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Abstract. In global navigation satellite systems (GNSS),
the problem of retrieving clock-phase biases from net-
work data has a basic rank defect. We analyse the dif-
ferent ways of removing this rank defect, and define a
particular strategy for obtaining these phase biases in a
standard form. The minimum-constrained problem to be
solved in the least-squares (LS) sense depends on some
integer vector which can be fixed in an arbitrary man-
ner. We propose to solve the problem via an undiffer-
enced approach based on the notion of closure ambigu-
ity. We present a theoretical justification of this closure-
ambiguity approach (CAA), and the main elements for a
practical implementation. The links with other methods
are also established. We analyse all those methods in a
unified interpretative framework, and derive functional
relations between the corresponding solutions and our
CAA solution. This could be interesting for many GNSS
applications like real-time kinematic precise point posi-
tioning for instance. To compare the methods providing
LS estimates of clock-phase biases, we define a particular
solution playing the role of reference solution. For this
solution, when a phase bias is estimated for the first time,
its fractional part is confined to the one-cycle width in-
terval centred on zero; the integer-ambiguity set is mod-
ified accordingly. Our theoretical study is illustrated
with some simple and generic examples; it could have
applications in data processing of most GNSS networks,
and particularly global networks using GPS, GLONASS,
Galileo, or BeiDou/Compass satellites.

Keywords. Global and regional networks - Clock
biases - Uncalibrated phase delays (UPD) - Fractional
clock biases (FCB) - Network real-time kinematics
(NRTK) - Real-time kinematic precise point positioning
(RTK-PPP) - Closure difference (CD) - Nearest lattice
point (NLP) - Integer least squares (ILS)

1 Introduction

In global navigation satellite systems (GNSS), the cal-
ibration of the clock-phase biases of global networks is
a challenging problem. In particular, the knowledge of
the satellite clock-phase biases is needed for precise point
positioning (PPP); see, e.g., Zumberge et al. 1997; Ge
et al. 2008; Bertiger et al. 2010; Geng et al. 2010; Li et
al. 2013. In the general context defined below, the equa-
tions governing this GNSS calibration problem have a
basic rank defect. In this paper, we analyse the different
ways of removing this rank defect, and define a particular
strategy for obtaining the clock-phase biases in a stan-
dard form. The link with other related approaches, such
as those proposed by Blewitt (1989), de Jonge (1998),
Collins et al. (2010), and Loyer et al. (2012), is estab-
lished in that framework.

When modelling the multi-frequency (code and phase)
observations of GNSS networks, the system to be con-
sidered include phase structures of the form

[ﬁrn(i) _ﬁsn(j)] +N(l’]) = bﬂ(l’]) (1)

fork=1,...,k
Here, & is the epoch index; k is the index of the current
epoch; By (i) and By (j) are clock-phase biases. These
terms are also called ‘uncalibrated phase delays’ (UPD).
They are expressed in cycles, and depend on the fre-
quency of the transmitted carrier wave; subscripts r and
s stand for receiver and satellite,! respectively; i is the
index of the receiver, and j that of the satellite; N (i, j) is
the integer ambiguity of the corresponding carrier-phase
measurement. The terms by (4, j) include the correspond-
ing phase data and all the other contributions of such
equations; see, e.g., Egs. (1) and (10) of Lannes and
Teunissen 2011, and Egs. (1) and (4) of Loyer et al. 2012.
The set of receiver-satellite pairs (4, j) involved in Eq. (1)
forms the observational graph H, of the GNSS scenario

n this paper, satellite should be understood as satellite trans-
mitter.
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of epoch k. This graph is assumed to be connected; see
Appendix A. Note that the wide-lane equation of the
ionosphere-free mode is typically of form (1); N is then
a wide-lane integer ambiguity; see, e.g., Eq. (4) of Loyer
et al. 2012.

As explicitly clarified further on, whenever phase struc-
tures such as (1) appear in GNSS-network problems, a re-
lated rank defect is to be removed. In this paper, we re-
strict ourselves to the rank defects induced those phase
structures. This does not mean of course that those basic
rank defects are the only ones to be handled in practice;
see, in particular, Teunissen and Odijk (2003). A stan-
dard approach for tackling the rank defects is known as
the S-system approach of Baarda 1973, Teunissen 1984,
de Jonge 1998. Examples of such S-system solutions are
to be found in de Jonge 1998; Teunissen et al. 2010;
Zhang et al. 2011; Odijk et al. 2012.

In the geodetic and GNSS literature, there exist several
ways of removing this basic rank defect. The most gen-
eral approach is based on the S-system theory already
mentioned. Other strategies derive from the pioneering
contribution of Blewitt (1989): the relationship between
the undifferenced (UD) ambiguities and the double dif-
ferenced (DD) ambiguities is completed so that the op-
erator D thus defined is invertible. Let us also mention
the approach of Collins et al. (2010) which is based on
the concept of ‘ambiguity datum fixing.” The important
developments of those approaches, both at a conceptual
and technical level, were often conducted with different
physical objectives. They have thus progressively and
insidiously masked the fundamental links between the
related methods.

Briefly, the Blewitt procedure can be divided in three
steps. In the first step, with regard to Eq. (1) for exam-
ple, the UD data are processed by considering the term
on the left-hand side of that equation as a ‘constant func-
tional variable;’ a float estimate of this ‘biased-ambiguity
variable’ is thus obtained. In the second step, the corre-
sponding DD ambiguities are computed, and then fixed
at integer values. In the third step, the clock-phase bi-
ases [, are estimated by using as data the UD ambi-
guities provided by the action of D~! on the column
matrix formed by those fixed ambiguities. The theoret-
ical analysis developed in the present paper provides in
particular an answer to the following question: what is
the link between the UD ambiguities thus fixed and the
fixed ‘closure-delay’ or ‘closure-difference’ (CD) ambigui-
ties of the UD approach of Lannes and Teunissen (2011)7
A similar question arises for the UD approach of Collins
et al. (2010); an answer is also provided.

In this general GNSS context, the main objective of the
paper is to present a unified interpretative framework in
which the various contributions in the related fields of
research can be understood and compared more easily.
This can lead to improvements of some related meth-
ods. For example, we show that removing the rank de-
fect via the D-matrix of Blewitt (1989) can be analysed

in a theoretical framework tightly linked to the S-system
approach of Teunissen (1984). We thus show that the in-
termediate differencing stage of the Blewitt approach can
be avoided, without any counterpart, via the approach
of Teunissen (1984) as it is formulated for example in
Lannes and Teunissen (2011): the ‘closure ambiguities’
to be fixed then appear, from the outset, in the very for-
mulation of the UD problem to be solved; compare with
what is done in Sect. 4 of Ge et al. (2005) for instance.

The theoretical guidelines of this paper are presented in
Sect. 2. We first identify the rank defect in question.
The minimum-constrained problem to be solved in the
least-squares (LS) sense depends on some integer vector
which can be fixed in an arbitrary manner. To compare
the methods providing LS estimates of the clock-phase
biases, we then introduce a particular solution playing
the role of reference solution. For this solution, when a
clock-phase bias is estimated for the first time, its frac-
tional part is confined to the one-cycle width interval
centred on zero; the integer-ambiguity set is modified
accordingly. Section 3 is devoted to the algebraic frame-
work of our analysis. This framework mainly derives
from the original contributions of Lannes and Gratton
(2009), and Lannes and Teunissen (2011). As a similar
problem arises in phase-closure imaging in astronomy, we
also took profit of the analysis presented in Lannes and
Prieur (2011). A natural way for finding the reference
solution is to adopt an approach based on the notion of
closure ambiguity. The principle of the corresponding
‘closure-ambiguity approach’ (CAA) is defined in that
framework (Sect. 4). The bulk of our contribution fol-
lows the main theoretical guidelines presented in Sect. 2.
In a related option which is presented in Sect. 5, the
CAA principle is directly introduced via the S-system ap-
proach of Baarda (1973), Teunissen (1984) and de Jonge
(1998). The corresponding development is performed in
the S-system framework defined in Appendix B. The
study developed in Sects. 3.3, 3.4 and 3.15 of de Jonge
(1998) is thus extended to the cases where the union
of the graphs H, is taken into account progressively.
Section 6 is devoted to the QR implementation of the
CAA principle; related information is to be found in
Appendix C. In many methods, the rank defect in ques-
tion is removed in an implicit manner or intuitively. In
Sect. 7, on the grounds of some results established in
Sects. 3.5 and 3.6, we identify the related constraints ex-
plicitly, and thus establish the link between the solutions
provided by those methods and the CAA-(S-System) so-
lutions; see Fig. 6 in particular.

Our analysis is illustrated with some simple and generic
examples. It could have applications in data processing
of most GNSS networks, and particularly global networks
using GPS, GLoNass, Galileo, or BeiDou/Compass satel-
lites. The main results provided by this study are com-
mented upon in Sect. 8; some conclusions are also pre-
sented with possible applications to software packages
used for processing GNSS networks.
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2 Theoretical guidelines

The problem is formulated in Sect. 2.1; the related rank
defect is identified in Sect. 2.2. This rank defect can be
removed by imposing some constraints without affecting
the GNSS results such as the estimates of the station-
position parameters, for example. The particular LS so-
lutions thus obtained are defined in Sect. 2.3. We then
define the family of those solutions (Sect. 2.4). To com-
pare the particular solutions given by the various GNSS
methods providing LS estimates of clock-phase biases,
we then introduce a particular solution playing the role
of reference solution (Sect. 2.5).

2.1 Formulation of the problem

In our formulation of the problem, the components of the
ambiguity vector N are the integer ambiguities N (i, j)
involved in the phase measurements until the current
epoch. We thereby assume that the time-invariant prop-
erty of the ambiguities holds. Regarded as a function,
N therefore takes its values on the edges of

gk = U Hli (2)

where H, is the observational graph of epoch k. In what
follows, Hj denotes the ‘characteristic function’ of Hy
with regard to Gy:

1 if (4,5) € Hy;
for all (i) € G Hy(i, )2 |- P ST g
0 otherwise.

The number of edges (r;,s;) of H, is denoted by ne;
Nex 18 less than or equal to the number of edges of Gy.

To illustrate our analysis, we consider a ‘simulated net-
work’ including four receivers and five to eight satellites;
see Fig. 1. The scenarios of the first three epochs are
defined by the characteristic functions Hy, Hy and Hj
displayed in that figure. While looking simple at first
sight, this example is rather elaborate. Indeed, it in-
cludes the case of the appearance of new satellites in the
field of view of the network (sg and s; at epoch 2, sg at
epoch 3), and also the case of the disappearance of one
satellite (s3 at epoch 3).

