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eAbstra
t. In global navigation satellite systems (GNSS),the problem of retrieving 
lo
k-phase biases from net-work data has a basi
 rank defe
t. We analyse the dif-ferent ways of removing this rank defe
t, and de�ne aparti
ular strategy for obtaining these phase biases in astandard form. The minimum-
onstrained problem to besolved in the least-squares (LS) sense depends on someinteger ve
tor whi
h 
an be �xed in an arbitrary man-ner. We propose to solve the problem via an undi�er-en
ed approa
h based on the notion of 
losure ambigu-ity. We present a theoreti
al justi�
ation of this 
losure-ambiguity approa
h (CAA), and the main elements for apra
ti
al implementation. The links with other methodsare also established. We analyse all those methods in auni�ed interpretative framework, and derive fun
tionalrelations between the 
orresponding solutions and ourCAA solution. This 
ould be interesting for many GNSSappli
ations like real-time kinemati
 pre
ise point posi-tioning for instan
e. To 
ompare the methods providingLS estimates of 
lo
k-phase biases, we de�ne a parti
ularsolution playing the role of referen
e solution. For thissolution, when a phase bias is estimated for the �rst time,its fra
tional part is 
on�ned to the one-
y
le width in-terval 
entred on zero; the integer-ambiguity set is mod-i�ed a

ordingly. Our theoreti
al study is illustratedwith some simple and generi
 examples; it 
ould haveappli
ations in data pro
essing of most GNSS networks,and parti
ularly global networks using GPS, Glonass,Galileo, or BeiDou/Compass satellites.Keywords. Global and regional networks · Clo
kbiases · Un
alibrated phase delays (UPD) · Fra
tional
lo
k biases (FCB) · Network real-time kinemati
s(NRTK) · Real-time kinemati
 pre
ise point positioning(RTK-PPP) · Closure di�eren
e (CD) · Nearest latti
epoint (NLP) · Integer least squares (ILS)

1 Introdu
tionIn global navigation satellite systems (GNSS), the 
al-ibration of the 
lo
k-phase biases of global networks isa 
hallenging problem. In parti
ular, the knowledge ofthe satellite 
lo
k-phase biases is needed for pre
ise pointpositioning (PPP); see, e.g., Zumberge et al. 1997; Geet al. 2008; Bertiger et al. 2010; Geng et al. 2010; Li etal. 2013. In the general 
ontext de�ned below, the equa-tions governing this GNSS 
alibration problem have abasi
 rank defe
t. In this paper, we analyse the di�erentways of removing this rank defe
t, and de�ne a parti
ularstrategy for obtaining the 
lo
k-phase biases in a stan-dard form. The link with other related approa
hes, su
has those proposed by Blewitt (1989), de Jonge (1998),Collins et al. (2010), and Loyer et al. (2012), is estab-lished in that framework.When modelling the multi-frequen
y (
ode and phase)observations of GNSS networks, the system to be 
on-sidered in
lude phase stru
tures of the form
∣

∣

∣

∣

∣

[βrκ(i) − βsκ(j)] + N(i, j) = bκ(i, j)for κ = 1, . . . , k
(1)Here, κ is the epo
h index; k is the index of the 
urrentepo
h; βrκ(i) and βsκ(j) are 
lo
k-phase biases. Theseterms are also 
alled `un
alibrated phase delays' (UPD).They are expressed in 
y
les, and depend on the fre-quen
y of the transmitted 
arrier wave; subs
ripts r ands stand for re
eiver and satellite,1 respe
tively; i is theindex of the re
eiver, and j that of the satellite; N(i, j) isthe integer ambiguity of the 
orresponding 
arrier-phasemeasurement. The terms bκ(i, j) in
lude the 
orrespond-ing phase data and all the other 
ontributions of su
hequations; see, e.g., Eqs. (1) and (10) of Lannes andTeunissen 2011, and Eqs. (1) and (4) of Loyer et al. 2012.The set of re
eiver-satellite pairs (i, j) involved in Eq. (1)forms the observational graph Hκ of the GNSS s
enario1In this paper, satellite should be understood as satellite trans-mitter.



2 J Geod 2013 DOI: 10.1007/s00190-013-0641-4 (in press)of epo
h κ. This graph is assumed to be 
onne
ted; seeAppendix A. Note that the wide-lane equation of theionosphere-free mode is typi
ally of form (1); N is thena wide-lane integer ambiguity; see, e.g., Eq. (4) of Loyeret al. 2012.As expli
itly 
lari�ed further on, whenever phase stru
-tures su
h as (1) appear in GNSS-network problems, a re-lated rank defe
t is to be removed. In this paper, we re-stri
t ourselves to the rank defe
ts indu
ed those phasestru
tures. This does not mean of 
ourse that those basi
rank defe
ts are the only ones to be handled in pra
ti
e;see, in parti
ular, Teunissen and Odijk (2003). A stan-dard approa
h for ta
kling the rank defe
ts is known asthe S-system approa
h of Baarda 1973, Teunissen 1984,de Jonge 1998. Examples of su
h S-system solutions areto be found in de Jonge 1998; Teunissen et al. 2010;Zhang et al. 2011; Odijk et al. 2012.In the geodeti
 and GNSS literature, there exist severalways of removing this basi
 rank defe
t. The most gen-eral approa
h is based on the S-system theory alreadymentioned. Other strategies derive from the pioneering
ontribution of Blewitt (1989): the relationship betweenthe undi�eren
ed (UD) ambiguities and the double dif-feren
ed (DD) ambiguities is 
ompleted so that the op-erator D thus de�ned is invertible. Let us also mentionthe approa
h of Collins et al. (2010) whi
h is based onthe 
on
ept of `ambiguity datum �xing.' The importantdevelopments of those approa
hes, both at a 
on
eptualand te
hni
al level, were often 
ondu
ted with di�erentphysi
al obje
tives. They have thus progressively andinsidiously masked the fundamental links between therelated methods.Brie�y, the Blewitt pro
edure 
an be divided in threesteps. In the �rst step, with regard to Eq. (1) for exam-ple, the UD data are pro
essed by 
onsidering the termon the left-hand side of that equation as a `
onstant fun
-tional variable;' a �oat estimate of this `biased-ambiguityvariable' is thus obtained. In the se
ond step, the 
orre-sponding DD ambiguities are 
omputed, and then �xedat integer values. In the third step, the 
lo
k-phase bi-ases βκ are estimated by using as data the UD ambi-guities provided by the a
tion of D−1 on the 
olumnmatrix formed by those �xed ambiguities. The theoret-i
al analysis developed in the present paper provides inparti
ular an answer to the following question: what isthe link between the UD ambiguities thus �xed and the�xed `
losure-delay' or `
losure-di�eren
e' (CD) ambigui-ties of the UD approa
h of Lannes and Teunissen (2011)?A similar question arises for the UD approa
h of Collinset al. (2010); an answer is also provided.In this general GNSS 
ontext, the main obje
tive of thepaper is to present a uni�ed interpretative framework inwhi
h the various 
ontributions in the related �elds ofresear
h 
an be understood and 
ompared more easily.This 
an lead to improvements of some related meth-ods. For example, we show that removing the rank de-fe
t via the D-matrix of Blewitt (1989) 
an be analysed

in a theoreti
al framework tightly linked to the S-systemapproa
h of Teunissen (1984). We thus show that the in-termediate di�eren
ing stage of the Blewitt approa
h 
anbe avoided, without any 
ounterpart, via the approa
hof Teunissen (1984) as it is formulated for example inLannes and Teunissen (2011): the `
losure ambiguities'to be �xed then appear, from the outset, in the very for-mulation of the UD problem to be solved; 
ompare withwhat is done in Se
t. 4 of Ge et al. (2005) for instan
e.The theoreti
al guidelines of this paper are presented inSe
t. 2. We �rst identify the rank defe
t in question.The minimum-
onstrained problem to be solved in theleast-squares (LS) sense depends on some integer ve
torwhi
h 
an be �xed in an arbitrary manner. To 
omparethe methods providing LS estimates of the 
lo
k-phasebiases, we then introdu
e a parti
ular solution playingthe role of referen
e solution. For this solution, when a
lo
k-phase bias is estimated for the �rst time, its fra
-tional part is 
on�ned to the one-
y
le width interval
entred on zero; the integer-ambiguity set is modi�eda

ordingly. Se
tion 3 is devoted to the algebrai
 frame-work of our analysis. This framework mainly derivesfrom the original 
ontributions of Lannes and Gratton(2009), and Lannes and Teunissen (2011). As a similarproblem arises in phase-
losure imaging in astronomy, wealso took pro�t of the analysis presented in Lannes andPrieur (2011). A natural way for �nding the referen
esolution is to adopt an approa
h based on the notion of
losure ambiguity. The prin
iple of the 
orresponding`
losure-ambiguity approa
h' (CAA) is de�ned in thatframework (Se
t. 4). The bulk of our 
ontribution fol-lows the main theoreti
al guidelines presented in Se
t. 2.In a related option whi
h is presented in Se
t. 5, theCAA prin
iple is dire
tly introdu
ed via the S-system ap-proa
h of Baarda (1973), Teunissen (1984) and de Jonge(1998). The 
orresponding development is performed inthe S-system framework de�ned in Appendix B. Thestudy developed in Se
ts. 3.3, 3.4 and 3.15 of de Jonge(1998) is thus extended to the 
ases where the unionof the graphs Hκ is taken into a

ount progressively.Se
tion 6 is devoted to the QR implementation of theCAA prin
iple; related information is to be found inAppendix C. In many methods, the rank defe
t in ques-tion is removed in an impli
it manner or intuitively. InSe
t. 7, on the grounds of some results established inSe
ts. 3.5 and 3.6, we identify the related 
onstraints ex-pli
itly, and thus establish the link between the solutionsprovided by those methods and the CAA-(S-System) so-lutions; see Fig. 6 in parti
ular.Our analysis is illustrated with some simple and generi
examples. It 
ould have appli
ations in data pro
essingof most GNSS networks, and parti
ularly global networksusing GPS,Glonass, Galileo, or BeiDou/Compass satel-lites. The main results provided by this study are 
om-mented upon in Se
t. 8; some 
on
lusions are also pre-sented with possible appli
ations to software pa
kagesused for pro
essing GNSS networks.
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al guidelinesThe problem is formulated in Se
t. 2.1; the related rankdefe
t is identi�ed in Se
t. 2.2. This rank defe
t 
an beremoved by imposing some 
onstraints without a�e
tingthe GNSS results su
h as the estimates of the station-position parameters, for example. The parti
ular LS so-lutions thus obtained are de�ned in Se
t. 2.3. We thende�ne the family of those solutions (Se
t. 2.4). To 
om-pare the parti
ular solutions given by the various GNSSmethods providing LS estimates of 
lo
k-phase biases,we then introdu
e a parti
ular solution playing the roleof referen
e solution (Se
t. 2.5).2.1 Formulation of the problemIn our formulation of the problem, the 
omponents of theambiguity ve
tor N are the integer ambiguities N(i, j)involved in the phase measurements until the 
urrentepo
h. We thereby assume that the time-invariant prop-erty of the ambiguities holds. Regarded as a fun
tion,
N therefore takes its values on the edges of
Gk

def

=
k

⋃

κ=1

Hκ (2)where Hκ is the observational graph of epo
h κ. In whatfollows, Hk denotes the `
hara
teristi
 fun
tion' of Hkwith regard to Gk:for all (i, j) ∈ Gk, Hk(i, j)
def

=

∣

∣

∣

∣

∣

1 if (i, j) ∈ Hk;
0 otherwise. (3)The number of edges (ri, sj) of Hκ is denoted by neκ;

neκ is less than or equal to the number of edges of Gk.To illustrate our analysis, we 
onsider a `simulated net-work' in
luding four re
eivers and �ve to eight satellites;see Fig. 1. The s
enarios of the �rst three epo
hs arede�ned by the 
hara
teristi
 fun
tions H1, H2 and H3displayed in that �gure. While looking simple at �rstsight, this example is rather elaborate. Indeed, it in-
ludes the 
ase of the appearan
e of new satellites in the�eld of view of the network (s6 and s7 at epo
h 2, s8 atepo
h 3), and also the 
ase of the disappearan
e of onesatellite (s3 at epo
h 3).Remark 2.1. When a satellite 
omes ba
k in the �eld ofview of the network, it is dealt with as a new satellite.In the 
ase of global networks, if need be, the su

essivepasses are thus dealt with in a simple manner ·At epo
h κ ≤ k, only some 
omponents of N may bea
tive; see Fig. 1. To formalize this point, we introdu
ethe operatorRe
κ that restri
ts N (whi
h is de�ned on theedges of Gk) to the edges of Hκ:for all (i, j) ∈ Hκ, (Re

κN)(i, j)
def

= N(i, j) (4)

1 1 · 1 ·

· 1 1 · ·1 · 1 1 1
· · 1 1 ·

r1

r2

r3

r4

s1 s2 s3 s4 s5

1 1 · 1 · · 1
· 1 0 · · 1 11 1 0 1 1 1 ·

· · 1 1 1 · ·

r1

r2

r3

r4

s1 s2 s3 s4 s5 s6 s7

1 1 · 1 · · 1 ·

· 1 0 · · 1 1 10 1 0 1 1 1 · ·

· · 0 1 1 · 1 1

r1

r2

r3

r4

s1 s2 s3 s4 s5 s6 s7 s8

Figure 1: Chara
teristi
 fun
tions of Hk with regard to Gkfor k = 1, 2, 3 (example). From top to bottom, H1, H2,and H3. The dots de�ne the edges (ri, sj) for whi
h no datahave been obtained until epo
h k in
luded. Here, ne1 = 11,
ne2 = 15, and ne3 = 16. By de�nition, Gk is the union ofthe observational graphs until epo
h k in
luded. The num-ber of the edges of Gk is 11 at epo
h 1, 17 at epo
h 2,and 20 at epo
h 3. Six edges appear at epo
h 2: (r1, s7),
(r2, s6), (r2, s7), (r3, s2), (r3, s6) and (r4, s5); two edges dis-appear: (r2, s3) and (r3, s3). Note that satellites s6 and s7are then dete
ted by the network. Three edges appear atepo
h 3: (r2, s8), (r4, s7) and (r4, s8); two edges disappear:
(r3, s1) and (r4, s3). Satellite s3 then disappears. At ea
hepo
h, the large-sized numbers de�ne the edges of Gst,k, thesele
ted spanning tree of Gk; see Fig. 5 further on.Equation (1) 
an then be written in the form
∣

