much higher than SLA 

ones (Fig. 2A). However, the optimum cannot be 
estimated directly from the sensitivity analysis since it 

requires a simultaneous optimization of all the 

parameters. For example, the optimal value for cob 

sink and sink variation parameter is not the minimal 

ones as the curve of Fig. 2B would tend to suggest it.  

 

5. Discussion 
 

In this paper, the potential of linking growth models 

to quantitative genetics are studied using simulation of 
a GreenLab maize. According to Martin et al. [15], 

“the successful incorporation of ideoptypes into 

breeding programs probably depends on identification 

of only a few, critical traits that are closely correlated 

or linked with (…) yield”. Concerning model 

parameters, the sensitivity analysis reveals the most 

influential ones under a given climatic scenario and 

optimization procedures allow to get the optimal 
combination. Genetic correlations are not included at 

the first approach but once they have been detected, 

they can be taken into consideration and included as 

constraints into the optimization process. A genetic 

algorithm was used to optimize the parameters to get 

the highest cob weight for maize and to find the best 

compromise when negative genetic correlations where 

included. This method has the advantage of allowing 
optimization on both real and integer values at the 

same time (for the real values, the accuracy of the 

solution is set by the length of the discretization step 

chosen). It requires no a priori knowledge on the 

objective function and no derivation processes. But the 

convergence time is high (about half an hour) and one 

major difficulty remains to determine whether a local 

optimum is also a global optimum of the whole search 

A 

B 
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domain. However, for practical purpose, even a local 

optimum would provide an interesting result since the 

corresponding changes in parameter values would 

increase the yield. More parameters should be included 
in a complete study and new constraints should be 

added to have more realistic optimized values.  

 

6. Conclusion 
 
Model parameters should have higher heritability since 

they are expected to be less dependent on the 

environmental conditions and to be more direct gene 

expression. Optimization processes allows determining 

the key parameters influencing the yield, even when 

complex genetic correlations are introduced. Thus QTL 

detection on model parameters is worth to be tested 

since it provides new promising selection criteria.   
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