Remark 2.1. When a satellite comes back in the field of
view of the network, it is dealt with as a new satellite.
In the case of global networks, if need be, the successive
passes are thus dealt with in a simple manner [

At epoch k < k, only some components of N may be
active; see Fig. 1. To formalize this point, we introduce
the operator R, that restricts N (which is defined on the
edges of G) to the edges of H,:

for all (4,7) € He, (REN)(i,5) % N(,5) (4)

S1 52 S3 S4 S5

|l 1 1

Ty 1 1

r3|1 1 1 1
Iy 1 1

S1 52 53 S4 S5 S6 S7

rnil 1 . 1 . : 1

ry | - 1 0 . . 1 1

r3|1 1 0 1 1 1

Iq | - . 1 1 1

S1 S92 S3 Sq4 S5 S S7 S8

rnil 1 . 1 . : 1

/- 1 o0 . - 1 1 1
;3]0 1 o 1 1 1

4l - 0 1 1 - 1 1

Figure 1: Characteristic functions of Hy, with regard to G
for k = 1,2,3 (ezample). From top to bottom, Hi, Ha,
and Hs. The dots define the edges (r;,s;) for which no data
have been obtained until epoch k included. Here, no1 = 11,
nez = 15, and ne3 = 16. By definition, G is the union of
the observational graphs until epoch £ included. The num-
ber of the edges of G, is 11 at epoch 1, 17 at epoch 2,
and 20 at epoch 3. Six edges appear at epoch 2: (r1,s7),
(r2,s6), (r2,87), (r3,s2), (r3,s6) and (r4,ss5); two edges dis-
appear: (rz,s3) and (rs,ss). Note that satellites s¢ and s;
are then detected by the network. Three edges appear at
epoch 3: (r2,ss), (r4,s7) and (r4,ss); two edges disappear:
(r3,s1) and (ra,s3). Satellite s then disappears. At each
epoch, the large-sized numbers define the edges of G i, the
selected spanning tree of Gy; see Fig. 5 further on.

Equation (1) can then be written in the form
BB + RN = by,
fork=1,....k

where B,; is the following bias operator:

(Bnﬂn)(ia ]) d:ef ﬂrn(i) - 6sn(])

In what follows, we will assume that Receiver 1 defines
the reference for the receiver and satellite biases:

Brx(1) =0

This is commonly used by the GNSS investigators for
removing the rank defect of operators such as B,,. The
number ny, of phase biases of epoch x to be estimated

(for all (i,7) € Hy) (6)

(k=1,...,k) (7)
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is therefore equal to ny, — 1 where ny, is the number of
vertices of H,.:

Nbr = Ny — 1 (nv;{ = Nypp + nsn) (8)
With regard to its functional variables 31, ..., 8 and NV,

Eq. (5) proves to have a basic rank defect. We now
specify this point.

2.2 Identification of the rank defect
For clarity, let us set
G =Gk (9)

At epoch k, the number of ambiguities N(i,7) involved
in the problem is equal to the number of edges of G (for
example twenty in Fig. 1 for k = 3). Again, for clarity,
this number is simply denoted by n.. We then set

Ngt = Ny — 1 (ny =ny +ng) (10)
where n, is the number of vertices of G; n, and ng are the
number of receivers and satellites (respectively) involved
in that graph (four and eight in Fig. 1 for k = 3). As
specified in Sect. A2, ng is the number of edges of any
spanning tree Gy, of G. The total number of phase biases
to be estimated at epoch k, Zﬁzl Npk, 1S generally much
larger than ng; see Egs. (8) and (10). The part played
by the vertices of G is not obvious. We now show that
ngt defines the ‘size’ of the rank defect in question.

Let us denote by B the operator from R"t into R™ de-

fined by the relation
(Ba)(i,j) = ax(i) —as(j)  (forall (i,j) €G) (1)

Denoting by p any integer-valued function taking its val-

ues on the vertices of G other than the reference receiver,
we have

RiBp= B, Rp (12)

where R} is the restriction of 1 to the vertices of H,
(other than the reference receiver). Note that u can be
regarded as a vector of Z"=t. It then follows from Eq. (5)
that for any p in Z"st,

B (8, + Ryp) + RE(N — Bp) = b

fork=1,....k (13)
Via the operators B,, R, RS and B, any variation of
the ‘vertex-ambiguity’ vector p can thus be compensated
by a variation of the ‘edge-ambiguity’ vector N. As a
result, with regard to the bias and ambiguity variables,
Eq. (5) is not of full rank. The dimension of the rank
defect is equal to that of vector u, i.e., ngt.

2.3 Particular LS solutions

In GNSS, for the reasons specified in Remark 2.2 (at the
end of this section), each clock-phase bias is to be esti-
mated up to a constant integer. As a result, the choice
of p in Z™t does not affect the significant part of the
values of the bias functions

we = B, +Rip (k=1,...,k) (14)

to be estimated; see Eq. (13). The ambiguity vector to
be retrieved

v=N — By (15)
is of course affected by this choice, but this has no actual
GNSS impact. As a result, the GNSS methods provid-
ing estimates of the clock-phase biases must remove the
rank defect of Eq. (5) by choosing p in Z™* somehow,
implicitly or explicitly.

In practice, as clarified in the remainder of the paper,
removing this rank defect amounts to imposing ng con-
straints on some values of the biases or ambiguities to
be retrieved. In other words p is defined via these con-
straints. The minimum-constrained problem to be solved
in the LS sense is therefore of the form

(k=1,...,k)

subject to ng constraints on w,; or v

B.w, +Riv = by
(16)

With regard to a particular set of such constraints, where
v is an integer-valued function from Eq. (15), the LS so-
lution of Eq. (16),

('(Z)l,...,?l)k;@) (17)

is then unique. For example, the solution provided by the
CAA method defined in Sect. 4 is the particular LS solu-
tion obtained by imposing the a priori constraint v =0
on a spanning tree of G (chosen arbitrarily). The partic-
ular LS solution introduced in Sect. 2.5 is defined by im-
posing, a posteriori, ng constraints on some bias values.
In our analysis, this particular solution plays the role of
reference solution; it is denoted by (wy, ..., Wg; D).

Remark 2.2. The satellite components of the biases thus
obtained (for example those of the reference solution)
can be broadcasted to the network users for PPP appli-
cations. The fact that ws,(j) is an LS estimate of s (j)
up to some unknown constant integer does not raise any
difficulty. One is then simply led to redefine the integer
ambiguities involved in the PPP problem to be solved;
see, e.g., Sect. 9 in Lannes and Teunissen 2011 [

2.4 Equivalent LS solutions

Given some particular LS solution such as (17), we have

LS

B, + R = by
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Like for Eq. (13), it then follows from Eq. (12) that
B, (@, + Rip) + Ry, (8 — Bu) = by
The LS solutions of Eq. (5) are therefore of the form
@, ... 0 5w) (18)
with
W = i, + R p, oW =y — By (19)
where p is any vector of Z™st.

The methods providing LS estimates of the phase biases
generally differ by the choice of the imposed constraints.
To compare their results, it is convenient to represent the
equivalent solutions (18)-(19) by a reference particular
solution. This is done in Sect. 2.5.

Remark 2.3. For any fixed p in Z"=*, the temporal vari-
ations of the estimated phase biases make sense. For
example, if satellite s; remains in the field of view of the
network from epoch 1 to x, we have

(Rp)s(i) = (Rip)s(d) = ps(4)
hence from Eqs. (19) and (14) ,
@l () = %) () = wew () = a1 (§)
= ﬂsn(]) - ﬂsl(])

A similar result of course holds for the receiver clock-
phase biases [

2.5 Reference solution

We here concentrate on the family of equivalent LS so-
lutions (18)-(19) generated by a particular solution such
as (17): (w1,..., Wk; ©). In our analysis, the reference
solution of this family is the particular solution

(01, ..., Wg; D) (20)

defined as follows: @, and @ are of the form (19)

_def o

-~ _d
Wy, = W + RN, v

o

f -

b — Bji (21)

in which fi is defined by imposing specific constraints
on ng bias values; note that here, these constraints are
imposed a posteriori on the solution (ws, ..., Wg; U) pro-
vided by any method. We first require the phase bias w
to be small at epoch 1. More precisely, we impose the
condition |w;| < 1/2, i.e. explicitly,

|we (2)] <1/2 fori=2,...,np
(22)
|’II}51(.7)| S 1/2 fOI“j = 1, ceey N1
The following values of ji are defined accordingly:
[Lrl(i) = Lwrl(l)—l fori=2,...,nn
. o . (23)
fs1(G) = = [wa(G)] forj=1,...,nq

Here, |x] denotes the integer closest to z. Likewise,
at each epoch x when some satellite(s) s; appear(s) in
the field of view of the network (see Fig. 1), we then
impose the condition(s)

W (5)] < 1/2 (24)
by setting
ﬂsn(.j) == I_wbn(])—l (25)

(In the case where new receivers would be activated, sim-
ilar conditions would be imposed.) At epoch k, we have
thus completely defined some vector fi of Z™st; v is then
obtained via the relation o := © — Bji; see Eq. (21).

Remark 2.4. When some LS solution (w1,...,w; 9)
has been found, for instance that provided by the CAA
method defined in Sects. 4 to 6, the reference solution of
its equivalent solutions is obtained as described in this
section. Clearly, this can also be done for the LS solution
of any method providing estimates of the phase biases;
see Sect. 7 together with, e.g., Blewitt 1989; Ge et al.
2005; Laurichesse and Mercier 2007; Collins et al. 2010;
and Loyer et al. 2012. To compare and validate the re-
sults provided by all these methods (and many others),
one may inspect the ambiguity sets of their reference so-
lutions. These reference ambiguity solutions should be
identical on all the edges of G for all methods; otherwise,
this would be an indication that the methods are in dis-
agreement, and that some of those results are wrong.
The comparison of the reference solutions is therefore
a good diagnosis for testing the compatibility of these
methods [

Remark 2.5. From a technical point of view, one might
try to solve Eq. (16) in the LS sense by imposing the non-
linear bias constraints (22) and (24) on w; and some w,
from the outset. It is not easy at all to solve the problem
that way. Moreover, the number of edge ambiguities to
be fixed would then be equal to n., whereas the num-
ber of ambiguities to be fixed in the CAA approach (for
example) is equal to ne — ng; see Sects. 4 and 6 [

3 Algebraic framework

The preliminary analysis developed in Sect. 2 shows that
graph G, operator B, and Z" play a key role in the
formulation of the problem and the definition of its so-
lutions; see, in particular, Egs. (13) and (18)-(19). The
aim of this section is to define the corresponding alge-
braic framework.

We first define related spaces of functions (Sect. 3.1).
The key property on which our analysis is based is pre-
sented in Sect. 3.2. The related notions of closure differ-
ence, CD ambiguity (also called closure ambiguity), and
closure matrix are specified in Sects. 3.3 and 3.4. Sec-
tions 3.5 and 3.6 are devoted to some generalized inverses
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of the UD-CD and UD-DD relationships. The analysis
concerning the operator D introduced in the appendix B
of Blewitt (1989) is thus completed. We now draw freely
from the elementary notions introduced in Appendix A.

3.1 Reference spaces

Given some graph G = G(V, &), with vertex set V and
edge set £ (see Sect. A1), we introduce some functionals
spaces which play a key role in the algebraic analysis of
the problem. In what follows, the GNSS grid associated
with G is denoted by G; see Fig. Al.

3.1.1 Vertex-bias space

Let V4, be the space of real-valued functions
a= (ar, ag) (26)

taking their values on the vertices of G with a,(1) = 0.
This space, which is referred to as the vertex-bias space,
is associated with the definition of (virtual) phase bi-
ases « on the vertices of G (other than the reference
receiver). From Eq. (10),

Vb & R™ (27)

Here, the symbol = means ‘isomorphic to.” Note that
Z™ is the ‘integer lattice’ of W,: V4, (Z) = Z"t. The
integer vector % (ur, p1s) is a point of this lattice.