∣

∣

∣

∣

Bκβκ + Re
κN = bκfor κ = 1, . . . , k

(5)where Bκ is the following bias operator:
(Bκβκ)(i, j)

def

= βrκ(i)− βsκ(j) (for all (i, j) ∈ Hκ) (6)In what follows, we will assume that Re
eiver 1 de�nesthe referen
e for the re
eiver and satellite biases:
βrκ(1) = 0 (κ = 1, . . . , k) (7)This is 
ommonly used by the GNSS investigators forremoving the rank defe
t of operators su
h as Bκ. Thenumber nbκ of phase biases of epo
h κ to be estimated
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es of Hκ:
nbκ = nvκ − 1 (nvκ = nrκ + nsκ) (8)With regard to its fun
tional variables β1, . . . , βk and N ,Eq. (5) proves to have a basi
 rank defe
t. We nowspe
ify this point.2.2 Identi�
ation of the rank defe
tFor 
larity, let us set
G

def

= Gk (9)At epo
h k, the number of ambiguities N(i, j) involvedin the problem is equal to the number of edges of G (forexample twenty in Fig. 1 for k = 3). Again, for 
larity,this number is simply denoted by ne. We then set
nst = nv − 1 (nv = nr + ns) (10)where nv is the number of verti
es of G; nr and ns are thenumber of re
eivers and satellites (respe
tively) involvedin that graph (four and eight in Fig. 1 for k = 3). Asspe
i�ed in Se
t. A2, nst is the number of edges of anyspanning tree Gst of G. The total number of phase biasesto be estimated at epo
h k, ∑k

κ=1 nbκ, is generally mu
hlarger than nst; see Eqs. (8) and (10). The part playedby the verti
es of G is not obvious. We now show that
nst de�nes the `size' of the rank defe
t in question.Let us denote by B the operator from R

nst into R
ne de-�ned by the relation

(Bα)(i, j)
def

= αr(i) − αs(j) (for all (i, j) ∈ G) (11)Denoting by µ any integer-valued fun
tion taking its val-ues on the verti
es of G other than the referen
e re
eiver,we have
Re

κBµ = BκR
v
κµ (12)where Rv

κµ is the restri
tion of µ to the verti
es of Hκ(other than the referen
e re
eiver). Note that µ 
an beregarded as a ve
tor of Z
nst . It then follows from Eq. (5)that for any µ in Z

nst ,
∣

∣

∣

∣

∣

Bκ(βκ + Rv
κµ) + Re

κ(N − Bµ) = bκfor κ = 1, . . . , k
(13)Via the operators Bκ, Rv

κ, Re
κ and B, any variation ofthe `vertex-ambiguity' ve
tor µ 
an thus be 
ompensatedby a variation of the `edge-ambiguity' ve
tor N . As aresult, with regard to the bias and ambiguity variables,Eq. (5) is not of full rank. The dimension of the rankdefe
t is equal to that of ve
tor µ, i.e., nst.

2.3 Parti
ular LS solutionsIn GNSS, for the reasons spe
i�ed in Remark 2.2 (at theend of this se
tion), ea
h 
lo
k-phase bias is to be esti-mated up to a 
onstant integer. As a result, the 
hoi
eof µ in Z
nst does not a�e
t the signi�
ant part of thevalues of the bias fun
tions

wκ
def

= βκ + Rv
κµ (κ = 1, . . . , k) (14)to be estimated; see Eq. (13). The ambiguity ve
tor tobe retrieved

v
def

= N − Bµ (15)is of 
ourse a�e
ted by this 
hoi
e, but this has no a
tualGNSS impa
t. As a result, the GNSS methods provid-ing estimates of the 
lo
k-phase biases must remove therank defe
t of Eq. (5) by 
hoosing µ in Z
nst somehow,impli
itly or expli
itly.In pra
ti
e, as 
lari�ed in the remainder of the paper,removing this rank defe
t amounts to imposing nst 
on-straints on some values of the biases or ambiguities tobe retrieved. In other words µ is de�ned via these 
on-straints. The minimum-
onstrained problem to be solvedin the LS sense is therefore of the form

∣

∣

∣

∣

∣

Bκwκ + Re
κv = bκ (κ = 1, . . . , k)subje
t to nst 
onstraints on wκ or v

(16)With regard to a parti
ular set of su
h 
onstraints, where
v is an integer-valued fun
tion from Eq. (15), the LS so-lution of Eq. (16),
(w̌1, . . . , w̌k; v̌) (17)is then unique. For example, the solution provided by theCAA method de�ned in Se
t. 4 is the parti
ular LS solu-tion obtained by imposing the a priori 
onstraint v = 0on a spanning tree of G (
hosen arbitrarily). The parti
-ular LS solution introdu
ed in Se
t. 2.5 is de�ned by im-posing, a posteriori, nst 
onstraints on some bias values.In our analysis, this parti
ular solution plays the role ofreferen
e solution; it is denoted by (w̄1, . . . , w̄k; v̄).Remark 2.2. The satellite 
omponents of the biases thusobtained (for example those of the referen
e solution)
an be broad
asted to the network users for PPP appli-
ations. The fa
t that w̌sκ(j) is an LS estimate of βsκ(j)up to some unknown 
onstant integer does not raise anydi�
ulty. One is then simply led to rede�ne the integerambiguities involved in the PPP problem to be solved;see, e.g., Se
t. 9 in Lannes and Teunissen 2011 ·2.4 Equivalent LS solutionsGiven some parti
ular LS solution su
h as (17), we have
Bκw̌κ + Re

κv̌
LS

= bκ
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Bκ(w̌κ + Rv

κµ) + Re
κ(v̌ − Bµ)

LS

= bκThe LS solutions of Eq. (5) are therefore of the form
(w̌

(µ)
1 , . . . , w̌

(µ)
k ; v̌(µ)) (18)with

w̌(µ)
κ

def

= w̌κ + Rv
κµ, v̌(µ) def

= v̌ − Bµ (19)where µ is any ve
tor of Z
nst .The methods providing LS estimates of the phase biasesgenerally di�er by the 
hoi
e of the imposed 
onstraints.To 
ompare their results, it is 
onvenient to represent theequivalent solutions (18)-(19) by a referen
e parti
ularsolution. This is done in Se
t. 2.5.Remark 2.3. For any �xed µ in Z

nst , the temporal vari-ations of the estimated phase biases make sense. Forexample, if satellite sj remains in the �eld of view of thenetwork from epo
h 1 to κ, we have
(Rv

κµ)s(j) = (Rv
1µ)s(j) = µs(j)hen
e from Eqs. (19) and (14) ,

w̌
(µ)
sκ (j) − w̌

(µ)
s1 (j) = w̌sκ(j) − w̌s1(j)

≃ βsκ(j) − βs1(j)A similar result of 
ourse holds for the re
eiver 
lo
k-phase biases ·2.5 Referen
e solutionWe here 
on
entrate on the family of equivalent LS so-lutions (18)-(19) generated by a parti
ular solution su
has (17): (w̌1, . . . , w̌k; v̌). In our analysis, the referen
esolution of this family is the parti
ular solution
(w̄1, . . . , w̄k; v̄) (20)de�ned as follows: w̄κ and v̄ are of the form (19)
w̄κ

def

= w̌κ + Rv
κµ̌, v̄

def

= v̌ − Bµ̌ (21)in whi
h µ̌ is de�ned by imposing spe
i�
 
onstraintson nst bias values; note that here, these 
onstraints areimposed a posteriori on the solution (w̌1, . . . , w̌k; v̄) pro-vided by any method. We �rst require the phase bias w̄to be small at epo
h 1. More pre
isely, we impose the
ondition |w̄1| ≤ 1/2, i.e. expli
itly,
∣

∣

∣

∣

∣

|w̄r1(i)| ≤ 1/2 for i = 2, . . . , nr1

|w̄s1(j)| ≤ 1/2 for j = 1, . . . , ns1

(22)The following values of µ̌ are de�ned a

ordingly:
∣

∣

∣

∣

∣

µ̌r1(i) := − ⌊w̌r1(i)⌉ for i = 2, . . . , nr1

µ̌s1(j) := − ⌊w̌s1(j)⌉ for j = 1, . . . , ns1

(23)

Here, ⌊x⌉ denotes the integer 
losest to x. Likewise,at ea
h epo
h κ when some satellite(s) sj appear(s) inthe �eld of view of the network (see Fig. 1), we thenimpose the 
ondition(s)
|w̄sκ(j)| ≤ 1/2 (24)by setting
µ̌sκ(j) := − ⌊w̌sκ(j)⌉ (25)(In the 
ase where new re
eivers would be a
tivated, sim-ilar 
onditions would be imposed.) At epo
h k, we havethus 
ompletely de�ned some ve
tor µ̌ of Z

nst ; v̄ is thenobtained via the relation v̄ := v̌ − Bµ̌; see Eq. (21).Remark 2.4. When some LS solution (w̌1, . . . , w̌k; v̌)has been found, for instan
e that provided by the CAAmethod de�ned in Se
ts. 4 to 6, the referen
e solution ofits equivalent solutions is obtained as des
ribed in thisse
tion. Clearly, this 
an also be done for the LS solutionof any method providing estimates of the phase biases;see Se
t. 7 together with, e.g., Blewitt 1989; Ge et al.2005; Lauri
hesse and Mer
ier 2007; Collins et al. 2010;and Loyer et al. 2012. To 
ompare and validate the re-sults provided by all these methods (and many others),one may inspe
t the ambiguity sets of their referen
e so-lutions. These referen
e ambiguity solutions should beidenti
al on all the edges of G for all methods; otherwise,this would be an indi
ation that the methods are in dis-agreement, and that some of those results are wrong.The 
omparison of the referen
e solutions is thereforea good diagnosis for testing the 
ompatibility of thesemethods ·Remark 2.5. From a te
hni
al point of view, one mighttry to solve Eq. (16) in the LS sense by imposing the non-linear bias 
onstraints (22) and (24) on w1 and some wκ,from the outset. It is not easy at all to solve the problemthat way. Moreover, the number of edge ambiguities tobe �xed would then be equal to ne, whereas the num-ber of ambiguities to be �xed in the CAA approa
h (forexample) is equal to ne − nst; see Se
ts. 4 and 6 ·3 Algebrai
 frameworkThe preliminary analysis developed in Se
t. 2 shows thatgraph G, operator B, and Z
nst play a key role in theformulation of the problem and the de�nition of its so-lutions; see, in parti
ular, Eqs. (13) and (18)-(19). Theaim of this se
tion is to de�ne the 
orresponding alge-brai
 framework.We �rst de�ne related spa
es of fun
tions (Se
t. 3.1).The key property on whi
h our analysis is based is pre-sented in Se
t. 3.2. The related notions of 
losure di�er-en
e, CD ambiguity (also 
alled 
losure ambiguity), and
losure matrix are spe
i�ed in Se
ts. 3.3 and 3.4. Se
-tions 3.5 and 3.6 are devoted to some generalized inverses
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on
erning the operator D introdu
ed in the appendix Bof Blewitt (1989) is thus 
ompleted. We now draw freelyfrom the elementary notions introdu
ed in Appendix A.3.1 Referen
e spa
esGiven some graph G ≡ G(V , E), with vertex set V andedge set E (see Se
t. A1), we introdu
e some fun
tionalsspa
es whi
h play a key role in the algebrai
 analysis ofthe problem. In what follows, the GNSS grid asso
iatedwith G is denoted by G; see Fig. A1.3.1.1 Vertex-bias spa
eLet Vb be the spa
e of real-valued fun
tions
α

def

= (αr, αs) (26)taking their values on the verti
es of G with αr(1) = 0.This spa
e, whi
h is referred to as the vertex-bias spa
e,is asso
iated with the de�nition of (virtual) phase bi-ases α on the verti
es of G (other than the referen
ere
eiver). From Eq. (10),
Vb