3.1.2 Edge-delay space

A real-valued function 9 taking its values on G, and
thereby on &, can be regarded as a vector of the edge-
delay space

E = R" (28)

The values of ¥ on G are then regarded as the compo-
nents of 9 in the standard basis of E; Z"< is the ‘integer
lattice’ of E: E(Z) = Z™. The integer-ambiguity vec-
tor N is a point of this lattice.

3.1.3 Spanning-tree delay space.
Closure-delay space

Given some spanning tree Gy of G, grid G can be de-
composed into two subgrids: G and G¢; see Sect. A2.
These grids include ng and n. points, respectively (see
Fig. A2):

Te = Ne — Nt (29)

The functions of E that vanish on G. form a subspace
of E denoted by Fg: the spanning-tree delay space.
Likewise, the functions of E that vanish on Gy form

a subspace of E denoted by E.: the closure-delay space;
this terminology is justified in Sect. 3.3. The correspond-
ing integer lattices are denoted by Eg(Z) and E.(Z), re-
spectively. Asillustrated in Fig. 2, the Euclidean space E
is the orthogonal sum of Fg and E.. Clearly,

dim By, = ne,  dim B, = ne (30)

The orthogonal projections of ¥ on Eg and E. are re-
spectively denoted by Qv and Q9.

3.1.4 Edge-bias space

By definition, the bias operator is the operator from V;,
into E defined by Eq. (11). The range of B, which is
denoted by F}, (see Fig. 2), can be referred to as the edge-
bias space. Its functions are of the form a, (i) — as(j).

The operator from V4, into Fy induced by B is denoted
by Bst. Likewise, the operator from Vj, into F. induced
by B is denoted by B..

The matrix of B is generally expressed in the standard
bases of V}, and E. For example, let us sort the edges of
the graph shown in Fig. A1 in the order obtained via the
application of the Kruskal algorithm; see Sect. A2. The
points of G are then ordered as follows:

(1’ 1)’ (1’3)’ (1’4)’ (2’ 1)’ (2’ 2)’ (3’ 2))
(2,4), (3,3), (3,4)
We then have

0 0 -1 0 0 0
0 0 0 0 -1 0[]
000 0 0 0 -1]|]|a@
1 0 -1 0 0 0

Blol=|1 0 0 -1 o olf]|*W
0 1 0 -1 o0 o]]|x®
1 0 0 0 0 -1 as(3)
001 0 0 -1 0/ |a@)
01 0 0 0 -1]

The columns of [B] then define the standard basis of F,.
Clearly,

o 0 -1 0 0 O
0 0 0 0 -1 0
0 0 0 0 0 -1
1 0 0 -1 0 0
|01 0 -1 0 0
and
1 0 0 0 0 -1
[B =10 1 0 0 -1 0 (32)
(01 0 0 0 -1

The condition Bgia = 0, i.e., Ba = 0 on the edges of Gy,
implies that « is constant on V; as a,(1) = 0, this con-
stant is zero. The null space of B is therefore reduced
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to {0}. As Ba = 0 implies Bgyaw = 0, the null space of B
is also reduced to {0}. We thus have

ker B = ker B, = {0} (33)
As a result, B is of full rank, hence from Eq. (27),
d1m Eb = Nt (34)

The edge-bias space E}, and its ambiguity lattice Fy,(Z) =
BW,(Z) are isomorphic to the vertex-bias space V4, and
its integer lattice V4, (Z), respectively; see Sect. 3.1.1.

3.2 Key property

As ker By, = {0} (Eq. (33)), and dim Eg; = dim V4, (see
Egs. (30) and (27)), Bs; maps V4, onto Eg; By is there-
fore invertible. As specified in this section, our analysis
derives from this property.

Let us concentrate on the vertex-bias function

ol ¥ B Qud (@ =ay) (35)
When no confusion may arise, subscript st is omitted.
According to its definition (which is illustrated in Fig. 2),
Qs is the function of Eg whose values are those of ¢
on subgrid Ggt.

The values of a(?) can be obtained from those of Qg1
in a very simple manner; the corresponding recursive
process is described in Sect. 5 of Lannes and Teunissen
(2011). The column vectors of [Bg] ™! can thus be eas-
ily obtained. In fact, [By] is a particular unimodu-
lar? matrix whose inverse can be obtained via another
integer-programming technique; see Sect. A1.4 in Lannes
and Teunissen (2011). For example, the inverse of ma-
trix (31) is

-1 0 0 1 0 O

-1 0 0o 1 -1 1

L l-1 0 0 0o o0 o0
0 -1 0 0 0 0

0 0 -1 O 0 O

Let us now consider the following edge-bias function:
Iy = Ba?) (37)

According to Eq. (35), the values of ¥, and ¥ coincide
on Ggi. The function ¥, defined by the relation

Ve 9 — (38)

2By definition, a unimodular matrix is a square integer matrix
with determinant +1.

Est Eb
(nst) (nst)

Qstﬂ )

Ve QY| E.

Figure 2: Geometrical illustration of Property 1.
In this geometrical representation of the edge-delay
space E = R" | Eg is the spanning-tree delay space.
This space is isomorphic to the vertex-bias space
Vb =2 R™t. The orthogonal complement of Eg in the
Euclidean space F is the closure-delay space E.. The
range of the bias operator B, the edge-bias space, is
a subspace of F denoted by E},. This space is isomor-
phic to Fs and thereby to V4. (The dimensions of
these spaces are written within parentheses.) As illus-
trated here, E is the oblique direct sum of E}, and E..
The closure operator C is the oblique projection of £
onto F. along FEy; for further details see Property 1.

therefore lies in E.. We thus have the following property
(see Fig. 2):

Property 1. Any edge function 9 of E can be decom-
posed in the form ¥ = 9y, + 9 with 9, = Ba® and 9.
in E.. For a given spanning tree, this decomposition is
unique. As a corollary, E is the oblique direct sum of Ej,
and E.: E = Ey, + E, with B, N E, = {0}.

As illustrated in Fig. 2, 9. is the oblique projection of
on E. along Ey. The corresponding operator is the ‘clo-
sure operator’ C":

9 = C0 (39)
Its null space (i.e., its kernel) is the range of B:

ker C' = Ey, (40)
with dim Ey, = ne (Eq. (34)).

According to Property 1, any function N of the ambigu-
ity lattice E(Z) = Z" can be decomposed in the form

N = Ny + N, (41)
with Nbd:efBuéiv) where (from Eq. (35))
n EBIQUN . (Y =) (42)

As By is unimodular, ) is an integer-valued function;
Ny = Bu™) and N, = CN are therefore points of the
integer lattices F},(Z) = Z™* and E.(Z) = Z™, respec-
tively. As a result, the integer lattice E(Z) is the oblique
direct sum of the integer lattices Ey,(Z) and E.(Z):

E(Z) = Ey(Z) + E(Z)  En(Z) N Ec(Z) = {0} (43)
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3.3 Closure delays (closure differences)
and closure ambiguities

According to Eqgs. (38) and (37), the quantities ¥ (i, j¢),
for/=1,...,n., can be computed via the formula

Delie, je) = Die, je) — [ (i) — &£ (jo)] (44)

where a(?) is determined via Eq. (35). As clarified in this
section, these quantities can be referred to as the ‘closure
delays’ or the ‘closure differences’ of ¥; the N. (i, j¢)’s are
therefore ‘CD ambiguities,” also simply called ‘closure
ambiguities.’

In the example of Fig. A2, let us consider the second loop,
i.e., the loop associated with the closure point (i2,j2) =
(3,3). In G, the successive points of this loop are the fol-
lowing: (3,3), (3,2), (2,2), (2,1), (1,1), and (1, 3). Since
I (i, 5) = ot (i) —
ing manner,

ol? (j), we then have, in a telescop-

U5(3,3) — 9(3,2) + 9b(2,2) — 9p(2,1)
+ 9p(1,1) — 9p(1,3) = 0.
Furthermore, as 9. vanishes on Gg,
9c(3,3) — 0:(3,2) + 9.(2,2) —
+ Je(1,1)

9.(2,1)
—9:(1,3) =9.(3,3)
Since ¥ = 9y + Y. from Property 1, it follows that
9¥(3,3) — 9(3,2) +9(2,2) —9(2,1)
+9(1,1) —9(1,3) = 9.(3,3)

This explicitly shows that ¥.(i2, j2) can be regarded as
the closure difference of ¥ on the second loop. The gen-
eralization is straightforward. In the example of Fig. A2,
we thus have

9e(2,4) = 9(2,4) — 9(2,1) + 9(1,1) — (1, 4)

06(3,3) = 9(3,3) — 9(3,2) + 9(2,2) — 9(2,1)
+9(1,1) — 9(1,3) (45)

0e(3,4) = 9(3,4) — 9(3,2) + 9(2,2) — 9(2,1)
+0(1,1) — 9(1,4)

More generally, owing to the telescoping structure of
their construction, the closure differences ¥.(is, j¢) are
associated with loops whose order is even, and greater
than or equal to 4. In this limit case, the notion of
closure difference (CD) reduces to that of double dif-
ference (DD). According to Eq. (44), the ¥.(i¢, j¢)’s can
however be computed without knowing the edges of their
loop. How to identify these edges, if need be, is specified
in Sect. 3.4. Subject to some condition, these CD’s can
be expressed as linear combinations of DD’s. The related
matter is analysed in Sect. 10 of Lannes and Teunissen
(2011).

3.4 Closure matrix

According to the definitions of By and B, (introduced in

Sect. 3.1.4), the vector ¥, = Ba(®) can be orthogonally
decomposed in the form

O = Bea'” + Boa”) = Qu + Boa?)
Likewise,
9= Qstﬂ + Qcﬂ

where Q.9 is the orthogonal projection of ¥ on E.; see
Fig. 2. It then follows from Eq. (35) that

Yo =10 —9p = Q) — Boa™ = Q.9 — Bch}letﬂ

Denoting by [C] the matrix of C' expressed in the stan-
dard bases of E and E., we thus have, from Eq. (39),

[C][9] = —[Bc)[Bs] "' [Qst9] + [Qc)-

The column vectors of [C] corresponding to the spanning-
tree edges (on which Q.¢ vanishes) are therefore those
of —[B.][Bst)™!. It is also clear that the column vec-
tors of [C] corresponding to the closure edges (on which
Qst9 vanishes) are those of the identity matrix on FE..
Consequently, with regard to the orthogonal direct sum
Est D Eca

[C] = [ *[BC][Bstrl [IC,C] } (46)
In the example of Fig. A2, we thus have, from Egs. (31),
(36), and (32), with the same edge ordering,

1 0 0 0 0 -1
[BJ[Bs]™*=]0 1 0 0 -1 0
0o 1 0 0 0 -1

-1 0 0 1 0 0

-1 0 0 1 -1 1

L1 0 0 0 0 0

-1 0 0 1 -1 0

0O -1 0 0 0 0

0 0 -1 0 0 0

As a result,

1 0 -1 -1 0 0 1 0
=1 -1 0 -1 1 -1 0 1
1 0 -1 -1 1 -1 0 0

— o O

Applied to [9], this matrix of course yields Eq. (45).
More generally, the edges of a ‘closure loop’ are iden-
tified via the nonzero entries of the corresponding row
of [C]. In fact, this is the most efficient way of identi-
fying the loops in question. Note however that in the
CAA method presented through Sects. 4 to 6, the action
of this matrix is never explicitly performed.
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3.5 On some generalized inverse
of the UD-CD relationship

The closure operator C, which is an oblique projection,
is not of full rank. The simplest way of removing its
rank defect is to introduce the operator C, from F into
Est X Ec

Co9 = (Qurdd, CV) (47)

According to Property 1, Cs is invertible; this can be im-
mediately understood from Fig. 2 for example; C;! can
then be regarded as some generalized inverse of C'. We
now specify this point, explicitly, in matrix terms. The
corresponding development is aimed at analysing the ap-
proaches of Blewitt (1989) and Collins et al. (2010) in
an elementary manner; see Sects. 3.6 and 7 further on.