∼= R
nst (27)Here, the symbol ∼= means `isomorphi
 to.' Note that

Z
nst is the `integer latti
e' of Vb: Vb(Z) ∼= Z

nst . Theinteger ve
tor µ
def

= (µr, µs) is a point of this latti
e.3.1.2 Edge-delay spa
eA real-valued fun
tion ϑ taking its values on G, andthereby on E , 
an be regarded as a ve
tor of the edge-delay spa
e
E ∼= R

ne (28)The values of ϑ on G are then regarded as the 
ompo-nents of ϑ in the standard basis of E; Z
ne is the `integerlatti
e' of E: E(Z) ∼= Z

ne . The integer-ambiguity ve
-tor N is a point of this latti
e.3.1.3 Spanning-tree delay spa
e.Closure-delay spa
eGiven some spanning tree Gst of G, grid G 
an be de-
omposed into two subgrids: Gst and Gc; see Se
t. A2.These grids in
lude nst and nc points, respe
tively (seeFig. A2):
nc = ne − nst (29)The fun
tions of E that vanish on Gc form a subspa
eof E denoted by Est: the spanning-tree delay spa
e.Likewise, the fun
tions of E that vanish on Gst form

a subspa
e of E denoted by Ec: the 
losure-delay spa
e;this terminology is justi�ed in Se
t. 3.3. The 
orrespond-ing integer latti
es are denoted by Est(Z) and Ec(Z), re-spe
tively. As illustrated in Fig. 2, the Eu
lidean spa
e Eis the orthogonal sum of Est and Ec. Clearly,
dimEst = nst, dimEc = nc (30)The orthogonal proje
tions of ϑ on Est and Ec are re-spe
tively denoted by Qstϑ and Qcϑ.3.1.4 Edge-bias spa
eBy de�nition, the bias operator is the operator from Vbinto E de�ned by Eq. (11). The range of B, whi
h isdenoted by Eb (see Fig. 2), 
an be referred to as the edge-bias spa
e. Its fun
tions are of the form αr(i) − αs(j).The operator from Vb into Est indu
ed by B is denotedby Bst. Likewise, the operator from Vb into Ec indu
edby B is denoted by Bc.The matrix of B is generally expressed in the standardbases of Vb and E. For example, let us sort the edges ofthe graph shown in Fig. A1 in the order obtained via theappli
ation of the Kruskal algorithm; see Se
t. A2. Thepoints of G are then ordered as follows:
(1, 1), (1, 3), (1, 4), (2, 1), (2, 2), (3, 2),

(2, 4), (3, 3), (3, 4)We then have
[B][α] =





























0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0
1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1

















































αr(2)

αr(3)

αs(1)

αs(2)

αs(3)

αs(4)



















The 
olumns of [B] then de�ne the standard basis of Eb.Clearly,
[Bst] =

















0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 −1 0 0 0
1 0 0 −1 0 0
0 1 0 −1 0 0

















(31)and
[Bc] =





1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1



 (32)The 
ondition Bstα = 0, i.e., Bα = 0 on the edges of Gst,implies that α is 
onstant on V ; as αr(1) = 0, this 
on-stant is zero. The null spa
e of Bst is therefore redu
ed
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lo
k-phase biases of GNSS networks 7to {0}. As Bα = 0 implies Bstα = 0, the null spa
e of Bis also redu
ed to {0}. We thus have
kerB = kerBst = {0} (33)As a result, B is of full rank, hen
e from Eq. (27),
dimEb = nst (34)The edge-bias spa
eEb and its ambiguity latti
e Eb(Z) =

BVb(Z) are isomorphi
 to the vertex-bias spa
e Vb andits integer latti
e Vb(Z), respe
tively; see Se
t. 3.1.1.3.2 Key propertyAs kerBst = {0} (Eq. (33)), and dimEst = dimVb (seeEqs. (30) and (27)), Bst maps Vb onto Est; Bst is there-fore invertible. As spe
i�ed in this se
tion, our analysisderives from this property.Let us 
on
entrate on the vertex-bias fun
tion
α

(ϑ)
st

def

= B−1
st Qstϑ (α(ϑ) ≡ α

(ϑ)
st ) (35)When no 
onfusion may arise, subs
ript st is omitted.A

ording to its de�nition (whi
h is illustrated in Fig. 2),

Qstϑ is the fun
tion of Est whose values are those of ϑon subgrid Gst.The values of α(ϑ) 
an be obtained from those of Qstϑin a very simple manner; the 
orresponding re
ursivepro
ess is des
ribed in Se
t. 5 of Lannes and Teunissen(2011). The 
olumn ve
tors of [Bst]
−1 
an thus be eas-ily obtained. In fa
t, [Bst] is a parti
ular unimodu-lar2 matrix whose inverse 
an be obtained via anotherinteger-programming te
hnique; see Se
t. A1.4 in Lannesand Teunissen (2011). For example, the inverse of ma-trix (31) is

[Bst]
−1 =

















−1 0 0 1 0 0
−1 0 0 1 −1 1
−1 0 0 0 0 0
−1 0 0 1 −1 0

0 −1 0 0 0 0
0 0 −1 0 0 0

















(36)Let us now 
onsider the following edge-bias fun
tion:
ϑb

def

= Bα(ϑ) (37)A

ording to Eq. (35), the values of ϑb and ϑ 
oin
ideon Gst. The fun
tion ϑc de�ned by the relation
ϑc

def

= ϑ − ϑb (38)2By de�nition, a unimodular matrix is a square integer matrixwith determinant ±1.

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�/
C

�
�

�
�

�
��

r
Qcϑ

rϑr

ϑb =Bα(ϑ)
rQstϑ

r
ϑc

E
(ne)

Est

(nst)
Eb

(nst)

0
Ec

(nc)Figure 2: Geometri
al illustration of Property 1.In this geometri
al representation of the edge-delayspa
e E ∼= R
ne , Est is the spanning-tree delay spa
e.This spa
e is isomorphi
 to the vertex-bias spa
e

Vb
∼= R

nst . The orthogonal 
omplement of Est in theEu
lidean spa
e E is the 
losure-delay spa
e Ec. Therange of the bias operator B, the edge-bias spa
e, isa subspa
e of E denoted by Eb. This spa
e is isomor-phi
 to Est and thereby to Vb. (The dimensions ofthese spa
es are written within parentheses.) As illus-trated here, E is the oblique dire
t sum of Eb and Ec.The 
losure operator C is the oblique proje
tion of Eonto Ec along Eb; for further details see Property 1.therefore lies in Ec. We thus have the following property(see Fig. 2):Property 1. Any edge fun
tion ϑ of E 
an be de
om-posed in the form ϑ = ϑb + ϑc with ϑb
def

= Bα(ϑ) and ϑcin Ec. For a given spanning tree, this de
omposition isunique. As a 
orollary, E is the oblique dire
t sum of Eband Ec: E = Eb + Ec with Eb ∩ Ec = {0}.As illustrated in Fig. 2, ϑc is the oblique proje
tion of ϑon Ec along Eb. The 
orresponding operator is the `
lo-sure operator' C:
ϑc = Cϑ (39)Its null spa
e (i.e., its kernel) is the range of B:
kerC = Eb (40)with dimEb = nst (Eq. (34)).A

ording to Property 1, any fun
tion N of the ambigu-ity latti
e E(Z) ∼= Z

ne 
an be de
omposed in the form
N = Nb + Nc (41)with Nb

def

= Bµ
(N)
st where (from Eq. (35))

µ
(N)
st

def

= B−1
st QstN (µ(N) ≡ µ

(N)
st ) (42)As Bst is unimodular, µ(N) is an integer-valued fun
tion;

Nb
def

= Bµ(N) and Nc
def

= CN are therefore points of theinteger latti
es Eb(Z) ∼= Z
nst and Ec(Z) ∼= Z

nc , respe
-tively. As a result, the integer latti
e E(Z) is the obliquedire
t sum of the integer latti
es Eb(Z) and Ec(Z):
E(Z) = Eb(Z) + Ec(Z) Eb(Z) ∩ Ec(Z) = {0} (43)
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losure di�eren
es)and 
losure ambiguitiesA

ording to Eqs. (38) and (37), the quantities ϑc(iℓ, jℓ),for ℓ = 1, . . . , nc, 
an be 
omputed via the formula
ϑc(iℓ, jℓ) = ϑ(iℓ, jℓ) −

[

α(ϑ)
r (iℓ) − α(ϑ)

s (jℓ)
] (44)where α(ϑ) is determined via Eq. (35). As 
lari�ed in thisse
tion, these quantities 
an be referred to as the `
losuredelays' or the `
losure di�eren
es' of ϑ; the Nc(iℓ, jℓ)'s aretherefore `CD ambiguities,' also simply 
alled `
losureambiguities.'In the example of Fig. A2, let us 
onsider the se
ond loop,i.e., the loop asso
iated with the 
losure point (i2, j2) =

(3, 3). In G, the su

essive points of this loop are the fol-lowing: (3, 3), (3, 2), (2, 2), (2, 1), (1, 1), and (1, 3). Sin
e
ϑb(i, j) = α

(ϑ)
r (i) − α

(ϑ)
s (j), we then have, in a teles
op-ing manner,

ϑb(3, 3) − ϑb(3, 2) + ϑb(2, 2) − ϑb(2, 1)

+ ϑb(1, 1) − ϑb(1, 3) = 0.Furthermore, as ϑc vanishes on Gst,
ϑc(3, 3) − ϑc(3, 2) + ϑc(2, 2) − ϑc(2, 1)

+ ϑc(1, 1) − ϑc(1, 3) = ϑc(3, 3)Sin
e ϑ = ϑb + ϑc from Property 1, it follows that
ϑ(3, 3) − ϑ(3, 2) + ϑ(2, 2) − ϑ(2, 1)

+ ϑ(1, 1) − ϑ(1, 3) = ϑc(3, 3)This expli
itly shows that ϑc(i2, j2) 
an be regarded asthe 
losure di�eren
e of ϑ on the se
ond loop. The gen-eralization is straightforward. In the example of Fig. A2,we thus have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϑc(2, 4) = ϑ(2, 4) − ϑ(2, 1) + ϑ(1, 1) − ϑ(1, 4)

ϑc(3, 3) = ϑ(3, 3) − ϑ(3, 2) + ϑ(2, 2) − ϑ(2, 1)

+ ϑ(1, 1) − ϑ(1, 3)

ϑc(3, 4) = ϑ(3, 4) − ϑ(3, 2) + ϑ(2, 2) − ϑ(2, 1)

+ ϑ(1, 1) − ϑ(1, 4)

(45)
More generally, owing to the teles
oping stru
ture oftheir 
onstru
tion, the 
losure di�eren
es ϑc(iℓ, jℓ) areasso
iated with loops whose order is even, and greaterthan or equal to 4. In this limit 
ase, the notion of
losure di�eren
e (CD) redu
es to that of double dif-feren
e (DD). A

ording to Eq. (44), the ϑc(iℓ, jℓ)'s 
anhowever be 
omputed without knowing the edges of theirloop. How to identify these edges, if need be, is spe
i�edin Se
t. 3.4. Subje
t to some 
ondition, these CD's 
anbe expressed as linear 
ombinations of DD's. The relatedmatter is analysed in Se
t. 10 of Lannes and Teunissen(2011).

3.4 Closure matrixA

ording to the de�nitions ofBst and Bc (introdu
ed inSe
t. 3.1.4), the ve
tor ϑb
def

= Bα(ϑ) 
an be orthogonallyde
omposed in the form
ϑb = Bstα

(ϑ) + Bcα
(ϑ) = Qstϑ + Bcα

(ϑ)Likewise,
ϑ = Qstϑ + Qcϑwhere Qcϑ is the orthogonal proje
tion of ϑ on Ec; seeFig. 2. It then follows from Eq. (35) that
ϑc = ϑ − ϑb = Qcϑ − Bcα

(ϑ) = Qcϑ − BcB
−1
st QstϑDenoting by [C] the matrix of C expressed in the stan-dard bases of E and Ec, we thus have, from Eq. (39),

[C][ϑ] = −[Bc][Bst]
−1[Qstϑ] + [Qcϑ].The 
olumn ve
tors of [C] 
orresponding to the spanning-tree edges (on whi
h Qcϑ vanishes) are therefore thoseof −[Bc][Bst]

−1. It is also 
lear that the 
olumn ve
-tors of [C] 
orresponding to the 
losure edges (on whi
h
Qstϑ vanishes) are those of the identity matrix on Ec.Consequently, with regard to the orthogonal dire
t sum
Est ⊕ Ec,
[C] =

[

−[Bc][Bst]
−1 [Ic,c]

] (46)In the example of Fig. A2, we thus have, from Eqs. (31),(36), and (32), with the same edge ordering,
[Bc][Bst]

−1 =

2

4

1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 0 −1

3

5

×

2

6

6

6

6

6

6

4

−1 0 0 1 0 0
−1 0 0 1 −1 1
−1 0 0 0 0 0
−1 0 0 1 −1 0

0 −1 0 0 0 0
0 0 −1 0 0 0

3

7

7

7

7

7

7

5As a result,
[C] =

[

1 0 −1 −1 0 0 1 0 0
1 −1 0 −1 1 −1 0 1 0
1 0 −1 −1 1 −1 0 0 1

]Applied to [ϑ], this matrix of 
ourse yields Eq. (45).More generally, the edges of a `
losure loop' are iden-ti�ed via the nonzero entries of the 
orresponding rowof [C]. In fa
t, this is the most e�
ient way of identi-fying the loops in question. Note however that in theCAA method presented through Se
ts. 4 to 6, the a
tionof this matrix is never expli
itly performed.
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lo
k-phase biases of GNSS networks 93.5 On some generalized inverseof the UD-CD relationshipThe 
losure operator C, whi
h is an oblique proje
tion,is not of full rank. The simplest way of removing itsrank defe
t is to introdu
e the operator C⋄ from E into
Est × Ec

C⋄ϑ
def

= (Qstϑ, Cϑ) (47)A

ording to Property 1, C⋄ is invertible; this 
an be im-mediately understood from Fig. 2 for example; C−1
⋄ 
anthen be regarded as some generalized inverse of C. Wenow spe
ify this point, expli
itly, in matrix terms. The
orresponding development is aimed at analysing the ap-proa
hes of Blewitt (1989) and Collins et al. (2010) inan elementary manner; see Se
ts. 3.6 and 7 further on.In the standard bases of E = Est ⊕Ec and Est ×Ec, thematrix of C⋄ 
an be written in the form (see Eq. (46))

[C⋄]
def

=

[

[Qst]

[C]

]

=

[

[Ist,st] [0st,c]

−[Bc][Bst]
−1 [Ic,c]

] (48)It is readily veri�ed that
[C⋄]

−1 =

[

[Ist,st] [0st,c]

[Bc][Bst]
−1 [Ic,c]

] (49)Given some point N̆st arbitrarily �xed in Est(Z), let usnow 
onsider the ambiguity point N̆ of E(Z) de�ned bythe relation
[N̆ ]

def

= [C⋄]
−1

[

[N̆st]

[Nc]

]

(Nc
def

= CN) (50)In the following property,
E

(N)
b (Z)

def

= N + Eb(Z) (51)is the `a�ne latti
e' passing through N and parallel tothe integer latti
e Eb(Z) of the edge-bias spa
e Eb; seeSe
t. 3.1.4 and Fig. 3.Property 2. The ambiguity point N̆ is the point of thea�ne latti
e E
(N)
b (Z) whose proje
tion on Est is equalto N̆st. More pre
isely, N̆ = Nc + Bµ(N̆st). As a 
orol-lary, in the spe
ial 
ase where N̆st is set equal to 0, N̆ isnothing else than Nc.For reasons of 
larity and brevity, the proof is left to thereader. Note that this property 
an also be understoodwithin the S-system framework; see for instan
e the tablegiven in Se
t. 1.6 of Teunissen (1984).3.6 On the Blewitt generalized inverseof the UD-DD relationshipWe now apply the results of the previous se
tion to theUD-DD relationship, and thus make the link with theapproa
h of Blewitt (1989).
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#

#
#

#
#

#
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\
\

\
\

\
\

\
\
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#
#

#
#

#
#

#
#

##

s

N̆st

Ec

sN

6

Bµ(N̆st)

N̆s

sNc

E

Est

Eb E
(N)
b (Z)

s

0Figure 3: Geometri
al illustration of Property 2.In this symboli
 representation of the edge-delayspa
e E, E
(N)
b (Z) is the a�ne latti
e passingthrough N and parallel to the integer latti
e Eb(Z)of the edge-bias spa
e Eb (here, for 
larity, the ver-ti
al axis); N̆ is the UD ambiguity obtained via therelationship (50) in whi
h N̆st is arbitrarily �xedin Est(Z), and Nc is the CD ambiguity point of N(the 
losure ambiguity of N). In the importantspe
ial 
ase where N̆st is set equal to 0, N̆ redu
esto Nc.A

ording to Eq. (68) of Lannes and Teunissen (2011),the maximum number of independent DD's is less thanor equal to nc: nm

d ≤ nc. For 
larity, let us now set
nd := nm

d . In the important spe
ial 
ase where
nc = nd (52)the information 
ontained in the DD data is equiva-lent to that 
ontained in the 
losure data. Let us thendenote by Dd,e the operator providing a maximum setof nd DD's. By de�nition, Dd,e is an operator from Einto R

nd , i.e. then, R
nc . By sorting the edges of G asspe
i�ed in Se
t. 3.1.4, the matrix of Dd,e has then thefollowing blo
k stru
ture:

[Dd,e] =
[

[Dd,st] [Dd,c]
] (53)Here, matrix [Dd,e] is expressed in the standard bases of

E = Est ⊕ Ec and R
nd . The 
olumns of [Dd,st] and [Dd,c]therefore 
orrespond to the edges of Gst and to the 
lo-sure edges, respe
tively. Provided that Condition (52)is satis�ed, [Dd,c] is invertible; moreover, the entriesof [Dd,c]

−1 are then equal to ±1 or 0; see Lannes andTeunissen 2011.Like for C (see Eq. (48)), we then introdu
e the operator
[D⋄]

def

=

[

[Qst]

[Dd,e]

] (54)As N = Nb + CN from Property 1, and [Dd,e][Nb] = 0,
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[Nd]

def

= [Dd,e][N ] = [Dd,c][CN ] (55)It then follows from Eq. (48) that
[D⋄] =

[

[Ist,st] [0st,c]

[0c,st] [Dd,c]

]

[C⋄] (56)We then have
[D⋄]

−1

[

[N̆st]

[Nd]

]

= [C⋄]
−1

[

[N̆st]

[Dd,c]
−1[Nd]

]where [Dd,c]
−1[Nd] = [CN ] from Eq. (55). It then fol-lows from Eq. (50) that

[D⋄]
−1

[

[N̆st]

[Nd]

]

= [N̆ ] (57)Given some DD ambiguity set (55), and some point N̆starbitrarily �xed in Est(Z), the UD ambiguity thus ob-tained is equal to Nc + Bµ(N̆st); see Property 2 and Fig. 3.Via the a
tion of [D⋄]
−1, we thus retrieve the 
losure-ambiguity point Nc up to the ve
tor Bµ(N̆st) of Eb(Z).Remark 3.1. In fa
t, [D⋄] is a version of the D-matrixof Blewitt (1989). In the appendix B of that paper,the spanning tree Gst is impli
itly de�ned by arbitrar-ily sele
ting a set of �n − m undi�eren
ed biases whi
hpass the Gram-S
hmidt test� of that appendix, i.e., inour algebrai
 framework, by arbitrarily sele
ting a set of`nst edges whose 
hara
teristi
 fun
tions pass the Gram-S
hmidt test.' Property 2 therefore 
ompletes the analy-sis of the UD-DD relationship of Blewitt (1989) by spe
-ifying how the ambiguity solution N̆ is related to Nc bythe 
hoi
e of N̆st ·Remark 3.2. Equation (57) 
orresponds to Eq. (8) of Geet al. (2012) in whi
h

[

G → [Qst]

D → [Dd,e]

]

→ [D⋄],

[

b → [N̆st]

N → [Nd]

]

, B → N̆Here, the notation `a → b' means `a stands for b.' Thearbitrary ambiguity set b → [N̆st], whi
h is then referredto as the referen
e ambiguity, has of 
ourse nothing to dowith the ambiguity set v̄ of the referen
e solution de�nedin Se
t. 2.5 ·4 CAA prin
ipleAs already emphasized, with regard to the variables in-trodu
ed in Eqs. (14) and (15), the 
hoi
e of µ in Z
nst isde�ned via appropriate 
onstraints; see Se
t. 2.3. As amatter of fa
t, the most natural way of removing the rankdefe
t is to sele
t µ via a priori 
onstraints on the am-biguity variable v. Indeed, these 
onstraints 
an then beintegrated in the very de�nition of v. The CAA prin
iplepresented in this se
tion results from the following pre-liminary analysis. (A possible introdu
tion of this prin-
iple via the S-system approa
h is presented in Se
t. 5;it should however be noted that the other 
lasses of pos-sible 
hoi
es for µ do not then appear so easily.)

Let Gst be a spanning tree of G 
hosen arbitrarily; seeSe
t. A2 and Fig. 1. In the algebrai
 framework de�nedin Se
t. 3, the ambiguity ve
tor N 
an be de
omposedin the form N = Nb + Nc where
Nb

def

= Bµ(N), Nc = N − Bµ(N) (58)in whi
h µ(N) def

= B−1
st QstN ; see Eq. (42). In these equa-tions, Nb and Nc have an impli
it subs
ript: st for Gst.Note that µ(N) is de�ned from the values of N on theedges of Gst in a unique manner. (As N is unknown,this de�nition is virtual.) By 
onstru
tion, µ(N) liesin Vb(Z) ∼= Z

nst , and Nc vanishes on the edges of Gst.As spe
i�ed in Se
t. 3.3, Nc
def

= CN is the 
losure ambi-guity of N with regard to Gst.The spanning tree Gst is built progressively from epo
h 1to k. More pre
isely, when new satellites are to be takeninto a

ount, it is 
ompleted as spe
i�ed in Se
t. 6.3 (seeFigs. 1 and 5); nst is thus equal to nb1 plus the numberof satellites having appeared in the �eld of view of thenetwork from epo
h 2 until k in
luded. The numberof values of Nc that are not equal to zero by de�nitionis equal to nc = ne − nst (Eq. (29)). For example, inFig. 1, for k = 3, we have ne = 20, nst = nb1 + 2 + 1with nb1 = 8, hen
e nc = 9.With regard to Eqs. (14) to (16), the CAA solution 
or-responds to the following 
hoi
e of µ:
µ := µ(N) (59)From Eq. (58), we then have v = N − Bµ = Nc: theambiguity fun
tional variable v vanishes on the edgesof Gst. A

ording to Eqs. (14) and (15), the `estimablefun
tional variable' of the 
orresponding LS approa
h isthen (w1, . . . , wk; v) where
∣

∣

∣

∣

∣

wκ = βκ + Rv
κµ, v = Ncwith µ := µ(N)

(60)The 
hoi
e of µ de�ned in Eq. (59) therefore de�nes the
losure-ambiguity approa
h (CAA). Clearly, this 
hoi
edepends on the sele
ted spanning tree Gst; the de�nitionof the integer-valued fun
tion v therefore also depends onthis 
hoi
e. Note that all these spanning trees have thesame number of edges: nst = nv − 1; see Se
t. A2. As aresult, whatever the 
hoi
e of Gst, the number of ambi-guities to be �xed is the same: nc = ne − nst (Eq. (29)).Let us now denote by (w̌1, . . . , w̌k; v̌) the LS solutionresulting from su
h a 
hoi
e. The referen
e solution of itsequivalent solutions, whi
h 
an be obtained as spe
i�edin Se
t. 2.5, does not depend on the 
hoi
e of Gst. Indeed,a 
hange in Gst amounts to sele
ting another µ in Vb(Z);see Eq. (42) and Fig. 6 further on.Remark 4.1. Although the ambiguity variables of the
losure-ambiguity approa
h are 
losure ambiguities, it isan UD approa
h. Indeed, the a
tion of the 
losure op-erator C (indu
ed by the sele
ted spanning tree Gst) isnever expli
itly performed; see Se
t. 6 ·
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lo
k-phase biases of GNSS networks 11Remark 4.2. A

ording to Property 1 and Eq. (12),Eq. (5) 
an always be written in the form
Bκwκ + Re

κv = bκ (for κ = 1, . . . , k)where wκ and v are de�ned in Eq. (60). In the situationswhere the parti
ular problem to be dealt with has still arank defe
t (owing to other variables involved in bκ forexample), this rank defe
t 
an be removed by ta
klingthe problem with wκ and v substituted for βκ and N , re-spe
tively. In that sense, the 
losure-ambiguity approa
h
an be extended to all the situations where an equation(or several equations) of type (5) is (are) involved in theproblem; see, for example, the 
ase of small networks inLannes and Teunissen (2011) ·5 Derivation of the CAA prin
iplevia the S-system approa
hThe S-system approa
h (Baarda 1973) was used by someinvestigators to remove various GNSS rank defe
ts; see,e.g., Teunissen 1984, de Jonge, 1998, Teunissen and Odijk2003. In the previous se
tion, the CAA prin
iple wasintrodu
ed in a 
on
ise manner in the theoreti
al frame-work de�ned through Se
ts. 2 and 3; the aim of thepresent se
tion is to show that this prin
iple 
an be in-trodu
ed via the S-system approa
h dire
tly.In the general framework of the S-system approa
h pre-sented in Appendix B, the Eu
lidean spa
e E to be 
on-sidered is then the spa
e of the fun
tional variable
ξ

def

= (β1, . . . , βk; ϑ) (61)of Eq. (5); ϑ is then the �oat version of the integer-valuedfun
tional variable N . Denoting by
Vβ

def

= Vβ1
⊕ Vβ2

⊕ · · · ⊕ Vβk
(62)the dire
t sum of the vertex-bias spa
es Vβκ

with generi
ve
tor βκ, we have
E = Vβ ⊕ E (63)where E is the edge-delay spa
e with generi
 ve
tor ϑ;see Se
t. 3.1.2. As illustrated in Figs. 2 and 4, givensome spanning tree Gst of G, E 
an be de
omposed inthe Eu
lidean orthogonal form
E = Est ⊕ Ec (64)From Eqs. (8) and (30), we have
∣

∣

∣

∣

∣

∣

∣

∣

dimVβ =

k
∑

κ=1

nbκ

dimEst = nst dimEc = nc

(65)The fun
tion bκ of Eq. (5) lies in some spa
e isomorphi
to R
neκ ; see the 
ontext of Eq. (3), and Fig. 1. Setting

m :=

k
∑

κ=1

neκ (66)

we then de�ne the operator A of the S-system approa
has the operator from E into R
m:

Aξ
def

=







B1β1 + Re
1ϑ...

Bkβk + Re
kϑ






(67)Clearly, Eq. (5) 
an then be expli
itly written in the form

A











β1...
βk

N











=







b1...
bk






(68)Let K now be the operator from Vb

∼= R
nst into E (seeSe
t. 3.1.1):

Kα
def

=













−Rv
1α...