In the standard bases of £ = E @ E. and Eg x E., the
matrix of C, can be written in the form (see Eq. (46))

st Ist st Ost c
oy [@a] ] sl ,]] )
[C] - [BC] [Bst] [IC,C]
It is readily verified that
[Ist st] [Ost c]
Co] ™t = ’ ’ 4
= ama M} 4

Given some point Ny arbitrarily ﬁg(ed in Es(Z), let us
now consider the ambiguity point N of F(Z) defined by
the relation

y N,
e || t]] (N ON) (50)
[N
In the following property,
EN(Z)E N + Ey(Z) (51)

is the ‘affine lattice’ passing through N and parallel to
the integer lattice E,(Z) of the edge-bias space E,; see
Sect. 3.1.4 and Fig. 3.

Property 2. The ambiguity point N is the point of the
affine lattice E( )( Z) whose projection on Eg is equal
to Ny. More prec1se1y, N = N, + Bu®™=), As a corol-
lary, in the special case where Nst is set equal to 0, N is
nothing else than N..

For reasons of clarity and brevity, the proof is left to the
reader. Note that this property can also be understood
within the S-system framework; see for instance the table
given in Sect. 1.6 of Teunissen (1984).

3.6 On the Blewitt generalized inverse
of the UD-DD relationship

We now apply the results of the previous section to the
UD-DD relationship, and thus make the link with the
approach of Blewitt (1989).

By BN (2)
E
o N
/ﬂ N
Est BM(Nst) /C
N,
Nst

Figure 3: Geometrical illustration of Property 2.
In this symbolic representation of the edge-delay
space E, EéN)(Z) is the affine lattice passing
through N and parallel to the integer lattice Ey,(Z)
of the edge-bias space E} (here, for clarity, the ver-
tical axis); N is the UD ambiguity obtained via the
relationship (50) in which Ny is arbitrarily fixed
in Es(Z), and Nc is the CD ambiguity point of N
(the closure ambiguity of N). In the important
special case where Nst is set equal to 0, N reduces
to Ne.

According to Eq. (68) of Lannes and Teunissen (2011),
the maximum number of independent DD’s is less than
or equal to n.: ng < n.. For clarity, let us now set
ny :=ng. In the important special case where

Ne = Nq (52)

the information contained in the DD data is equiva-
lent to that contained in the closure data. Let us then
denote by Dg . the operator providing a maximum set
of ng DD’s. By definition, Dg . is an operator from E
into R™, i.e. then, R™. By sorting the edges of G as
specified in Sect. 3.1.4, the matrix of Dg . has then the
following block structure:

[Dd,e] = [[Dd,st] [Dd,C]] (53)

Here, matrix [Dq ] is expressed in the standard bases of
E = E4 & E; and R™. The columns of [Dyq «] and [Dy ]
therefore correspond to the edges of Gg; and to the clo-
sure edges, respectively. Provided that Condition (52)
is satisfied, [Dq,.] is invertible; moreover, the entries
of [Dq,]~! are then equal to 1 or 0; see Lannes and
Teunissen 2011.

Like for C' (see Eq. (48)), we then introduce the operator

[Qst]
[Dd,e]

As N = Ny, + CN from Property 1, and [Dq ¢|[Np] = 0,

[Do] = (54)
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we have, from Eq. (53),
[Na] = [Da,e][N] = [Da,c][CN] (55)
It then follows from Eq. (48) that
[Ist,st] [Ost,c]
[Cs] (56)
[Oc,st] [Dd,c]
We then have

l q l[%]]
[Na] [Da,c] [ Vd]

where [Dq,c]”'[N4] = [CN] from Eq. (55). It then fol-
lows from Eq. (50) that

[Nst]
[Vd]

[DO] -

[Do] ™ l = [N] (57)

Given some DD ambiguity set (55), and some point Ny
arbitrarily fixed in Eg(Z), the UD ambiguity thus ob-

tained is equal to N, + BuVst); see Property 2 and Fig. 3.

Via the action of [D,]™!, we thus retrieve the closure-
ambiguity point N, up to the vector BuVst) of Ey,(Z).

Remark 3.1. In fact, [D,] is a version of the D-matrix
of Blewitt (1989). In the appendix B of that paper,
the spanning tree Gy is implicitly defined by arbitrar-
ily selecting a set of “n — m undifferenced biases which
pass the Gram-Schmidt test” of that appendix, i.e., in
our algebraic framework, by arbitrarily selecting a set of
‘ngs edges whose characteristic functions pass the Gram-
Schmidt test.” Property 2 therefore completes the analy-
sis of the UD-DD relationship of Blewitt (1989) by spec-
ifying how the ambiguity solution N is related to N, by
the choice of ]Vst B

Remark 3.2. Equation (57) corresponds to Eq. (8) of Ge
et al. (2012) in which

[G = @] ] — [DJ], {b - [N“]], B N
D — [Dg.e] N — [Ng]

Here, the notation ‘e — b’ means ‘a stands for b.” The
arbitrary ambiguity set b — [Nst], which is then referred
to as the reference ambiguity, has of course nothing to do
with the ambiguity set © of the reference solution defined
in Sect. 2.5 [

4 CAA principle

As already emphasized, with regard to the variables in-
troduced in Egs. (14) and (15), the choice of p in Z™st is
defined via appropriate constraints; see Sect. 2.3. As a
matter of fact, the most natural way of removing the rank
defect is to select p via a priori constraints on the am-
biguity variable v. Indeed, these constraints can then be
integrated in the very definition of v. The CAA principle
presented in this section results from the following pre-
liminary analysis. (A possible introduction of this prin-
ciple via the S-system approach is presented in Sect. 5;
it should however be noted that the other classes of pos-
sible choices for u do not then appear so easily.)

Let Gy be a spanning tree of G chosen arbitrarily; see
Sect. A2 and Fig. 1. In the algebraic framework defined
in Sect. 3, the ambiguity vector N can be decomposed
in the form N = Ny, + N, where

Ny = Bu™Y), N, =N - Bu™N) (58)

in which x™) = BZ'Q. N; see Eq. (42). In these equa-
tions, N, and N, have an implicit subscript: st for Gg;.
Note that p(N) is defined from the values of N on the
edges of Gy in a unique manner. (As N is unknown,
this definition is virtual.) By construction, u) lies
in W(Z) = Z™+, and N, vanishes on the edges of Gg.
As specified in Sect. 3.3, N. = CN is the closure ambi-
guity of N with regard to G;.

The spanning tree G is built progressively from epoch 1
to k. More precisely, when new satellites are to be taken
into account, it is completed as specified in Sect. 6.3 (see
Figs. 1 and 5); ng is thus equal to np; plus the number
of satellites having appeared in the field of view of the
network from epoch 2 until £ included. The number
of values of N, that are not equal to zero by definition
is equal to ne = ne — ng (Eq. (29)). For example, in
Fig. 1, for k = 3, we have n, =20, ngg =np1 +2+1
with ny,; = 8, hence ne = 9.

With regard to Egs. (14) to (16), the CAA solution cor-
responds to the following choice of p:

po= (59)

From Eq. (58), we then have v = N — By = N.: the
ambiguity functional variable v vanishes on the edges
of Gst. According to Eqs. (14) and (15), the ‘estimable
functional variable’ of the corresponding LS approach is
then (wy,...,wy; v) where

U),{:ﬂn‘i’R;/L, v =N

with g = pN) (60)
The choice of p defined in Eq. (59) therefore defines the
closure-ambiguity approach (CAA). Clearly, this choice
depends on the selected spanning tree Gy ; the definition
of the integer-valued function v therefore also depends on
this choice. Note that all these spanning trees have the
same number of edges: ngt = n, — 1; see Sect. A2. As a
result, whatever the choice of Gy, the number of ambi-
guities to be fixed is the same: n. = n. — ng (Eq. (29)).

Let us now denote by (w1,...,w; ©) the LS solution
resulting from such a choice. The reference solution of its
equivalent solutions, which can be obtained as specified
in Sect. 2.5, does not depend on the choice of Gg;. Indeed,
a change in Gy amounts to selecting another p in V4, (Z);
see Eq. (42) and Fig. 6 further on.

Remark 4.1. Although the ambiguity variables of the
closure-ambiguity approach are closure ambiguities, it is
an UD approach. Indeed, the action of the closure op-
erator C' (induced by the selected spanning tree Gg) is
never explicitly performed; see Sect. 6 [
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Remark 4.2. According to Property 1 and Eq. (12),
Eq. (5) can always be written in the form

B, w, +Rjv="b, (for k =1,...,k)

where w,, and v are defined in Eq. (60). In the situations
where the particular problem to be dealt with has still a
rank defect (owing to other variables involved in b, for
example), this rank defect can be removed by tackling
the problem with w, and v substituted for 3, and N, re-
spectively. In that sense, the closure-ambiguity approach
can be extended to all the situations where an equation
(or several equations) of type (5) is (are) involved in the
problem; see, for example, the case of small networks in
Lannes and Teunissen (2011)

5 Derivation of the CAA principle
via the S-system approach

The S-system approach (Baarda 1973) was used by some
investigators to remove various GNSS rank defects; see,
e.g., Teunissen 1984, de Jonge, 1998, Teunissen and Odijk
2003. In the previous section, the CAA principle was
introduced in a concise manner in the theoretical frame-
work defined through Sects. 2 and 3; the aim of the
present section is to show that this principle can be in-
troduced via the S-system approach directly.

In the general framework of the S-system approach pre-
sented in Appendix B, the Euclidean space € to be con-
sidered is then the space of the functional variable

fdzef(ﬂla"',ﬁk;ﬂ) (61)

of Eq. (5); 9 is then the float version of the integer-valued
functional variable N. Denoting by

def

Ve=Vs ®Vs, @--- D Vg, (62)

the direct sum of the vertex-bias spaces Vj3, with generic
vector 3., we have

¢E=V;®E (63)

where E is the edge-delay space with generic vector ¥J;
see Sect. 3.1.2. As illustrated in Figs. 2 and 4, given
some spanning tree Gg of G, E can be decomposed in
the Euclidean orthogonal form

E=FE.®E, (64)
From Egs. (8) and (30), we have

k
dim Vg = Z Nk

k=1

(65)

dim Fg = ng dim E. = nc

The function b, of Eq. (5) lies in some space isomorphic
to R™=; see the context of Eq. (3), and Fig. 1. Setting

k
m:= Z Ner (66)
k=1

we then define the operator A of the S-system approach
as the operator from & into R™:

B + Ry
A= : (67)
By.fr + R0

Clearly, Eq. (5) can then be explicitly written in the form

"
Al =1 :
5 k (68)
N k

Let K now be the operator from Vj, = R™t into € (see
Sect. 3.1.1):

—Ria

Ko : (69)
—Rio

Ba
The float version of Eq. (12) yields

—B,Ria+R,Ba=0 (for k =1,...,k) (70)
The null space of A is therefore the range of K; see
Egs. (67) and (69). We thus have

ker A =Ran £ with dim(ker A) = ng (71)
The dimension of the null space of A is therefore equal
to that of Eg; see Eq. (65) and Fig. 4.

In the framework of the S-system approach, we now re-
move the rank defect of Eq. (5) by imposing the following
constraint: the functional variable to be estimated lies in
the orthogonal complement of Eg in €; see Appendix B.
We thus define § via the relation § := EZ. Clearly, that
constraint is the same as that introduced in Sect. 4; see
Fig. 2. The corresponding estimable functional variable
is then obtained as follows.

From Egs. (63) and (64), § is the direct sum of V and E.:

We now show that € is the direct sum of § and ker . A
(see Fig. 4):

¢=Faker A (73)

Proof. Let £ be a function lying in § Nker A. As £ lies
in §, its component 1 vanishes on Gg. As & also lies
in Ran K from Eq. (71), 9 is in the range of B from
Eq. (69). We then have ¥ = By =0, hence a = 0
from Eq. (33), and therefore £ = 0 from Eq. (69). As
a result, FNker A = {0}. As dim(ker.A) = dim Ey and
dim ¢ =dim §+dim(ker .A), Eq. (73) is thus established
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FE
Ne
(ne) 7
Ba™ (nst) v

%L = Est
(nst)
ker.A Qst§
(nst)
n= Ko
0
3= Ex ¢ — Ba™

Vs

Figure 4: Geometrical illustration of the CAA principle in the S-system approach. In this 3D-geometrical illustration,
which completes Fig. 2, the Euclidean space € of the functional variable £ involved in Eqgs. (67) and (68) is represented
as a 3D-space; € is the orthogonal sum of V3 and E, where Vj is the direct sum of the vertex-bias spaces V3, (see
Eq. (62)), and F is the edge-delay space of the float ambiguity variable 9 (the projection of £ on E). According to the
definitions introduced in Sect. 3.1.3, E can be regarded as the orthogonal sum of the spanning-tree delay space Fs and
the closure-delay space E.. Note that the projection of £ on Fg coincides with that of ¥: Q& = Qst. As shown in
Sect. 3.2, we have o'”) = B;'Q_.9 (Eq. (35)). The operator A defined by Eq. (67) is not of full rank. Its null space is a
subspace of & of dimension ns:; more precisely, ker A is the range of the operator K; see Eq. (69). The edge-bias space Ey,
is the projection of ker A on E. In the CAA approach, the following condition is imposed: the functional variable to
be estimated lies in §, the orthogonal complement of Eg in €. As € is the direct sum of § and ker A (see text), the
estimable functional variable is the oblique projection of £ on § along ker A, i.e., S§ with ¢ := N; see Eqgs. (77) and (78).
The projection of S on E, 9 = C1, is the closure component of 1, i.e., the closure ambiguity Nc ' CN when 9 := N.

The oblique projection S of & onto § along ker A plays a
key role in the S-system approach (see Appendix B). It
is defined by the relation S§ = £ — 7 with n € ker A and
& —n € F; see Eq. (B4) and Fig. B1. We now specify its
definition explicitly.

Let Qs be the orthogonal projection of & onto Ey. We
then have (see Fig. 4):

Qstn = Qst€ = Qstﬂ (74)

From Eqs. (71) and (69), n = Ko for some «vin V4, = R™st.
From Eq. (74), that bias function « satisfies the condi-
tion

Quia = Qs

According to Eq. (69), we have QuKa = Qs Ba, i.e.,
OiKa = Bga, where By is the operator defined in
Sect. 3.1.4. We thus have o = o(?) where a(?) is de-
fined by Eq. (35): a(?) = B;'Q,¥. Tt then follows from
Eq. (B4) that

S¢=¢—n where n=Ka® (75)

Here, the matrices [S1] and [W] of Eq. (B7) have been
implicitly defined by the standard bases of Fg; and Ran /C,
respectively. From Eq. (69), we thus have

b1+ R‘{a(ﬁ)
S¢ = )
Br + R};aw)
¥ — Ba")

hence, in particular (when 9 is set equal to N),

b1 B + Ry ™)

s| = : (77)
Br B + Ry uV)
N N — B,LL(N)

where ) = B;'Q, N (Eq. (42)). We thus retrieve the
estimable functional variables of Eq. (60):

Wy = B + R uIY) v =N, (78)
The estimable functional variable of the CAA method is

therefore the oblique projection of (51,...,08k; N) on §
along ker A; see Fig. 4.

This introduction of the CAA principle gives another
insight into the analysis presented through Sects. 3 and 4.
It also completes the study developed in Sects. 3.3, 3.4
and 3.15 of de Jonge (1998) on two points:

(i) operator A is defined with regard to the union of
the observational graphs until the current epoch;
see Sect. 2.1, and Egs. (67) and (68);

(ii) a related geometrical representation is proposed:
Fig. 4; in that representation, C¥ is the CD point
of ¥; when ¥ := N, C?¥ is therefore the closure-
ambiguity point of V.
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6 CAA implementation

In the closure-ambiguity approach, the rank defect of
Eq. (5) is removed via the choice of the variables w,
and v defined in Eq. (60). The equation to be solved in
the LS sense is then Eq. (16) with the constraint v = 0
on the edges of Gs;. The CAA problem is therefore: solve
in the LS sense the equation

Bow, + Riv =0, (k=1,...,k)

. . (79)
subject to the constraint ‘v = 0 on G’

In what follows, the noise is taken into account by using
the variance-covariance matrix Vj; of b, in the definition
of the ‘Euclidean forms’ B, A and b, of B, RS, and b,,,
respectively; see the context of Eq. (C6) in Sect. C3. The
system (79) to be solved in the Euclidean LS sense is then
the following;:

B,w,+ A, v=20, (k=1,...,k) (80)
i.e.,
B, 0 0 0 A w1 by
0 B2 0 0 A2 w2 b2
o . o0 S (81)
0 0 0 Bk Ak Wi bk
v

The angular block structure of matrix [B A] is well suited
to recursive QR factorization. (A complete implemen-
tation of the corresponding LS procedure is presented
in Appendix C.) The advantage of this procedure is to
provide some gain in numerical accuracy when dealing
with large-scale problems; see Bjorck (1996). More inter-
estingly, the corresponding techniques prove to be very
efficient for GNSS quality control; see, e.g., Blewitt 1989;
Tiberius 1998; Loehnert et al. 2000; Lannes and Gratton
2009. As specified in Sects. 9.5 and 7.3 of this last paper,
the recursive identification of the outliers is made easier
(with regard to the related variational calculations) by
storing in memory the parameters of the Givens rotations
involved in the two QR steps of epoch k.

In this section, we first give a survey of the QR imple-
mentation of the CAA principle (Sect. 6.1). We then
specify the definitions of the column matrices wy and v
of Eq. (81); this is done in Sects. 6.2 and 6.3, respec-
tively. More information about the technical aspects of
this implementation, like for instance the construction of
matrices A, By and by, is to be found in Appendix C.

Remark 6.1. In most situations encountered in practice,
the second member of equations such as (79) includes
a large number of additional variables; see, e.g., Ge et
al. 2005; Loyer et al. 2012. In the remainder of the
paper, we assume that the related models have been well
selected so that we can concentrate on the first members
of these equations only [

Remark 6.2. The method presented in this section can
be applied as such for solving the wide-lane (WL) equa-
tion (4) of Loyer et al. (2012); Nwr and 7wr, are then
to be substituted for N and g, respectively; b is then
the term on the left-hand side of that equation. In
our approach, the WL ambiguity point 0w, would then
be the closure-ambiguity point of Nywr: o9wrL = CNwr;
Nw1, would thus be retrieved up to a vector of Ey,(Z) @

6.1 Survey

In a first stage, at each epoch k, the ‘float solution’ ¥ is
computed or updated. This is done by solving the float
version of Eq. (81) in the Euclidean LS sense via recur-
sive QR factorization; see Sect. C1 and Eq. (C1). The
integer least-squares (ILS) solution @, and thereby o, is
then defined as the solution of the nearest-lattice-point
(NLP) problem (C3). This solution is obtained in a
second stage via appropriate integer-programming tech-
niques; see Lannes and Prieur (2013), and Lannes (2013)
for the parallelization of the related LLL?/LAMBDA re-
duction/decorrelation algorithms. The ambiguities are
thus fixed. Once at some epoch ky,, these ambigui-
ties can be validated (see Verhagen and Teunissen 2006),
the bias matrices Wy, and thereby the phase biases wy,
are obtained via the relations (C4) for k < kyu. The
variance-covariance matrix of w,, which is required for
implementing the PPP mode properly (see Sect. 9 in
Lannes and Teunissen 2011), is obtained in that frame-
work; see the end of Sect. C1.

Remark 6.3. Once at some epoch kv, all the closure am-
biguities have been validated, the QR recursive process
only needs to focus on the few closure ambiguities associ-
ated with the new closure edges. At the epochs k > kyal,
the new closure ambiguities can therefore be determined
very quickly. Indeed, the dimension of the matrix v han-
dled by the QR process is then much smaller than pre-
viously. This shows that this approach is well suited to
integer-ambiguity resolution in real time. For instance,
the satellite-clock biases could then be broadcasted to
the network users in real time; see Remark 2.2

6.2 Definition of wy

If we assume for instance that all the receivers of the net-
work are active (see Fig. 1), the receiver phase bias w,(7)
is then the entry of wj with index i — 1. The indices are
shifted by —1 since we used the convention £,;(1) = 0

(Eq. (7))-

The satellite phase bias wg(j) is then the entry of wy,
with index (n, — 1 + j); see for example the first two
epochs of Fig. 1. To handle the cases of disappearance
of one or more satellite(s), we introduce an index func-
tion wgy defined so that wsg(j) is the entry of wj, with
index (n; — 1+ wy,(j)). For example, at epoch k = 3 of
Fig. 1, for j > 3, we have wy(j) =7 — 1.

3Here LLL stands for Lenstra, Lenstra, Lovéasz, the authors of
the famous LLL algorithm (Lenstra et al. 1982).
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Figure 5: Spanning trees Ge, and closure-edge
lists Lc . The example shown here corresponds to that
introduced in Fig. 1. From top to bottom, epoch k =1
(nst1 = 8), epoch k = 2 (ng,2 = 10), and epoch
k = 3 (nst,3 = 11). The large dots correspond to
the edges of these spanning trees; the small dots de-
fine the edges (r;,s;) that do not appear in G at those
epochs. The spanning tree of G, is obtained from that
of G1 by adding the edges (r1,s7) and (r2,s6). Likewise,
the spanning tree of Gz is obtained from that of Ga by
adding the edge (r2,ss). The closure edges of L. are
ordered as numbered; see text.