−Rv
kα

Bα













(69)The �oat version of Eq. (12) yields
−BκR

v
κα + Re

κBα = 0 (for κ = 1, . . . , k) (70)The null spa
e of A is therefore the range of K; seeEqs. (67) and (69). We thus have
kerA = Ran K with dim(kerA) = nst (71)The dimension of the null spa
e of A is therefore equalto that of Est; see Eq. (65) and Fig. 4.In the framework of the S-system approa
h, we now re-move the rank defe
t of Eq. (5) by imposing the following
onstraint: the fun
tional variable to be estimated lies inthe orthogonal 
omplement of Est in E; see Appendix B.We thus de�ne F via the relation F := E⊥

st . Clearly, that
onstraint is the same as that introdu
ed in Se
t. 4; seeFig. 2. The 
orresponding estimable fun
tional variableis then obtained as follows.From Eqs. (63) and (64), F is the dire
t sum of Vβ and Ec:
F = Vβ ⊕ Ec (72)We now show that E is the dire
t sum of F and kerA(see Fig. 4):
E = F ⊕ kerA (73)Proof. Let ξ be a fun
tion lying in F ∩ kerA. As ξ liesin F, its 
omponent ϑ vanishes on Gst. As ξ also liesin Ran K from Eq. (71), ϑ is in the range of B fromEq. (69). We then have ϑ = Bstα = 0, hen
e α = 0from Eq. (33), and therefore ξ = 0 from Eq. (69). Asa result, F ∩ kerA = {0}. As dim(kerA) = dimEst and

dimE=dimF+dim(kerA), Eq. (73) is thus established
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ξ

kerA

η = Kα(ϑ)

0

Sξ = ξ − η

S

ξ − Bα(ϑ)

Vβ

F := E⊥

st

Ec

F
⊥ := Est E

Eb

Qstξ Bα(ϑ)

ξ −Qstξ

r r
Cϑ

r r r
ϑ

r

r

r

rr

r

(ne)(nst)

(nst)

(nst)

(nc)Figure 4: Geometri
al illustration of the CAA prin
iple in the S-system approa
h. In this 3D-geometri
al illustration,whi
h 
ompletes Fig. 2, the Eu
lidean spa
e E of the fun
tional variable ξ involved in Eqs. (67) and (68) is representedas a 3D-spa
e; E is the orthogonal sum of Vβ and E, where Vβ is the dire
t sum of the vertex-bias spa
es Vβκ (seeEq. (62)), and E is the edge-delay spa
e of the �oat ambiguity variable ϑ (the proje
tion of ξ on E). A

ording to thede�nitions introdu
ed in Se
t. 3.1.3, E 
an be regarded as the orthogonal sum of the spanning-tree delay spa
e Est andthe 
losure-delay spa
e Ec. Note that the proje
tion of ξ on Est 
oin
ides with that of ϑ: Qstξ = Qstϑ. As shown inSe
t. 3.2, we have α(ϑ) = B−1
st Qstϑ (Eq. (35)). The operator A de�ned by Eq. (67) is not of full rank. Its null spa
e is asubspa
e of E of dimension nst; more pre
isely, kerA is the range of the operator K; see Eq. (69). The edge-bias spa
e Ebis the proje
tion of kerA on E. In the CAA approa
h, the following 
ondition is imposed: the fun
tional variable tobe estimated lies in F, the orthogonal 
omplement of Est in E. As E is the dire
t sum of F and kerA (see text), theestimable fun
tional variable is the oblique proje
tion of ξ on F along kerA, i.e., Sξ with ϑ := N ; see Eqs. (77) and (78).The proje
tion of Sξ on E, ϑc

def

= Cϑ, is the 
losure 
omponent of ϑ, i.e., the 
losure ambiguity Nc
def

= CN when ϑ := N .The oblique proje
tion S of E onto F along kerA plays akey role in the S-system approa
h (see Appendix B). Itis de�ned by the relation Sξ = ξ − η with η ∈ kerA and
ξ − η ∈ F; see Eq. (B4) and Fig. B1. We now spe
ify itsde�nition expli
itly.Let Qst be the orthogonal proje
tion of E onto Est. Wethen have (see Fig. 4):
Qstη = Qstξ = Qstϑ (74)From Eqs. (71) and (69), η = Kα for some α in Vb

∼= R
nst .From Eq. (74), that bias fun
tion α satis�es the 
ondi-tion

QstKα = QstϑA

ording to Eq. (69), we have QstKα = QstBα, i.e.,
QstKα = Bstα, where Bst is the operator de�ned inSe
t. 3.1.4. We thus have α = α(ϑ) where α(ϑ) is de-�ned by Eq. (35): α(ϑ) def

= B−1
st Qstϑ. It then follows fromEq. (B4) that

Sξ = ξ − η where η = Kα(ϑ) (75)Here, the matri
es [S⊥] and [W ] of Eq. (B7) have beenimpli
itly de�ned by the standard bases of Est and Ran K,respe
tively. From Eq. (69), we thus have
Sξ =













β1 + Rv
1α

(ϑ)...
βk + Rv

kα(ϑ)

ϑ − Bα(ϑ)













(76)

hen
e, in parti
ular (when ϑ is set equal to N),
S











β1...
βk

N











=













β1 + Rv
1µ(N)...

βk + Rv
kµ(N)

N − Bµ(N)













(77)where µ(N) = B−1
st QstN (Eq. (42)). We thus retrieve theestimable fun
tional variables of Eq. (60):

wκ = βκ + Rv
κµ(N) v = Nc (78)The estimable fun
tional variable of the CAA method istherefore the oblique proje
tion of (β1, . . . , βk; N) on Falong kerA; see Fig. 4.This introdu
tion of the CAA prin
iple gives anotherinsight into the analysis presented through Se
ts. 3 and 4.It also 
ompletes the study developed in Se
ts. 3.3, 3.4and 3.15 of de Jonge (1998) on two points:(i) operator A is de�ned with regard to the union ofthe observational graphs until the 
urrent epo
h;see Se
t. 2.1, and Eqs. (67) and (68);(ii) a related geometri
al representation is proposed:Fig. 4; in that representation, Cϑ is the CD pointof ϑ; when ϑ := N , Cϑ is therefore the 
losure-ambiguity point of N .
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lo
k-phase biases of GNSS networks 136 CAA implementationIn the 
losure-ambiguity approa
h, the rank defe
t ofEq. (5) is removed via the 
hoi
e of the variables wκand v de�ned in Eq. (60). The equation to be solved inthe LS sense is then Eq. (16) with the 
onstraint v = 0on the edges of Gst. The CAA problem is therefore: solvein the LS sense the equation
∣

∣

∣

∣

∣

Bκwκ + Re
κv = bκ (κ = 1, . . . , k)subje
t to the 
onstraint `v = 0 on Gst' (79)In what follows, the noise is taken into a

ount by usingthe varian
e-
ovarian
e matrix Vκ of bκ in the de�nitionof the `Eu
lidean forms'Bκ, Aκ and bκ ofBκ,Re

κ and bκ,respe
tively; see the 
ontext of Eq. (C6) in Se
t. C3. Thesystem (79) to be solved in the Eu
lidean LS sense is thenthe following:
Bκwκ + Aκv = bκ (κ = 1, . . . , k) (80)i.e.,










B1 0 0 0 A1

0 B2 0 0 A2

0 0
. . . 0

...
0 0 0 Bk Ak





















w1

w2...
wk











=











b1

b2...
bk











[

v
]

(81)The angular blo
k stru
ture of matrix [B A] is well suitedto re
ursive QR fa
torization. (A 
omplete implemen-tation of the 
orresponding LS pro
edure is presentedin Appendix C.) The advantage of this pro
edure is toprovide some gain in numeri
al a

ura
y when dealingwith large-s
ale problems; see Björ
k (1996). More inter-estingly, the 
orresponding te
hniques prove to be verye�
ient for GNSS quality 
ontrol; see, e.g., Blewitt 1989;Tiberius 1998; Loehnert et al. 2000; Lannes and Gratton2009. As spe
i�ed in Se
ts. 9.5 and 7.3 of this last paper,the re
ursive identi�
ation of the outliers is made easier(with regard to the related variational 
al
ulations) bystoring in memory the parameters of the Givens rotationsinvolved in the two QR steps of epo
h k.In this se
tion, we �rst give a survey of the QR imple-mentation of the CAA prin
iple (Se
t. 6.1). We thenspe
ify the de�nitions of the 
olumn matri
es wk and vof Eq. (81); this is done in Se
ts. 6.2 and 6.3, respe
-tively. More information about the te
hni
al aspe
ts ofthis implementation, like for instan
e the 
onstru
tion ofmatri
es Ak, Bk and bk, is to be found in Appendix C.Remark 6.1. In most situations en
ountered in pra
ti
e,the se
ond member of equations su
h as (79) in
ludesa large number of additional variables; see, e.g., Ge etal. 2005; Loyer et al. 2012. In the remainder of thepaper, we assume that the related models have been wellsele
ted so that we 
an 
on
entrate on the �rst membersof these equations only ·

Remark 6.2. The method presented in this se
tion 
anbe applied as su
h for solving the wide-lane (WL) equa-tion (4) of Loyer et al. (2012); NWL and τWL are thento be substituted for N and β, respe
tively; b is thenthe term on the left-hand side of that equation. Inour approa
h, the WL ambiguity point v̌WL would thenbe the 
losure-ambiguity point of NWL: v̌WL = CNWL;
NWL would thus be retrieved up to a ve
tor of Eb(Z) ·6.1 SurveyIn a �rst stage, at ea
h epo
h k, the `�oat solution' v̂ is
omputed or updated. This is done by solving the �oatversion of Eq. (81) in the Eu
lidean LS sense via re
ur-sive QR fa
torization; see Se
t. C1 and Eq. (C1). Theinteger least-squares (ILS) solution v̌, and thereby v̌, isthen de�ned as the solution of the nearest-latti
e-point(NLP) problem (C3). This solution is obtained in ase
ond stage via appropriate integer-programming te
h-niques; see Lannes and Prieur (2013), and Lannes (2013)for the parallelization of the related LLL3/Lambda re-du
tion/de
orrelation algorithms. The ambiguities arethus �xed. On
e at some epo
h kval, these ambigui-ties 
an be validated (see Verhagen and Teunissen 2006),the bias matri
es w̌k, and thereby the phase biases w̌k,are obtained via the relations (C4) for k ≤ kval. Thevarian
e-
ovarian
e matrix of w̌κ, whi
h is required forimplementing the PPP mode properly (see Se
t. 9 inLannes and Teunissen 2011), is obtained in that frame-work; see the end of Se
t. C1.Remark 6.3. On
e at some epo
h kval, all the 
losure am-biguities have been validated, the QR re
ursive pro
essonly needs to fo
us on the few 
losure ambiguities asso
i-ated with the new 
losure edges. At the epo
hs k > kval,the new 
losure ambiguities 
an therefore be determinedvery qui
kly. Indeed, the dimension of the matrix v han-dled by the QR pro
ess is then mu
h smaller than pre-viously. This shows that this approa
h is well suited tointeger-ambiguity resolution in real time. For instan
e,the satellite-
lo
k biases 
ould then be broad
asted tothe network users in real time; see Remark 2.2 ·6.2 De�nition of wkIf we assume for instan
e that all the re
eivers of the net-work are a
tive (see Fig. 1), the re
eiver phase bias wrk(i)is then the entry of wk with index i − 1. The indi
es areshifted by −1 sin
e we used the 
onvention βrk(1) = 0(Eq. (7)).The satellite phase bias wsk(j) is then the entry of wkwith index (nr − 1 + j); see for example the �rst twoepo
hs of Fig. 1. To handle the 
ases of disappearan
eof one or more satellite(s), we introdu
e an index fun
-tion ̟sk de�ned so that wsk(j) is the entry of wk withindex (nr − 1 + ̟sk(j)). For example, at epo
h k = 3 ofFig. 1, for j > 3, we have ̟sk(j) = j − 1.3Here LLL stands for Lenstra, Lenstra, Lovász, the authors ofthe famous LLL algorithm (Lenstra et al. 1982).
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Figure 5: Spanning trees Gst,k and 
losure-edgelists Lc,k. The example shown here 
orresponds to thatintrodu
ed in Fig. 1. From top to bottom, epo
h k = 1(nst,1 = 8), epo
h k = 2 (nst,2 = 10), and epo
h
k = 3 (nst,3 = 11). The large dots 
orrespond tothe edges of these spanning trees; the small dots de-�ne the edges (ri, sj) that do not appear in Gk at thoseepo
hs. The spanning tree of G2 is obtained from thatof G1 by adding the edges (r1, s7) and (r2, s6). Likewise,the spanning tree of G3 is obtained from that of G2 byadding the edge (r2, s8). The 
losure edges of Lc,k areordered as numbered; see text.Di�
ulties with some re
eivers would be handled in asimilar manner by introdu
ing index fun
tions ̟rk(i).6.3 De�nition of vThe entries of v in Eq. (81) are the 
losure ambiguitiesto be taken into a

ount from epo
hs 1 to k in
luded.The 
orresponding 
losure-edge list Lc,k is de�ned in thisse
tion; see for example the lower grid of Fig. 5. In theimplementation of the QR method, those entries are tobe put at the top of the 
olumn matrix v at the epo
h

κ ≤ k where they appear; see Se
t. C2. This means thatfor all κ′ < κ, the matri
es Aκ′ have then (on their left-hand side) impli
it additional 
olumns whose entries arezero. We now 
on
entrate on the 
losure-edge lists Lc,κfor κ = 1, . . . , k.