Difficulties with some receivers would be handled in a
similar manner by introducing index functions ().

6.3 Definition of v

The entries of v in Eq. (81) are the closure ambiguities
to be taken into account from epochs 1 to k included.
The corresponding closure-edge list L. j, is defined in this
section; see for example the lower grid of Fig. 5. In the
implementation of the QR method, those entries are to
be put at the top of the column matrix v at the epoch
k < k where they appear; see Sect. C2. This means that
for all ¥’ < k, the matrices A,/ have then (on their left-
hand side) implicit additional columns whose entries are
zero. We now concentrate on the closure-edge lists L .
fork=1,... k.

At epoch k = 1, the spanning tree Gg 1 of G = H; is
built as specified in Sect. A2. For example, for the sce-
nario defined in Fig. 1, the edges of Gy 1 then correspond
to the large dots of the upper grid of Fig. 5; L. ; then
includes three closure edges ordered as they are encoun-
tered when scanning that grid line by line:

Leq ={(r3,83), (r3,84), (ra,84)}  (k=1)

At epoch k = 2, the spanning tree Gg; 2 of Go = Hi UHs
is completed by adding the edges corresponding to the
first active edges involving the new satellites, for example
(r1,87), and (ra,se) in Fig. 5. When implementing the
QR method, the new closure edges must then be the first
terms of L. »; see Fig. C4in Sect. C2. The previous terms
of that list are then shifted rightwards. In the example
of Fig. 1, we then have

Ec,2 = {(1'2,87), (1'3,82), (r37SG)a (1'4,85),

(r3;53),(r3,S4)7(r4,S4)} (k:2)

We proceed similarly for the next epochs; see the lower
grid of Fig. 5.

By construction, the number of closure edges n. is a
non-decreasing function of k; see Eq. (29) and Fig. 5. In
fact, this number defines the dimension of the NLP prob-
lem (C3) to be solved at epoch k.

7 Equivalent ambiguity solutions:
related methodological aspects

In this section, we analyse some other methods which
are used for solving the GNSS phase-calibration prob-
lem, and compare the corresponding solutions with the
CAA solution. This done for Blewitt (1989) in Sect. 7.1,
for Collins et al. (2010) in Sect. 7.2, and for Loyer et al.
(2012) in Sect. 7.3.

7.1 The Blewitt (1989) approach

In his original contribution published in 1989, Blewitt
proposes a resolution of the problem in three stages. In
the first one, the float solution is obtained in UD mode.
In the second one, double differencing of the float biased
ambiguities thus obtained provides DD ambiguities. The
latter are then fixed via some sequential adjustment al-
gorithm. In the third and final stage, the UD ambigui-
ties are derived from those fixed DD ambiguities. This
is done via the inverse of the operator D defined in the
appendix B of that paper. The estimates of station-
receiver locations, orbital parameters, etc., are then up-
dated. Briefly, one may therefore say that the Blewitt
approach is hybrid: it is a ‘UD-DD-UD approach.’

The D-matrix of our analysis is the matrix [Ds] intro-
duced in Sect. 3.6: Eq. (54). Given some DD ambiguity
set Ng (such as that defined in Eq. (55)), some span-

v

ning tree Gg, and some ambiguity point Ny arbitrarily
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fixed in Es(Z), it is possible to retrieve N up to a vector

of Ey(Z). More precisely, the UD ambiguity obtained
via Eq. (57),
5 |! t]]
[Na]

is equal to N, + BuVst); see Fig. 3. Removing the rank
defect via the inverse of [D,] therefore amounts to impos-
ing the constraint Qv = Nst where Nst can be chosen
in an arbitrary manner in Ey(Z).

7.2 The Collins et al. (2010) approach

In the last statement of Sect. 7.1, one recognizes the
concept of ambiguity datum fixing of the UD approach
of Collins et al. 2010; the latter is thus closely linked to
that of Blewitt. However, with regard to Eq. (16), the
‘direct problem’ to be solved in the LS sense is then

Biow, + Rev = by (k=1,...,k)

o (82)
subject to the constraint Qg v = Ngt

Let us denote by (w1, . .., Wy; ¥) the solution of this prob-
lem, i.e., the Blewitt/Collins solution. Let (w1, ..., wg; D)
now be the CAA solution obtained with the same span-
ning tree Gy;. As shown below, we then have (see Fig. 6)

wn = BK
Proof. The LS solutions of Eq. (5) are of the form
(18)-(19). Equation (83) then follows from the fact that

by construction © + Bu(N=t) satisfies the constraint of
Eq. (82). Indeed, as Qv = 0, we have

Qst (T) + B,LL(N“)) = QstB,u'(NSt) = Bst:u‘(NSt)
= Bst(Bs_tletNSt) = Nst O

Remark 7.1. In the special case where Ny is set equal
to zero on all the edges of G, the Blewitt/Collins so-
lution coincides with the CAA solution; see Eq. (83)
and Fig. 6. This explicitly shows that the Blewitt and
Collins approaches can lead to the same results as the
CAA method. However, even in that case, Blewitt’s ap-
proach is not equivalent in terms of efficiency. The direct
implementation of the Collins/CAA principle is a priori
preferable: the results are then obtained without any
differencing operation, and without any generalized in-
version of the fixed ambiguity set; see Sects. 4 and 6. As
illustrated in Fig. 6, the reference ambiguity solutions v
obtained with the Blewitt, Collins and CAA methods
must of course be identical on every edge of G, and this
for any choice of G and Nyi; see Remark 2.4

Remark 7.2. The algebraic analysis of the PPP mode
can also be illustrated by a figure such as Fig. 6. The
dimension of F is then equal to the number of satellites
seen by the PPP-user receiver r,: E = R"s; Fy is then

N
Ey Et() )(Z)
E
N
U Ref
B Bji B
)
Ng
Est BN( t) EC
U caA
E;
Nat ' can
0

Figure 6: Links between some equivalent ambiguity so-
lutions. In this geometrical representation of the edge-
delay space E, the equivalent ambiguity solutions lie
in the affine lattice EéN) (Z) passing through N and
parallel to the integer lattice Ey(Z) of the edge-bias
space E, (here for clarity the vertical axis). The Blewitt
or Collins solution © obtained by imposing the constraint
Qstv = Nut (for some Nut arbitrarily fixed in Es:(Z)) cor-
responds to the intersection of Ek()N)(Z) with the affine
space passing through Ny and parallel to E.(Z) (the
closure-ambiguity lattice induced by the choice of Gs);
see Fig. 3. The CAA solutions induced by the choice of
the spanning trees Gs and Gy, ¥ and ©', correspond to
the intersections of EéN)(Z) with E¢(Z) and E.(Z), re-
spectively. Note that o = N — Bu™) from Property 1,
and ¥ = 9+ Bp™*) from Property 2. Here, o represents
the reference solution: © = v — Bfi; see Egs. (21), (23)
and (25). Likewise, ¥ is obtained from the Blewitt or
Collins solution ¢ via the relation v = v — Bji.

the space F, 1 ={9eE:9(,j)=0if j #1}. Here, 11is
the index of the first satellite for example; E,; is a
one-dimensional space. Note that FE}, then reduces to
the one-dimensional space whose vectors are of the form
(11,19,...,1,,) x B where  is the unknown receiver
clock-phase bias. The choice ]Vst := 0 then amounts to
setting N(¢,1) := 0. The reader is invited to complete
that transposition g

7.3 The Loyer et al. (2012) approach

With regard to the way the narrow-lane (NL) ambigu-
ity N7 is fixed, the zero-difference approach of Loyer et
al. (2012) can be considered as a variant of the Collins
et al. (2010) approach. We now clarify this point.

In that particular approach, the rank defect is removed
after having obtained the ‘float ambiguity solution’ Ny
via the introduction of some additional constraints; see
Sect. 2.6 of that paper. These authors then implicitly
choose some spanning tree G, and set the ambiguities
to | N1(i,5)] on the edges (r;,s;) of Gs. The remaining
UD ambiguities (i.e., the n. ambiguities associated with
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the closure edges) are fixed via some ‘bootstrapping op-
eration.” This operation provides the ‘Babai point’ of
the discrete-search algorithms presented in Lannes and
Prieur (2013).

Setting N := N; and Ny = LQStNﬂ, we thus have
N — Bu = Ny on Gs;, hence p = B;'Q (N — Nst)-
It then follows from Eqs. (42) and (58) that the ambigu-
ity solution of the Loyer et al. (2012) approach is

N — Bu = (N — Buy™) +BM(Nst) = N. +BN(N“)

Provided that the solution provided by the bootstrap-
ping process is the right NLP solution ©, we then have
(like for the Blewitt and Collins solutions in Fig. 6)

=0+ Bu(ﬁst)

where © is the CAA solution obtained with the same
spanning tree. The choice Nst := 0 would lead to a ‘mild
version’ of the corresponding NL closure-ambiguity ap-
proach; see how the NLP problem is solved in Sect. 6.1.

8 Conclusion

In this paper, we have examined the problem of cali-
brating the clock-phase biases of GNSS networks. In
the context specified in Sect. 1, the basic rank defect
of this problem is related to the way these phase biases
and the carrier-wave ambiguities are involved in the ob-
servational equations. We have analysed the different
ways of removing this rank defect, and defined a partic-
ular strategy for obtaining clock-phase bias estimates in
a standard form.

This rank defect is intrinsically related to the structure
of Eq. (1), and cannot be resolved by additional exper-
imental data. As a result, according to Eq. (13), any
variation of the vertex ambiguity vector 1 can be com-
pensated by a variation of the edge-ambiguity vector N;
v is a vector of Z™st; see Sect. 2.2. For PPP applica-
tions, the satellite clock-phase biases can be estimated
up to constant integers. The choice of y in Z"* does not
therefore affect the significant part of these bias values.
The retrieved ambiguities are of course affected by this
choice, but this has no actual impact on the GNSS results
such as the estimates of the station-position parameters,
for example.

In this paper, we propose a particular approach, the
closure-ambiguity approach (CAA), which is a natural
way of finding a solution; see Sects. 4 to 6. It is an un-
differenced method based on some particular constraints.
The related choice of u, which is associated with the no-
tion of closure ambiguity, is similar to that implicitly
made by de Jonge (1998); it defines the very principle
of the closure-ambiguity approach. Thanks to the intro-
duction of graph G, the union of the observational graphs
until the current epoch, the closure ambiguities are dealt
with in an optimal manner. In particular, compared to

the approaches presented in de Jonge (1998) and Lannes
and Gratton (2009), no graph transition is to be per-
formed. These new aspects have been illustrated with
some simple and generic examples; see Figs. 1 and 5.

We have analysed the main classes of other methods used
for calibrating GNSS networks, and established the link
between those methods and our CAA method. More pre-
cisely, this paper presents a unified interpretative frame-
work in which all those methods can be understood and
compared more easily (see Sect. 7). We have thus been
able to derive functional relations between the solutions
provided by the methods of Blewitt (1989), Collins et al.
(2010) and Loyer et al. (2012). Those solutions are dis-
played in Fig. 6 which gives a synthetic representation
of the results provided by our approach (CAA) and all
those methods.