At epo
h k = 1, the spanning tree Gst,1 of G1 = H1 isbuilt as spe
i�ed in Se
t. A2. For example, for the s
e-nario de�ned in Fig. 1, the edges of Gst,1 then 
orrespondto the large dots of the upper grid of Fig. 5; Lc,1 thenin
ludes three 
losure edges ordered as they are en
oun-tered when s
anning that grid line by line:
Lc,1 = {(r3, s3), (r3, s4), (r4, s4)} (k = 1)At epo
h k = 2, the spanning tree Gst,2 of G2 = H1 ∪H2is 
ompleted by adding the edges 
orresponding to the�rst a
tive edges involving the new satellites, for example

(r1, s7), and (r2, s6) in Fig. 5. When implementing theQR method, the new 
losure edges must then be the �rstterms of Lc,2; see Fig. C4 in Se
t. C2. The previous termsof that list are then shifted rightwards. In the exampleof Fig. 1, we then have
Lc,2 = {(r2, s7), (r3, s2), (r3, s6), (r4, s5),

(r3, s3), (r3, s4), (r4, s4)}
(k = 2)We pro
eed similarly for the next epo
hs; see the lowergrid of Fig. 5.By 
onstru
tion, the number of 
losure edges nc is anon-de
reasing fun
tion of k; see Eq. (29) and Fig. 5. Infa
t, this number de�nes the dimension of the NLP prob-lem (C3) to be solved at epo
h k.7 Equivalent ambiguity solutions:related methodologi
al aspe
tsIn this se
tion, we analyse some other methods whi
hare used for solving the GNSS phase-
alibration prob-lem, and 
ompare the 
orresponding solutions with theCAA solution. This done for Blewitt (1989) in Se
t. 7.1,for Collins et al. (2010) in Se
t. 7.2, and for Loyer et al.(2012) in Se
t. 7.3.7.1 The Blewitt (1989) approa
hIn his original 
ontribution published in 1989, Blewittproposes a resolution of the problem in three stages. Inthe �rst one, the �oat solution is obtained in UD mode.In the se
ond one, double di�eren
ing of the �oat biasedambiguities thus obtained provides DD ambiguities. Thelatter are then �xed via some sequential adjustment al-gorithm. In the third and �nal stage, the UD ambigui-ties are derived from those �xed DD ambiguities. Thisis done via the inverse of the operator D de�ned in theappendix B of that paper. The estimates of station-re
eiver lo
ations, orbital parameters, et
., are then up-dated. Brie�y, one may therefore say that the Blewittapproa
h is hybrid: it is a `UD-DD-UD approa
h.'The D-matrix of our analysis is the matrix [D⋄] intro-du
ed in Se
t. 3.6: Eq. (54). Given some DD ambiguityset Nd (su
h as that de�ned in Eq. (55)), some span-ning tree Gst, and some ambiguity point N̆st arbitrarily
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k-phase biases of GNSS networks 15�xed in Est(Z), it is possible to retrieve N up to a ve
torof Eb(Z). More pre
isely, the UD ambiguity obtainedvia Eq. (57),
N̆ := [D⋄]

−1

[

[N̆st]

[Nd]

]is equal to Nc + Bµ(N̆st); see Fig. 3. Removing the rankdefe
t via the inverse of [D⋄] therefore amounts to impos-ing the 
onstraint Qstv = N̆st where N̆st 
an be 
hosenin an arbitrary manner in Est(Z).7.2 The Collins et al. (2010) approa
hIn the last statement of Se
t. 7.1, one re
ognizes the
on
ept of ambiguity datum �xing of the UD approa
hof Collins et al. 2010; the latter is thus 
losely linked tothat of Blewitt. However, with regard to Eq. (16), the`dire
t problem' to be solved in the LS sense is then
∣

∣

∣

∣

∣

Bκwκ + Re
κv = bκ (κ = 1, . . . , k)subje
t to the 
onstraint Qstv = N̆st

(82)Let us denote by (w̆1, . . . , w̆k; v̆) the solution of this prob-lem, i.e., the Blewitt/Collins solution. Let (w̌1, . . . , w̌k; v̌)now be the CAA solution obtained with the same span-ning tree Gst. As shown below, we then have (see Fig. 6)
w̆κ = β̌κ −Rv

κ µ(N̆st), v̆ = v̌ + Bµ(N̆st) (83)Proof. The LS solutions of Eq. (5) are of the form(18)-(19). Equation (83) then follows from the fa
t thatby 
onstru
tion v̌ + Bµ(N̆st) satis�es the 
onstraint ofEq. (82). Indeed, as Qstv̌ = 0, we have
Qst

(

v̌ + Bµ(N̆st)
)

= QstBµ(N̆st) = Bstµ
(N̆st)

= Bst(B
−1
st QstN̆st) = N̆stRemark 7.1. In the spe
ial 
ase where N̆st is set equalto zero on all the edges of Gst, the Blewitt/Collins so-lution 
oin
ides with the CAA solution; see Eq. (83)and Fig. 6. This expli
itly shows that the Blewitt andCollins approa
hes 
an lead to the same results as theCAA method. However, even in that 
ase, Blewitt's ap-proa
h is not equivalent in terms of e�
ien
y. The dire
timplementation of the Collins/CAA prin
iple is a prioripreferable: the results are then obtained without anydi�eren
ing operation, and without any generalized in-version of the �xed ambiguity set; see Se
ts. 4 and 6. Asillustrated in Fig. 6, the referen
e ambiguity solutions v̄obtained with the Blewitt, Collins and CAA methodsmust of 
ourse be identi
al on every edge of G, and thisfor any 
hoi
e of Gst and N̆st; see Remark 2.4 ·Remark 7.2. The algebrai
 analysis of the PPP mode
an also be illustrated by a �gure su
h as Fig. 6. Thedimension of E is then equal to the number of satellitesseen by the PPP-user re
eiver rι: E ∼= R

ns ; Est is then
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0Figure 6: Links between some equivalent ambiguity so-lutions. In this geometri
al representation of the edge-delay spa
e E, the equivalent ambiguity solutions liein the a�ne latti
e E
(N)
b (Z) passing through N andparallel to the integer latti
e Eb(Z) of the edge-biasspa
e Eb (here for 
larity the verti
al axis). The Blewittor Collins solution v̆ obtained by imposing the 
onstraint

Qstv = N̆st (for some N̆st arbitrarily �xed in Est(Z)) 
or-responds to the interse
tion of E
(N)
b (Z) with the a�nespa
e passing through N̆st and parallel to Ec(Z) (the
losure-ambiguity latti
e indu
ed by the 
hoi
e of Gst);see Fig. 3. The CAA solutions indu
ed by the 
hoi
e ofthe spanning trees Gst and Gst′ , v̌ and v̌′, 
orrespond tothe interse
tions of E

(N)
b (Z) with Ec(Z) and E′

c(Z), re-spe
tively. Note that v̌ = N − Bµ(N) from Property 1,and v̆ = v̌ +Bµ(N̆st) from Property 2. Here, v̄ representsthe referen
e solution: v̄ = v̌ − Bµ̌; see Eqs. (21), (23)and (25). Likewise, v̄ is obtained from the Blewitt orCollins solution v̆ via the relation v̄ = v̆ − Bµ̆.the spa
e Eι,1
def

= {ϑ ∈ E : ϑ(ι, j) = 0 if j 6= 1}. Here, 1 isthe index of the �rst satellite for example; Eι,1 is aone-dimensional spa
e. Note that Eb then redu
es tothe one-dimensional spa
e whose ve
tors are of the form
(11, 12, . . . , 1ns

) × β where β is the unknown re
eiver
lo
k-phase bias. The 
hoi
e N̆st := 0 then amounts tosetting N(ι, 1) := 0. The reader is invited to 
ompletethat transposition ·7.3 The Loyer et al. (2012) approa
hWith regard to the way the narrow-lane (NL) ambigu-ity N1 is �xed, the zero-di�eren
e approa
h of Loyer etal. (2012) 
an be 
onsidered as a variant of the Collinset al. (2010) approa
h. We now 
larify this point.In that parti
ular approa
h, the rank defe
t is removedafter having obtained the `�oat ambiguity solution' N̂1via the introdu
tion of some additional 
onstraints; seeSe
t. 2.6 of that paper. These authors then impli
itly
hoose some spanning tree Gst, and set the ambiguitiesto ⌊N̂1(i, j)⌉ on the edges (ri, sj) of Gst. The remainingUD ambiguities (i.e., the nc ambiguities asso
iated with
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losure edges) are �xed via some `bootstrapping op-eration.' This operation provides the `Babai point' ofthe dis
rete-sear
h algorithms presented in Lannes andPrieur (2013).Setting N := N1 and N̆st := ⌊QstN̂1⌉, we thus have
N − Bµ = N̆st on Gst, hen
e µ := B−1

st Qst(N − N̆st).It then follows from Eqs. (42) and (58) that the ambigu-ity solution of the Loyer et al. (2012) approa
h is
N − Bµ = (N − Bµ(N)) + Bµ(N̆st) = Nc + Bµ(N̆st)Provided that the solution provided by the bootstrap-ping pro
ess is the right NLP solution v̆, we then have(like for the Blewitt and Collins solutions in Fig. 6)
v̆ = v̌ + Bµ(N̆st)where v̌ is the CAA solution obtained with the samespanning tree. The 
hoi
e N̆st := 0 would lead to a `mildversion' of the 
orresponding NL 
losure-ambiguity ap-proa
h; see how the NLP problem is solved in Se
t. 6.1.8 Con
lusionIn this paper, we have examined the problem of 
ali-brating the 
lo
k-phase biases of GNSS networks. Inthe 
ontext spe
i�ed in Se
t. 1, the basi
 rank defe
tof this problem is related to the way these phase biasesand the 
arrier-wave ambiguities are involved in the ob-servational equations. We have analysed the di�erentways of removing this rank defe
t, and de�ned a parti
-ular strategy for obtaining 
lo
k-phase bias estimates ina standard form.This rank defe
t is intrinsi
ally related to the stru
tureof Eq. (1), and 
annot be resolved by additional exper-imental data. As a result, a

ording to Eq. (13), anyvariation of the vertex ambiguity ve
tor µ 
an be 
om-pensated by a variation of the edge-ambiguity ve
tor N ;

µ is a ve
tor of Z
nst ; see Se
t. 2.2. For PPP appli
a-tions, the satellite 
lo
k-phase biases 
an be estimatedup to 
onstant integers. The 
hoi
e of µ in Z

nst does nottherefore a�e
t the signi�
ant part of these bias values.The retrieved ambiguities are of 
ourse a�e
ted by this
hoi
e, but this has no a
tual impa
t on the GNSS resultssu
h as the estimates of the station-position parameters,for example.In this paper, we propose a parti
ular approa
h, the
losure-ambiguity approa
h (CAA), whi
h is a naturalway of �nding a solution; see Se
ts. 4 to 6. It is an un-di�eren
ed method based on some parti
ular 
onstraints.The related 
hoi
e of µ, whi
h is asso
iated with the no-tion of 
losure ambiguity, is similar to that impli
itlymade by de Jonge (1998); it de�nes the very prin
ipleof the 
losure-ambiguity approa
h. Thanks to the intro-du
tion of graph G, the union of the observational graphsuntil the 
urrent epo
h, the 
losure ambiguities are dealtwith in an optimal manner. In parti
ular, 
ompared to

the approa
hes presented in de Jonge (1998) and Lannesand Gratton (2009), no graph transition is to be per-formed. These new aspe
ts have been illustrated withsome simple and generi
 examples; see Figs. 1 and 5.We have analysed the main 
lasses of other methods usedfor 
alibrating GNSS networks, and established the linkbetween those methods and our CAA method. More pre-
isely, this paper presents a uni�ed interpretative frame-work in whi
h all those methods 
an be understood and
ompared more easily (see Se
t. 7). We have thus beenable to derive fun
tional relations between the solutionsprovided by the methods of Blewitt (1989), Collins et al.(2010) and Loyer et al. (2012). Those solutions are dis-played in Fig. 6 whi
h gives a syntheti
 representationof the results provided by our approa
h (CAA) and allthose methods.We have also shown that the intermediate di�eren
ingstage of Blewitt's approa
h 
an be avoided, without any
ounterpart, by removing the rank defe
t via our ap-proa
h or that of Teunissen (1984): the 
losure ambi-guities to be �xed then appear in the very formulationof the UD problem to be solved. The NLP te
hniquesof ambiguity resolution 
an thus be dire
tly applied tothe �oat solution; see Se
t. 6.1. Compared to the hy-brid UD-DD-UD methods deriving from the basi
 
on-tribution of Blewitt (1989), the te
hni
al implementationof the CAA method is simpler and more e�
ient; someCPU time 
an thus be saved.It also appeared that the 
on
ept of ambiguity datum�xing of Collins et al. (2010) 
omes within our CAA-(S-system) framework. When the ambiguities are �xedat zero on the edges of some arbitrary spanning tree of G,the remaining ambiguities to be �xed are nothing elsethan the 
losure ambiguities of the ambiguity set N un-der 
onsideration. Compared to Blewitt's approa
h, onemay therefore say that the UD approa
hes of Collins etal. (2010) and Loyer et al. (2012) are 
loser to our CAA-(S-system) prin
iple.To 
ompare the methods providing LS estimates of 
lo
k-phase biases, we have introdu
ed a referen
e parti
ularsolution. For this solution, when a 
lo
k-phase bias is es-timated for the �rst time, its fra
tional part is 
on�ned tothe one-
y
le width interval 
entred on zero; the integer-ambiguity set is modi�ed a