We have also shown that the intermediate differencing
stage of Blewitt’s approach can be avoided, without any
counterpart, by removing the rank defect via our ap-
proach or that of Teunissen (1984): the closure ambi-
guities to be fixed then appear in the very formulation
of the UD problem to be solved. The NLP techniques
of ambiguity resolution can thus be directly applied to
the float solution; see Sect. 6.1. Compared to the hy-
brid UD-DD-UD methods deriving from the basic con-
tribution of Blewitt (1989), the technical implementation
of the CAA method is simpler and more efficient; some
CPU time can thus be saved.

It also appeared that the concept of ambiguity datum
fixing of Collins et al. (2010) comes within our CAA-
(S-system) framework. When the ambiguities are fixed
at zero on the edges of some arbitrary spanning tree of G,
the remaining ambiguities to be fixed are nothing else
than the closure ambiguities of the ambiguity set IV un-
der consideration. Compared to Blewitt’s approach, one
may therefore say that the UD approaches of Collins et
al. (2010) and Loyer et al. (2012) are closer to our CAA-
(S-system) principle.

To compare the methods providing LS estimates of clock-
phase biases, we have introduced a reference particular
solution. For this solution, when a clock-phase bias is es-
timated for the first time, its fractional part is confined to
the one-cycle width interval centred on zero; the integer-
ambiguity set is modified accordingly. The notion of ref-
erence solution is very useful for testing the compatibility
of all those GNSS methods: pertinent methods should
lead to the same reference ambiguity solution; see Fig. 6.
This test is independent of the selected spanning tree.

The QR implementation of the CAA method has been
presented in Sect. 6 and Appendix C, in an exhaustive
manner. Completed by the NLP algorithms developed
for huge networks (Lannes 2013, Lannes and Prieur 2013),
all the elements are now gathered for implementing very
powerful techniques. The implications of our approach
may concern the software packages used for processing
most GNSS networks, and particularly global networks
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using GPS, GLONASS, Galileo, or BeiDou/Compass satel-
lites. The CAA principle is well suited for handling the
integer-ambiguity problem of all those networks. As out-
lined in Remark 6.3, it could lead to applications in real-
time kinematic precise point positioning (RTK-PPP).

In order to facilitate its integration in existing GNSS
software packages, our approach has been described in
a precise manner. The gain of such an implementa-
tion would be both in terms of performance and reliabil-
ity. Indeed, our undifferenced approach proposes an ap-
propriate procedure for ambiguity resolution and clock-
phase bias calibration, and this with a rigorous handling
of the rank defect to be removed. Another possible appli-
cation of this work would be to use the method described
in Sect. 2.5 for comparing the solutions obtained by dif-
ferent software packages.

Appendix A Elementary notions
on GNSS graphs

In this appendix, we present some preliminary notions
of algebraic graph theory; these elementary notions are
used throughout the paper. Further details about the
functional spaces and the operators involved in the
GNSS problems can be found in Sect. 3. We first define
the notions of GNSS grid and GNSS graph (Sect. Al).
We then introduce the concepts of spanning tree and loop
(Sect. A2).

A1 GNSS grid and graph

For our present purpose (see Sects. 2.1 and 2.2 in particu-
lar), we consider a typical situation in which the network
has n, receivers r; and ns satellites s;. (We recall that
‘satellite’ should be here understood as ‘satellite trans-
mitter;’ see Sect. 1.) The ‘network grid’” G, then in-
cludes n, rows, ng columns, and n,ng points; see Fig. Al.
A function such as N(i,j) for example takes its values
on some points (¢,7) of that grid. Those points form a
subgrid denoted by G.

In the example presented in Fig. Al, the points (3, j)
of G are displayed as large dots in the upper part of this
figure. Those points correspond to the ‘edges’ (r;,s;) of
the graph associated with the GNSS network; this graph
is displayed in the lower part of Fig. Al; £ denotes the
set of its edges; n, is their number. The receivers and the
satellites involved in the definition of these edges define
the ‘vertices’ of this graph; V denotes the set of its ver-
tices, and n, their number: n, = n, + ns. A graph such
as G is therefore defined by the pair (V,€): G =GV, E).
We now assume that G is connected: given any two ver-
tices of V, there exists a path of edges of £ connecting
these vertices; see, e.g., Biggs 1996.

A2 GNSS spanning tree and loops

As illustrated in Fig. A2, a spanning tree of a connected
graph G = G(V, €) is a subgraph G = Gst(V, ) formed

S1 52 S3 S4
I
T2
I3
S1 So S3 S4
Iy 1) I3

Figure A1: Subgrid G and graph G. In the example
described here, the network grid G, includes twelve
points (n, = 3, ns = 4), while its subgrid G includes
nine points only; these points are shown as large dots.
The corresponding graph G includes seven vertices
and nine edges: ny = n, +ns = 7, ne = 9; r1 does not
see sz, r2 does not see s3, and r3 does not see si.

by n., vertices and n, — 1 edges, with no ‘cycle’ in it.
Here, ‘cycle’ is used in the sense defined in algebraic
graph theory; see, e.g., Biggs (1996). In the GNSS com-
munity, to avoid any confusion with the usual notion of
wave cycle, the term of ‘loop’ can be substituted for that
of ‘cycle.” In this context, the number of loops defined
through a given fixed (but arbitrary) spanning tree is the
number of edges of £ that do not lie in & . These edges,
() = (vi,, s,), are said to be ‘(loop-)closure edges’ (see
Fig. A2). Their number is denoted by n:

Te = Mo — Nt (A1)
where
Net =ny —1=n, +ns— 1 (A2)

Many spanning trees of the same graph can be con-
structed. Here, we are going to present the Kruskal al-
gorithm which is often used in algebraic graph theory;
see Biggs 1996. The first step of this algorithm consists
in ordering the edges of £, thus generating a sequence
of the form {(r;,,s;,) : ¢ = 1,...,nc}. The spanning
tree is then obtained as follows. Set ¢ = 0, ng, = 0, and
Es = 0 (the empty set). Then,

(i) if ng = ny — 1, terminate the process; otherwise,
set q:=q+1;

(ii) when the vertices of edge (r;,,s;,) are not con-
nected via edges of &, set & = & U {(1i,,55,)},
ngt 1= ngt + 1; then go to step (i).

By construction, the spanning tree thus found depends
on how the edges are ordered in the first step. The sub-
grid of G corresponding to the edges of Gy is denoted
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S1 S2 S3 S4
I
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Figure A2: GNSS spanning tree and loops. Here,
the edges of the selected spanning tree Gs of the
graph G introduced in Fig. Al are shown as thick
lines. The points of the corresponding subgrid Gg;
are shown as large dots. The remaining points of G
(the small dots of G) correspond to the (loop-)closure
edges (the thin edges of G). We then have one loop
of order four, and 2 loops of order six: (rz, s4, 1, 1),
(rs, ss, r1, s1, r2, s2) and (rs3, s4, 11, s1, I2, s2). In G,
these orders are shown as small numbers.

by Ggt; Ge is that corresponding to the closure edges:

Ge={(i,5) € G: (i,7) ¢ G} (A3)

Clearly, G includes n. loop-closure points; see Eq. (A1)
and Fig. A2.

To illustrate the action of the Kruskal algorithm, let us
consider the graph G of Fig. Al. To build a spanning
tree of G from its grid G, let us order the edges of G by
scanning G from left to right and top to bottom. The al-
gorithm examines the edges of G in that order and adds
them to the current version of & when condition (ii)
holds. In this example, this is the case for the first five
edges; the vertices si, s3, s4, 11, ro are thus connected.
The sixth edge, (r2, s4), therefore includes two vertices
already connected. This edge is therefore the first clo-
sure edge: c(1) = (r2, s4). The next edge, (rs,s2), is
added to & since it corresponds to the first connec-
tion of s; with the edges of the current version of E.
All the vertices of G are then connected. The remain-
ing edges are therefore closure edges: ¢(2) = (rs, s3),
¢(3) = (rs, s4). The Gy-edge set thus obtained is the
following (see Fig. A2):

5st = {(rlasl); (1'1,83), (rlas4)7 (rQ;SI)a (rQ;SQ)a (I'3,S2)}

Note that this procedure does not provide the edge path
of & that links the vertices of the closure edge under
consideration. Clearly, closure paths are not needed to
be known for the construction of Gy. In simple cases such
as that of Fig. A2, such a path can visually be obtained
by moving on grid G horizontally and vertically, in al-
ternate manner from the selected closure-edge point; see

the related telescoping sums introduced in Sect. 3.3. If
need be, the edges paths can be obtained automatically
in an algebraic manner; see Sect. 3.4.

Appendix B The S-system approach

In this appendix, we give a survey of the general frame-
work of the S-system approach; for further details and
related applications, see Baarda 1973; Teunissen 1984;
de Jonge 1998; Teunissen and Odijk 2003.

Denoting by € a Euclidean space of dimension n, we con-
sider some linear operator A from ¢ into R™ with m > n
for example. The problem to be solved in a sense to be
defined is governed by a relation of the form

AL =7 (B1)

The components of £ are the unknown parameters of
the problem, whereas ~ is the data vector. In many
situations encountered in practice, A is not of full rank;
its null space (i.e., its kernel) is not reduced to {0}:

ng = dim(ker A) > 1 (B2)

In the S-system approach, this rank defect is removed
via an appropriate reduction and redefinition of the un-
known parameters. Those new parameters are the ‘es-
timable functions of parameters’ of some minimum-
constrained problem thus defined; see, e.g., de Jonge
1998. We now give a geometrical interpretation of the
S-system principle.

Let us choose some subspace § of € of dimension n — ng
such that §Nker A = {0}; € can then be regarded as the
direct sum of § and ker A (see Fig. B1):

¢ =F@kerA (B3)

The ‘estimable functional variable’ is then defined as the
oblique projection of £ on § along ker A: S¢. The oblique
projection (operator) S is the S-transformation of the
S-system method; see, e.g., de Jonge 1998.

We now show how the S-system approach can provide the
matrix of § in the standard basis of €. The estimable
functional variable S¢, which basically depends on the
choice of §, can thus be explicitly defined.

According to its definition,

Se=¢—n (B4)

where 7 is the vector of ker A such that £ — n lies in §;
see Fig. B1. Denoting by [W] a matrix whose column
vectors form a basis of ker A, we have

(] = [W]I¢] (B5)

where ( is some vector of R". Clearly, the entries of [n],
[W] and [¢] are expressed in the standard basis of €.
Let [S1] now be a matrix whose column vectors form a
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§1 n

SE=&—n

Figure Bl: S-system principle. In this geo-
metrical representation, € is a Euclidean space
of dimension n. The unknown functional vari-
able ¢ is a vector of €. The null space of
the operator A involved in Eq. (B1) is of di-
mension no: dim(ker.A) = ng; § is a sub-
space of € of dimension n — ng such that
F Nker A = {0}; € can then be regarded as
the direct sum § & ker A. In the S-system
approach, the ‘estimable functional variable’
is then defined as the oblique projection of &
on § along ker A: S¢.

basis of §*, the orthogonal complement of § in &. As
¢ —n is orthogonal to all the vectors of F*, we have (in
particular) [S1]T([¢] — [W][¢]) =0, i.e.,

(ST WI(C] = [S.] "] (B6)

As shown further on, [S]T[W] is invertible. It then fol-
lows that [(] = ([SL]T[W])_I[SL]TK], hence from
Egs. (B4) and (B5),

[S] = (1] — W] ([SL]"W])~'[SL]” (BT)

where [I] is the identity matrix on €.