ordingly. The notion of ref-eren
e solution is very useful for testing the 
ompatibilityof all those GNSS methods: pertinent methods shouldlead to the same referen
e ambiguity solution; see Fig. 6.This test is independent of the sele
ted spanning tree.The QR implementation of the CAA method has beenpresented in Se
t. 6 and Appendix C, in an exhaustivemanner. Completed by the NLP algorithms developedfor huge networks (Lannes 2013, Lannes and Prieur 2013),all the elements are now gathered for implementing verypowerful te
hniques. The impli
ations of our approa
hmay 
on
ern the software pa
kages used for pro
essingmost GNSS networks, and parti
ularly global networks
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k-phase biases of GNSS networks 17using GPS,Glonass, Galileo, or BeiDou/Compass satel-lites. The CAA prin
iple is well suited for handling theinteger-ambiguity problem of all those networks. As out-lined in Remark 6.3, it 
ould lead to appli
ations in real-time kinemati
 pre
ise point positioning (RTK-PPP).In order to fa
ilitate its integration in existing GNSSsoftware pa
kages, our approa
h has been des
ribed ina pre
ise manner. The gain of su
h an implementa-tion would be both in terms of performan
e and reliabil-ity. Indeed, our undi�eren
ed approa
h proposes an ap-propriate pro
edure for ambiguity resolution and 
lo
k-phase bias 
alibration, and this with a rigorous handlingof the rank defe
t to be removed. Another possible appli-
ation of this work would be to use the method des
ribedin Se
t. 2.5 for 
omparing the solutions obtained by dif-ferent software pa
kages.Appendix A Elementary notionson GNSS graphsIn this appendix, we present some preliminary notionsof algebrai
 graph theory; these elementary notions areused throughout the paper. Further details about thefun
tional spa
es and the operators involved in theGNSS problems 
an be found in Se
t. 3. We �rst de�nethe notions of GNSS grid and GNSS graph (Se
t. A1).We then introdu
e the 
on
epts of spanning tree and loop(Se
t. A2).A1 GNSS grid and graphFor our present purpose (see Se
ts. 2.1 and 2.2 in parti
u-lar), we 
onsider a typi
al situation in whi
h the networkhas nr re
eivers ri and ns satellites sj . (We re
all that`satellite' should be here understood as `satellite trans-mitter;' see Se
t. 1.) The `network grid' Go then in-
ludes nr rows, ns 
olumns, and nrns points; see Fig. A1.A fun
tion su
h as N(i, j) for example takes its valueson some points (i, j) of that grid. Those points form asubgrid denoted by G.In the example presented in Fig. A1, the points (i, j)of G are displayed as large dots in the upper part of this�gure. Those points 
orrespond to the `edges' (ri, sj) ofthe graph asso
iated with the GNSS network; this graphis displayed in the lower part of Fig. A1; E denotes theset of its edges; ne is their number. The re
eivers and thesatellites involved in the de�nition of these edges de�nethe `verti
es' of this graph; V denotes the set of its ver-ti
es, and nv their number: nv = nr + ns. A graph su
has G is therefore de�ned by the pair (V , E): G ≡ G(V , E).We now assume that G is 
onne
ted: given any two ver-ti
es of V , there exists a path of edges of E 
onne
tingthese verti
es; see, e.g., Biggs 1996.A2 GNSS spanning tree and loopsAs illustrated in Fig. A2, a spanning tree of a 
onne
tedgraph G ≡ G(V , E) is a subgraph Gst ≡ Gst(V , Est) formed

s s s

s s s

s s s

r1

r2

r3

s1 s2 s3 s4

r1 r2 r3

s1 s2 s3 s4

Figure A1: Subgrid G and graph G. In the exampledes
ribed here, the network grid Go in
ludes twelvepoints (nr = 3, ns = 4), while its subgrid G in
ludesnine points only; these points are shown as large dots.The 
orresponding graph G in
ludes seven verti
esand nine edges: nv = nr + ns = 7, ne = 9; r1 does notsee s2, r2 does not see s3, and r3 does not see s1.by nv verti
es and nv − 1 edges, with no `
y
le' in it.Here, `
y
le' is used in the sense de�ned in algebrai
graph theory; see, e.g., Biggs (1996). In the GNSS 
om-munity, to avoid any 
onfusion with the usual notion ofwave 
y
le, the term of `loop' 
an be substituted for thatof `
y
le.' In this 
ontext, the number of loops de�nedthrough a given �xed (but arbitrary) spanning tree is thenumber of edges of E that do not lie in Est . These edges,
c(ℓ)

def

= (riℓ
, sjℓ

), are said to be `(loop-)
losure edges' (seeFig. A2). Their number is denoted by nc:
nc = ne − nst (A1)where
nst

def

= nv − 1 = nr + ns − 1 (A2)Many spanning trees of the same graph 
an be 
on-stru
ted. Here, we are going to present the Kruskal al-gorithm whi
h is often used in algebrai
 graph theory;see Biggs 1996. The �rst step of this algorithm 
onsistsin ordering the edges of E , thus generating a sequen
eof the form {(riq
, sjq

) : q = 1, . . . , ne}. The spanningtree is then obtained as follows. Set q = 0, nst = 0, and
Est = ∅ (the empty set). Then,(i) if nst = nv − 1, terminate the pro
ess; otherwise,set q := q + 1;(ii) when the verti
es of edge (riq

, sjq
) are not 
on-ne
ted via edges of Est, set Est := Est ∪ {(riq

, sjq
)},

nst := nst + 1; then go to step (i).By 
onstru
tion, the spanning tree thus found dependson how the edges are ordered in the �rst step. The sub-grid of G 
orresponding to the edges of Gst is denoted
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Figure A2: GNSS spanning tree and loops. Here,the edges of the sele
ted spanning tree Gst of thegraph G introdu
ed in Fig. A1 are shown as thi
klines. The points of the 
orresponding subgrid Gstare shown as large dots. The remaining points of G(the small dots of G) 
orrespond to the (loop-)
losureedges (the thin edges of G). We then have one loopof order four, and 2 loops of order six: (r2, s4, r1, s1),
(r3, s3, r1, s1, r2, s2) and (r3, s4, r1, s1, r2, s2). InG,these orders are shown as small numbers.by Gst; Gc is that 
orresponding to the 
losure edges:

Gc
def

= {(i, j) ∈ G : (i, j) /∈ Gst} (A3)Clearly, Gc in
ludes nc loop-
losure points; see Eq. (A1)and Fig. A2.To illustrate the a
tion of the Kruskal algorithm, let us
onsider the graph G of Fig. A1. To build a spanningtree of G from its grid G, let us order the edges of G bys
anning G from left to right and top to bottom. The al-gorithm examines the edges of G in that order and addsthem to the 
urrent version of Est when 
ondition (ii)holds. In this example, this is the 
ase for the �rst �veedges; the verti
es s1, s3, s4, r1, r2 are thus 
onne
ted.The sixth edge, (r2, s4), therefore in
ludes two verti
esalready 
onne
ted. This edge is therefore the �rst 
lo-sure edge: c(1) = (r2, s4). The next edge, (r3, s2), isadded to Est sin
e it 
orresponds to the �rst 
onne
-tion of s2 with the edges of the 
urrent version of Est.All the verti
es of G are then 
onne
ted. The remain-ing edges are therefore 
losure edges: c(2) = (r3, s3),
c(3) = (r3, s4). The Gst-edge set thus obtained is thefollowing (see Fig. A2):
Est := {(r1, s1), (r1, s3), (r1, s4), (r2, s1), (r2, s2), (r3, s2)}Note that this pro
edure does not provide the edge pathof Est that links the verti
es of the 
losure edge under
onsideration. Clearly, 
losure paths are not needed tobe known for the 
onstru
tion of Gst. In simple 
ases su
has that of Fig. A2, su
h a path 
an visually be obtainedby moving on grid G horizontally and verti
ally, in al-ternate manner from the sele
ted 
losure-edge point; see

the related teles
oping sums introdu
ed in Se
t. 3.3. Ifneed be, the edges paths 
an be obtained automati
allyin an algebrai
 manner; see Se
t. 3.4.Appendix B The S-system approa
hIn this appendix, we give a survey of the general frame-work of the S-system approa
h; for further details andrelated appli
ations, see Baarda 1973; Teunissen 1984;de Jonge 1998; Teunissen and Odijk 2003.Denoting by E a Eu
lidean spa
e of dimension n, we 
on-sider some linear operator A from E into R
m with m ≥ nfor example. The problem to be solved in a sense to bede�ned is governed by a relation of the form

Aξ = γ (B1)The 
omponents of ξ are the unknown parameters ofthe problem, whereas γ is the data ve
tor. In manysituations en
ountered in pra
ti
e, A is not of full rank;its null spa
e (i.e., its kernel) is not redu
ed to {0}:
n0

def

= dim(kerA) ≥ 1 (B2)In the S-system approa
h, this rank defe
t is removedvia an appropriate redu
tion and rede�nition of the un-known parameters. Those new parameters are the `es-timable fun
tions of parameters' of some minimum-
onstrained problem thus de�ned; see, e.g., de Jonge1998. We now give a geometri
al interpretation of theS-system prin
iple.Let us 
hoose some subspa
e F of E of dimension n − n0su
h that F∩kerA = {0}; E 
an then be regarded as thedire
t sum of F and kerA (see Fig. B1):
E = F ⊕ kerA (B3)The `estimable fun
tional variable' is then de�ned as theoblique proje
tion of ξ on F along kerA: Sξ. The obliqueproje
tion (operator) S is the S-transformation of theS-system method; see, e.g., de Jonge 1998.We now show how the S-system approa
h 
an provide thematrix of S in the standard basis of E. The estimablefun
tional variable Sξ, whi
h basi
ally depends on the
hoi
e of F, 
an thus be expli
itly de�ned.A

ording to its de�nition,
Sξ = ξ − η (B4)where η is the ve
tor of kerA su
h that ξ − η lies in F;see Fig. B1. Denoting by [W ] a matrix whose 
olumnve
tors form a basis of kerA, we have
[η] = [W ][ζ] (B5)where ζ is some ve
tor of R

n0 . Clearly, the entries of [η],
[W ] and [ζ] are expressed in the standard basis of E.Let [S⊥] now be a matrix whose 
olumn ve
tors form a



Lannes and Prieur: Calibration of the 
lo
k-phase biases of GNSS networks 19

�
�

�
�

�
�

�
�

�
�

�
�
�

�
��/
S

�
�

�
�

�
��

r

ξ⊥
r

ξ
r

η

r

Sξ = ξ − η

E
(n)

F⊥

(n0)
kerA
(n0)

0

(n − n0)
FFigure B1: S-system prin
iple. In this geo-metri
al representation, E is a Eu
lidean spa
eof dimension n. The unknown fun
tional vari-able ξ is a ve
tor of E. The null spa
e ofthe operator A involved in Eq. (B1) is of di-mension n0: dim(kerA) = n0; F is a sub-spa
e of E of dimension n − n0 su
h that

F ∩ kerA = {0}; E 
an then be regarded asthe dire
t sum F ⊕ kerA. In the S-systemapproa
h, the `estimable fun
tional variable'is then de�ned as the oblique proje
tion of ξon F along kerA: Sξ.basis of F⊥, the orthogonal 
omplement of F in E. As
ξ − η is orthogonal to all the ve
tors of F⊥, we have (inparti
ular) [S⊥]T

(

[ξ] − [W ][ζ]
)

= 0, i.e.,
[S⊥]T[W ][ζ] = [S⊥]T[ξ] (B6)As shown further on, [S⊥]T[W ] is invertible. It then fol-lows that [ζ] =

(

[S⊥]T[W ]
)−1

[S⊥]T[ξ], hen
e fromEqs. (B4) and (B5),
[S] = [I] − [W ]

(

[S⊥]T[W ]
)−1

[S⊥]T (B7)where [I] is the identity matrix on E.We now show that the n0-by-n0 matrix [M0]
def

= [S⊥]T[W ]is invertible.Proof. Let ξ⊥ be the proje
tion of some ve
tor η of kerAon F⊥; see Fig. B1. By 
onsidering the 
ase where
ξ = ξ⊥, Eq. (B6) yields [M0][ζ] = [S⊥]T[ξ⊥]. The 
on-dition [M0][ζ] = 0 implies [S⊥]T[ξ⊥] = 0, hen
e ξ⊥ = 0.As a result, η then lies in F. As F ∩ kerA = {0}, it fol-lows that η = 0, hen
e ζ = 0. The null spa
e of [M0] istherefore redu
ed to {0}; but [M0] is an n0-by-n0 matrix;
[M0] is therefore invertible.Remark B1. In the S-system approa
h as it is imple-mented by de Jonge (1998) for example, one 
hoosessome basis for F. The 
orresponding matrix is denotedby S; F is then regarded as the range of S; [S⊥]Tξ is
alled the `S-basis.' Note that [S⊥] is then denotedby S⊥ ·

Appendix C QR implementationIn this appendix, we show how the �oat version of Eq. (81)
an be solved in the LS sense via re
ursive QR fa
-torization. Here, for simpli
ity, we will assume thatthe elementary orthogonal transformations involved inthat fa
torization are Givens rotations; see Eqs. (2.3.10)to (2.3.13) in Björ
k (1996).In the 
losure-ambiguity approa
h, the number of entriesof v, nc, is a non-de
reasing fun
tion of k; see Se
t. 6.3.In Se
t. C1, we 
onsider the 
ase where nc is 
onstant;the 
ases where at some epo
hs k, nc in
reases is dealtwith in Se
t. C2. In that QR framework, we �nally de-s
ribe in Se
t. C3 the 
onstru
tion of the matri
es Ak,
Bk and bk involved in Eq. (81).C1 Re
ursive QR fa
torizationAs shown in this se
tion, the �oat version of the followingequation (Eq. (81)) 
an be solved in the LS sense viare
ursive QR fa
torization:

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[

v
]Throughout this se
tion, nc is assumed to be �xed; forrelated notions, see Se
t. 6.3 of Björ
k 1996; Golub andvan Loan 1989; Bierman 1977.C1.1 Initialization: epo
h 1At epo
h 1, the problem is to minimize the fun
tional(see the �rst line of Eq. (81))

f1(w1, v)
def

= ‖(B1w1 + A1v) − b1‖
2
Rne1The LS solution (ŵ1, v̂) is then obtained via two QR fa
-torizations (see Fig. C1).1) QR fa
torization of B1: the Givens rotations of thisstep are those required for �nding the upper-triangularmatrix K1. The modi�ed version of A1 thus obtained in-
ludes an upper blo
k L1 and a lower blo
k L′

1. Likewise,the modi�ed version of b1 in
ludes two 
olumn subma-tri
es: c1 and c′1.2) QR fa
torization of L′

1: the Givens rotations of thatstep yield the upper-triangular matrix R1. The lowerpart of L′

1 is redu
ed to 0; c′1 then yields (d1 , d′

1); seeFig. C1. Note that K1, L1 and c1 are not a�e
ted bythose rotations.
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K1 L1 c1

R1

B1 A1 b1

c′1

d1

d′

1Figure C1: QR fa
torization at epo
h 1.The prin
iple of the re
ursive QR method issket
hed here for the �rst epo
h with the in-put blo
k matri
es B1 , A1 and the data 
ol-umn matrix b1. The initialization pro
essis performed in two steps: K1 , (L1 , L
′

1),
(c1 , c

′

1) are built in the �rst step (see textfor L
′

1), whereas R1 , (d1 , d
′

1) are built in these
ond one; for the LS solution thereby ob-tained at epo
h 1, see text.At the end of this initialization stage, we thus have
f1(w1, v) = ‖(K1w1 − (c1 − L1v)‖2

R
nb1

+ ‖R1v − d1‖2
Rnc

+ ‖d′

1‖
2
R

ne1−nb1−ncThe �oat solution in v at epo
h 1 is therefore given bythe formula v̂ = R−1
1 d1, hen
e ŵ1 = K−1

1 (c1 − L1v̂).These solutions 
an therefore be 
omputed by ba
k sub-stitution. Note that ‖d′

1‖
2
R

ne1−nb1−nc
is the square of theLS residual norm at epo
h 1.C1.2 Next epo
h: epo
h 2The fun
tional to be minimized is then

f1(w1, v) + f2(w2, v) where
f2(w2, v)

def

= ‖(B2w2 + A2v) − b2‖
2
Rne2As sket
hed in Fig. C2, the LS solution (ŵ1, ŵ2, v̂) isagain obtained via two QR fa
torizations. The �rst stepof epo
h 2 is similar to that of epo
h 1; the se
ond oneis di�erent.1) QR fa
torization of B2One thus obtains the upper-triangular matrix K2; seeFig. C2. The modi�ed version of A2 then in
ludes anupper blo
k L2 and a lower blo
k L′

2. Likewise, themodi�ed version of b2 in
ludes two 
olumn submatri
es:
c2 and c′2.

K1 L1 c1

R1→R2

K2 L2

L′

2 → 0

B1 A1

B2 A2

b1

b2

c′1

c2

c′2 d′

2

d1

d′

1

d2

Figure C2: QR fa
torization at epo
hs 1 and 2. Theprin
iple of the re
ursive QR method is sket
hed here forthe �rst two epo
hs: epo
h 1 with the input blo
k ma-tri
es B1 , A1 and the data 
olumn matrix b1; epo
h 2with the input blo
k matri
es B2 , A2 and the data 
ol-umn matrix b2. The initialization pro
ess is performedin two steps as des
ribed in Fig. C1. At epo
h 2, one�rst builds K2 , (L2 , L
′

2), (c2 , c
′

2) like at epo
h 1, andthen R2, (d2 , d
′

2); for the LS solution thereby obtainedat epo
h 2, see text.2) QR fa
torization of [

R1

L
′

2

]:The Givens rotations of the se
ond step then operateon (R1 , L′

2) and (d1 , c′2) so as to transform L′

2 into azero-blo
k matrix. One thus gets R2 and (d2 , d′

2).At the end of this stage, we thus have
f1(w1, v) + f2(w2, v) = ‖(K1w1 − (c1 − L1v)‖2

R
nb1

+ ‖R2v − d2‖2
Rnc

+ ‖d′

1‖
2
R

ne1−nb1−nc

+ ‖(K2w2 − (c2 − L2v)‖2
R

nb2

+ ‖d′

2‖
2
R

ne2−nb2The �oat solution in v at epo
h 2 is therefore given bythe formula v̂ = R−1
2 d2, hen
e the LS solutions in w1and w2:

ŵ1 = K−1
1 (c1 − L1v̂), ŵ2 = K−1

2 (c2 − L2v̂)The square of the LS residual norm at epo
h 2 is thenequal to ‖d′

1‖
2
R

ne1−nb1−nc
+ ‖d′

2‖
2
R

ne2−nb2
.
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Kk Lk ck

Rk dk

Figure C3: Re
ursive QR tri-angular stru
ture. A

ording tothe prin
iple of the re
ursive QRmethod sket
hed in Fig. C2, the
al
ulation of Rk+1 and dk+1 re-quires to have kept in memory theupper-triangular matrix Rk andthe 
olumn matrix dk; see text.C1.3 Next epo
hsIn summary, one thus operates, re
ursively, with the keystru
ture shown in Fig. C3: Kk, (Lk , L′

k) and (ck , c′k)are 
omputed from Bk, Ak and bk, the quantities Rkand (dk , d′

k) being then 
omputed from (Rk−1 , L′

k) and
(dk−1 , c′κ). The generalization is straightforward; wethen have

k
∑

κ=1

fκ(w1, v) = ‖(K1w1 − (c1 − L1v)‖2
R

nb1

+ ‖Rkv − dk‖2
Rnc

+ ‖d′

1‖
2
R

ne1−nb1−nc

+ ‖(K2w2 − (c2 − L2v)‖2
R

nb2

+ ‖d′

2‖
2
R

ne2−nb2...
+ ‖(Kkwk − (ck − Lkv)‖2

R
nbk

+ ‖d′

k‖
2
R

nek−nbkThe �oat solution in v at epo
h k is therefore given bythe formula
v̂ = R−1

k dk (C1)hen
e the LS solutions in w1, . . . ,wk:
ŵκ = K−1

κ (cκ − Lκv̂) (κ = 1, . . . , k) (C2)The solution of the 
orresponding NLP problem is there-fore de�ned as follows:
v̌ = argmin

v∈Znc

‖Rk(v − v̂)‖2
Rnc (C3)Indeed, Rkv − dk = Rk(v − v̂). The phase biases w̌κare then given by the relations

w̌κ = K−1
κ (cκ − Lκv̌) (κ = 1, . . . , k) (C4)Their varian
e-
ovarian
ematrix is equal toK−1

κ [K−1
κ ]T.

C2 Handling new 
omponents of the
losure-ambiguity variableWe now 
onsider the 
ase where Lc,k in
ludes na
c new 
lo-sure edges (see Se
t. 6.3); supers
ript a stands for added.One then pro
eeds in three steps:1) na

c 
losure-ambiguity entries are added at the topof 
olumn matrix v;2) as spe
i�ed in Se
t. C3.2, na
c 
olumns are added onthe right-hand side of Bk;3) as shown in Fig. C4, to build Rk, the last na

c linesof K and L obtained through the �rst QR stepare added at the top of R. Matri
es dk, Kk, Lkand ck are then updated a

ordingly.
Kk

K Lk L c

d

R

ck

dkRk

Figure C4: Handling new 
omponents of the
losure-ambiguity variable. When new entriesof v appear at epo
h k, the �rst 
olumns of Akare pro
essed as the last 
olumns of Bk (seeFig. C2). The re
ursive QR operation thenyields the quantities K, L, c, R and d. Toget Kk, Lk, ck, Rk and dk, one then pro
eedsas illustrated here.C3 Constru
tion of matri
es Bk, Ak and bkWe �rst 
onsider the 
ase where the varian
e-
ovarian
ematrix Vk of the data involved in the de�nition of bk isthe identity: Vk = I. Denoting by bk the 
olumn ma-trix whose entries are the values of bk on the edges ofthe observational graph Hk (see Se
t. 1), we then have
bk = bk. To build Bk = Bk and Ak = Ak, we then dis-tinguish the 
ases where at epo
h k, nc does not in
rease(Se
t. C3.1), or in
reases (Se
t. C3.2). The 
ase Vk 6= Iis dealt with in Se
t. C3.3.C3.1 Case where nc does not in
reaseMatrix Bk, whose number of 
olumns is nbk, is builtfrom the 
hara
teristi
 fun
tion Hk of Hk; see Fig. 1.The pth line of Bk 
orresponds to the pth edge (ri, sj)on whi
h Hk(i, j) = 1. All the matrix elements of that
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ept (one or) two of them (see Eq. (6)and the de�nition of ̟sk in Se
t. 6.2):
Bp,i−1

k = 1 (for i > 1), B
p, nr−1+̟sk(j)
k = −1Matrix Ak has nc 
olumns: the number of elementsof Lc,k; see Se
t 6.3 and Fig. 5. A

ording to the a
-tion of Re

k, the entries of the 
olumn asso
iated withsome 
losure edge (ri, sj) are then all zero, ex
ept that
orresponding to the line asso
iated with that edge if
Hk(i, j) = 1; that entry is then set equal to unity. Thelines of Ak are of 
ourse sorted as the lines of Bk.C3.2 Case where nc in
reasesWe here 
onsider the 
ase where na

c new 
losure edge(s)appear(s) in Lc,k at some epo
h k > 1: nc := nc + na
c ;see Se
t 6.3.Matrix Bp,q

k is de�ned as in Se
t. C3.1, but na
c 
olumnsare then added on its right-hand side. (For example, atepo
h 2 of Fig. 5, B2 has four additional 
olumns.) Theentries of the 
olumn of Bk asso
iated with some new
losure edge (ri, sj) are all zero, ex
ept that 
orrespond-ing to the line asso
iated with that edge; that entry isset equal to unity.Matrix Ak is then built as in Se
t. C3.1, ex
ept for thenew 
losure-edges, sin
e they are then taken into a

ountin the augmented de�nition of Bk.C3.3 Case where Vk is not the identityWe here 
onsider the general 
ase where the varian
e-
ovarian
e matrix Vk is to be taken into a

ount. In theQR implementation under 
onsideration, the inverse of Vkis then fa
torized in the form

V −1
k = U T

k Uk (C5)where Uk is an upper-triangular matrix. As
(Bkwk + Akv − bk)T V −1

k (Bkwk + Akv − bk)

= ‖Uk(Bkwk + Akv − bk)‖2
R

nekmatri
es Bk, Ak and bk are then given by the relations
Bk = UkBk, Ak = UkAk, bk = Ukbk (C6)The problem is then to solve Eq. (81) in the Eu
lideanLS sense.A
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hi M, Nis
han T,Wi
kert J(2012) A novel real-time pre
ise positioning servi
esystem: global pre
ise point positioning with regionalaugmentation. J GPS 11: 2-10Geng J, Meng X, Dodson AH, Teferle FN (2010) Inte-ger ambiguity resolution in pre
ise point positioning:method 
omparison. J Geod 84: 569-581Golub GH and van Loan CF (1989) Matrix 
omputa-tions, 2nd edn. The Johns Hopkins University Press,Baltimore, MarylandLannes A, Gratton S (2009) GNSS networks in algebrai
graph theory. J GPS 8: 53-75Lannes A, Prieur JL (2011) Algebrai
 analysis of thephase-
alibration problem in the self-
alibration pro-
edures. Astron Na
hr 332: 759-784



Lannes and Prieur: Calibration of the 
lo
k-phase biases of GNSS networks 23Lannes A, Teunissen PJG (2011) GNSS algebrai
 stru
-tures. J Geod 85: 273-290Lannes A (2013) On the theoreti
al link between LLL re-du
tion and Lambda de
orrelation. J Geod 87: 323-335Lannes A, Prieur JL (in press) Integer-ambiguity resolu-tion in astronomy and geodesy. Astron Na
hrLauri
hesse D, Mer
ier F (2007) Integer ambiguity res-olution on undi�eren
ed GPS phase measurementsand its appli
ations to PPP. ION GNSS 2007 20thinternational te
hni
al meeting of the satellite divi-sion, 25-28 Sept 2007, Forth Worth, TX, pp 839-848Lenstra AK, Lenstra HW, Lovász L (1982) Fa
torizingpolynomials with rational 
oe�
ients. Math Ann261: 515-534.Li X, Ge M, Zhang H, Wi
kert J (2013) A method forimproving un
alibrated phase delay estimation andambiguity-�xing in real-time pre
ise point position-ing. J Geod DOI:10.1007/s00190-013-0611-xLoehnert E, Wolf R, Pielmeier J, Werner W, Zink T(2000) Con
epts and performan
e results on the 
om-bination of di�erent integrity methods using UAIMand GNSS without SA. Pro
. ION GPSS-2000. SaltLake City, Utah USA: 2831-2840Loyer S, Perosanz F, Mer
ier F, Capdeville H, MartyJC (2012) Zero-di�eren
e GPS ambiguity resolutionat CNES-CLS IGS Analysis Center. J Geod 86:991-1003

Odijk D, Teunissen PJG, Zhang B (2012) Single-frequen
y integer ambiguity resolution enabled pre-
ise point positioning. J Surv Eng 138: 193-202Teunissen PJG (1984) Generalized inverses, adjustment,the datum problem and S-transformations. In:E. Grafarend and F. Sanso (eds) Optimization ofGeodeti
 Networks, Springer, Berlin, pp 11-55Teunissen PJG and Odijk D (2003) Rank-defe
t integerestimation and phase-only modernized GPS ambigu-ity resolution. J Geod 76: 523-535Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK:Results of CORS network-based PPP with integerambiguity resolution. J Aeronauti
s, Astronauti
sand Aviation 42: 223-229Tiberius CCJM (1998) Re
ursive data pro
essing for kine-mati
 GPS surveying. Publi
ations on Geodesy, Newseries: ISSN 0165 1706, Number 45, NetherlandsGeodeti
 Commission, DelftVerhagen S, Teunissen PJG (2006) New global satellitesystem ambiguity resolution methods 
ompared toexisting approa
hes. J Guid Control Dynam 29:891-991Zhang B, Teunissen PJG, Odijk D (2011) A novel un-di�eren
ed PPP-RTK 
on
ept. J Navigation 64:S180-S191Zumberge JF, He�in MB, Je�erson DC, Watkins MM,Webb FH (1997) Pre
ise point positioning for thee�
ient and robust analysis of the GPS data fromlarge networks. J Geophys Res 102(B3): 5005-5017