We now show that the ng-by-ng matrix [Mo] = [S1]T[W]
is invertible.

Proof. Let £, be the projection of some vector 7 of ker A
on §+; see Fig. Bl. By considering the case where
¢ =¢1, Eq. (B6) yields [Mo][¢] = [SL]T[¢€1]. The con-
dition [My][¢] = 0 implies [S1]T[¢1] = 0, hence &, = 0.
As a result, n then lies in §. As FNker A = {0}, it fol-
lows that n = 0, hence ¢ = 0. The null space of [Mp] is
therefore reduced to {0}; but [M)] is an ng-by-ng matrix;
[Mo] is therefore invertible. g

Remark B1. In the S-system approach as it is imple-
mented by de Jonge (1998) for example, one chooses
some basis for §. The corresponding matrix is denoted
by S; § is then regarded as the range of S; [S,]T¢ is
called the ‘S-basis.” Note that [S.] is then denoted
by S+ @

Appendix C QR implementation

In this appendix, we show how the float version of Eq. (81)
can be solved in the LS sense via recursive QR fac-
torization. Here, for simplicity, we will assume that
the elementary orthogonal transformations involved in
that factorization are Givens rotations; see Eqgs. (2.3.10)
to (2.3.13) in Bjorck (1996).

In the closure-ambiguity approach, the number of entries
of v, n¢, is a non-decreasing function of k; see Sect. 6.3.
In Sect. C1, we consider the case where n. is constant;
the cases where at some epochs k, n. increases is dealt
with in Sect. C2. In that QR framework, we finally de-
scribe in Sect. C3 the construction of the matrices Ay,
By, and by, involved in Eq. (81).

C1 Recursive QR factorization

As shown in this section, the float version of the following
equation (Eq. (81)) can be solved in the LS sense via
recursive QR factorization:

B, 0 0 0 A7 [w b
0 B, 0 0 Al |w by
o o . o0 o I
0 0 0 B, Ayl w by,

v

Throughout this section, n. is assumed to be fixed; for
related notions, see Sect. 6.3 of Bjorck 1996; Golub and
van Loan 1989; Bierman 1977.

C1.1 Initialization: epoch 1

At epoch 1, the problem is to minimize the functional
(see the first line of Eq. (81))

fi(w1,v) E ||(Biwy + A1v) — by |[Fne

The LS solution (w1, D) is then obtained via two QR fac-
torizations (see Fig. C1).

1) QR factorization of Bi: the Givens rotations of this
step are those required for finding the upper-triangular
matrix K;. The modified version of A; thus obtained in-
cludes an upper block L; and a lower block L). Likewise,
the modified version of b; includes two column subma-
trices: ¢; and ¢j.

2) QR factorization of L}: the Givens rotations of that
step yield the upper-triangular matrix R;. The lower
part of L] is reduced to 0; ¢} then yields (d, ,d); see
Fig. C1. Note that K7, L; and c; are not affected by
those rotations.
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B, A, b,
RN ¢ L, c
i
P o 1
1 l :
i | ! R,y
i b d,
| | : ,
| | I 1
1 | |
I Lo . /|
o | 4
[ | o [
Figure Cl: QR factorization at epoch 1.

The principle of the recursive QR method is
sketched here for the first epoch with the in-
put block matrices B1, A; and the data col-
umn matrix b;. The initialization process
is performed in two steps: K1, (L1,L}),
(c;,ch) are built in the first step (see text
for L), whereas Ry, (d; ,d}) are built in the
second one; for the LS solution thereby ob-
tained at epoch 1, see text.

At the end of this initialization stage, we thus have

fi(wy,v) = [|(Kiw;y — (€1 — L19)|[Zn,
+ ||R1’U — d1|
+ [

2
Rnc

2
R™el —np1—Tc

The float solution in v at epoch 1 is therefore given by
the formula ® = R;'d,, hence v, = K; '(¢ — L19).
These solutions can therefore be computed by back sub-
stitution. Note that ||d; [|2,.., -, ». is the square of the
LS residual norm at epoch 1.

C1.2 Next epoch: epoch 2

The functional to be minimized is then
fi(wyi,v) + fo(ws,v) where

fo(wz, v) = [|(Bows + Av) — b||Zn.s

As sketched in Fig. C2, the LS solution (w;,w2,?) is
again obtained via two QR factorizations. The first step
of epoch 2 is similar to that of epoch 1; the second one
is different.

1) QR factorization of Bs

One thus obtains the upper-triangular matrix Ks; see
Fig. C2. The modified version of As then includes an
upper block Ly and a lower block Lj. Likewise, the
modified version of by includes two column submatrices:
¢y and ¢.

Bl Al bl
W L, C1
VT i
| | I \R1— Ry
I : | di dy
1 I |
I I i i
I | |
: : :- _________ | /0
o | 4
o 1 ] |

L2 C2
|
|
|
’
5 — 0
! ch| dj
|
|
|
|
1

Ay by

Figure C2: QR factorization at epochs 1 and 2. The
principle of the recursive QR method is sketched here for
the first two epochs: epoch 1 with the input block ma-
trices By, A; and the data column matrix bi; epoch 2
with the input block matrices B2, A2 and the data col-
umn matrix by. The initialization process is performed
in two steps as described in Fig. C1. At epoch 2, one
first builds Ko, (L, L5), (ca,ch) like at epoch 1, and
then Rs, (dy,d5); for the LS solution thereby obtained
at epoch 2, see text.

2) QR factorization of [1;/1}
2

The Givens rotations of the second step then operate
on (R,,L,) and (d, ,ch) so as to transform L, into a
zero-block matrix. One thus gets Ry and (d, , dy).

At the end of this stage, we thus have
fi(wi,v) + fa2(wa, v) = [[(Kiwi — (€1 — L1) &,
+ || Rav — da

G s = e

+ [(K2wz — (€2 = Law)|[fnss
il |24 [
The float solution in v at epoch 2 is therefore given by

the formula © = R, 'd,, hence the LS solutions in w,
and wo:
Wy = Ki '(e1 — L1d), 2= K; '(cs— Lob)

The square of the LS residual norm at epoch 2 is then
equal to ||d;

2 nrin e + 512 e
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K Ly Ck
Ry di.
Figure C3: Recursive QR tri-

angular structure. According to
the principle of the recursive QR
method sketched in Fig. C2, the
calculation of Ry41 and djy re-
quires to have kept in memory the
upper-triangular matrix R; and
the column matrix di; see text.

C1.3 Next epochs

In summary, one thus operates, recursively, with the key
structure shown in Fig. C3: Ky, (L, ,L}) and (¢, c},)
are computed from By, Ay and by, the quantities Ry
and (d,, , d},) being then computed from (R,,_; , L},) and

(dj_, c,). The generalization is straightforward; we
then have
k
Y fulwi,v) = |[(Kiw: = (€1 = Lv)|zn,
k=1

+ || Riv — di||3ne
Sl |- 41 -
+ [[(K2wsz — (c2 — Lav)|
+ [l d3]

2
R"b2

2
R™e2 b2

+ [ (Krwi — (cx — Lyw) R
+ || dy.|

2
R"k~"bk
The float solution in v at epoch k is therefore given by
the formula

=R, 'd, (C1)
hence the LS solutions in w1, ..., wg:

., = K. '(cy — L?)

K

(k=1,....k) (C2)

The solution of the corresponding NLP problem is there-
fore defined as follows:
© = argmin | Ry (v — 9)||3n. (C3)
vELnc
Indeed, Ryv — d), = Ry(v — ©). The phase biases w,
are then given by the relations
W, = K '(c, — L)

K

(k=1,....k) (C4)

Their variance-covariance matrix is equal to K, '[K '

JT.

C2 Handling new components of the
closure-ambiguity variable

We now consider the case where £, j includes n2 new clo-
sure edges (see Sect. 6.3); superscript a stands for added.
One then proceeds in three steps:

1) n? closure-ambiguity entries are added at the top
of column matrix v;

2) as specified in Sect. C3.2, n? columns are added on
the right-hand side of By;

3) as shown in Fig. C4, to build Ry, the last n2 lines
of K and L obtained through the first QR step
are added at the top of R. Matrices dy, Ky, Ly
and ¢y, are then updated accordingly.

Figure C4: Handling new components of the
closure-ambiguity variable. When new entries
of v appear at epoch k, the first columns of A
are processed as the last columns of By (see
Fig. C2). The recursive QR operation then
yields the quantities K, L, ¢, R and d. To
get Ky, Ly, ¢, Ry and di, one then proceeds
as illustrated here.

C3 Construction of matrices By, A, and by

We first consider the case where the variance-covariance
matrix V; of the data involved in the definition of by is
the identity: Vi, = I. Denoting by by the column ma-
trix whose entries are the values of by on the edges of
the observational graph Hj (see Sect. 1), we then have
b = by. To build By = By and Ay = Ay, we then dis-
tinguish the cases where at epoch k, n. does not increase
(Sect. C3.1), or increases (Sect. C3.2). The case Vi, # I
is dealt with in Sect. C3.3.

C3.1 Case where n. does not increase

Matrix By, whose number of columns is npy, is built
from the characteristic function Hj of Hy; see Fig. 1.
The pth line of By corresponds to the pth edge (r;,s;)
on which Hy(i,7) = 1. All the matrix elements of that
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line are zero, except (one or) two of them (see Eq. (6)
and the definition of g in Sect. 6.2):

B =1 (fori>1), BRmTEel)_ g
Matrix A has n. columns: the number of elements
of L. ; see Sect 6.3 and Fig. 5. According to the ac-
tion of Rf, the entries of the column associated with
some closure edge (r;,s;) are then all zero, except that
corresponding to the line associated with that edge if

Hy(i,j) = 1; that entry is then set equal to unity. The
lines of A} are of course sorted as the lines of By.

C3.2 Case where n. increases

We here consider the case where n? new closure edge(s)
appear(s) in L j at some epoch k > 1: nc := ne + nd;
see Sect 6.3.

Matrix B}'? is defined as in Sect. C3.1, but n2 columns
are then added on its right-hand side. (For example, at
epoch 2 of Fig. 5, By has four additional columns.) The
entries of the column of Bj associated with some new
closure edge (r;,s;) are all zero, except that correspond-
ing to the line associated with that edge; that entry is
set equal to unity.

Matrix Ay is then built as in Sect. C3.1, except for the
new closure-edges, since they are then taken into account
in the augmented definition of By.

C3.3 Case where Vi is not the identity

We here consider the general case where the variance-
covariance matrix Vj, is to be taken into account. In the
QR implementation under consideration, the inverse of Vi
is then factorized in the form

v, ' =0T, (C5)
where Uy, is an upper-triangular matrix. As

(Bkwk + Apv — bk)T Vk_l (Bkwk + Apv — bk)

= ||Uk(Bkwk + Apv — bk)| 2

R™ek

matrices By, Ay and by are then given by the relations

B, =U,By, A, =UiA;, by =Ub; (C6)

The problem is then to solve Eq. (81) in the Euclidean
LS sense.
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